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ABSTRACT
Cells leverage signaling molecules to carry information about
the cellular state to receptors that regulate protein synthesis
in order to suit the cell’s dynamically evolving needs. This
regulation remains efficient and robust, despite that substan-
tial stochasticity pervades the sub-cellular environment. In
electronic and wireless signaling systems, the mutual infor-
mation quantifies the extent to which information in a signal
can be received across a communications channel. Applying
this same metric to gene-regulatory interactions can better
clarify how these biological signaling systems mitigate en-
vironmental noise. In this paper we study the information-
transmission characteristics of a single gene-regulatory in-
teraction by employing an exactly solvable master equation
model for the production and degradation of individual pro-
teins. This molecular-scale description is then coupled to a
mass-action kinetics model of dynamic protein concentra-
tions in a macroscopic sample of cells, enabling parame-
ter values to be obtained by experiments performed using
cell-based assays. We find that the mutual information de-
pends monotonically on two parameters: one which charac-
terizes stochastic variations in the concentration of signaling
molecules, and the other the ratio of kinetic production to
degradation rates of the regulated protein.
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1. INTRODUCTION
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Living cells leverage imperfect biological “hardware” to de-
code information regarding the cellular state that is con-
veyed through molecular signaling events. The cellular con-
centrations of signaling molecules–such as transcription fac-
tor proteins, which are synthesized from genes and regulated
by other transcription factors–are subject to great variabil-
ity due to both intrinsic and extrinsic noise [9], thereby con-
tributing uncertainty to the individual cellular states of a
clonal population. Understanding how biology overcomes
this uncertainty to extract useful information is a topic of
intense investigation [11].

One metric that captures information-transmission charac-
teristics of a signal-response system is the mutual informa-
tion. If s is a number of transcription factor proteins that
encode a “source” state, and if r is the number of “response”
proteins that sense and decode this state, then the mutual
information, I(r; s), is given by the following standard ex-
pression [2]:

I(r; s) =

∞∑
r=0

∞∑
s=0

p(r, s) log2

p(r, s)

p(r) p(s)
. (1)

Eq. 1 can be interpreted as the information, measured in
bits, conveyed to the response about the source state. Here,
I(r, s) = 0 if s and r are uncorrelated: p(r, s) = p(r)p(s). It
is maximized when s uniquely determines r: p(r|s) = 1.

A challenge to evaluating Eq. 1 is estimating the joint prob-
ability, p(r, s), which links the source to the response. Below
we report a simple mathematical model of protein produc-
tion stimulated by a transcriptional-regulatory interaction,
and use it to understand characteristics of the information
transmission via Eq. 1. This model requires only two in-
dependent parameters, and the joint probability between
source and receptor molecules can be derived analytically
in the long-time limit. We will further show that, despite
describing a molecular-scale process, our model can be pa-
rameterized using data from macroscopic experiments.

2. MATHEMATICAL MODEL
We consider the relationship between transcription factor
and response-protein concentrations within a single cell, wherein
the response protein abundance is determined by a single,
stimulatory transcriptional interaction. For simplicity, we
ignore any diffusion-limited behavior on the response-protein
yield, and treat transformative processes as chemical “reac-
tions” by using the formalism of reaction-limited chemical
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kinetics.

In our model, the source and response states are represented
by the number of accumulated molecules s and r in a single
cell, which we treat as random variables drawn, respectively,
from the distributions p(s) and p(r). For simplicity we take
p(s) as the bounded uniform distribution:

p(s) =

{
1

2λ+1
〈s〉 − λ ≤ s ≤ 〈s〉+ λ

0 otherwise
, (2)

wherein 〈s〉 is the expected number of transcriptional activa-
tors per cell, and 2λ is the width of the distribution. Despite
its simplicity, Eq. 2 exhibits qualitative features similar to
those of a Gaussian distribution with mean 〈s〉 and variance
σ2 = λ(λ+ 1) /3.

2.1 Master equation
We propose a master equation to model the conditional
probability distribution, p(r|s), for each of the infinite but
enumerable states indexed by response protein number, which
should generally reflect the mechanisms of regulatory biol-
ogy. Because proteins are created discretely, we quantify
the probability for a single protein created in time ∆t as
ω(s)∆t, which subsumes the protein-creation kinetics. We
further assume that ω is time-independent (see below) and
that ∆t is chosen such that ω∆t ≤ 1, so that only one pro-
tein may be produced per time step. We similarly define
ν∆t ≤ 1 to be the probability that a single protein is de-
stroyed in one time step (either degraded by catabolic path-
ways or expelled from the cell by clearance mechanisms).
Each response protein has an equal chance to degrade in a
given time step, so whereas the ladder of “r”-states can only
be climbed one rung at a time, it can be descended by any
number of steps; however, the probability of descending n
steps decreases with increasing n and decreasing ∆t. These
considerations lead to the following difference equation:

p(r|s; t+ ∆t)− p(r|s; t)
= ω(s)∆tp(r − 1|s; t)− ω(s)∆tp(r|s; t)

+ lim
N→∞

N∑
i=1

(
r + i

i, r

)
(ν∆t)i(1− ν∆t)rp(r + i|s; t)

−
r∑
i=1

(
r

i, r − i

)
(ν∆t)i(1− ν∆t)r−ip(r|s; t). (3)

The first two terms on the right hand side of Eq. 3 account
for gain and loss of a single protein molecule from a creation
event; the third term accounts for a gain in probability due
to an equivalent loss from states with more molecules; and
the fourth term accounts for a loss of probability to states
with fewer molecules driven by destruction events.

Although one advantage of Eq. 3 lies in its linearity, it re-
flects a large coupled system of difference equations, and is
therefore difficult to solve exactly. To make the problem
tractable, it is possible to choose ∆t small enough that ap-
proximately no two molecules are destroyed simultaneously,
which restricts transitions to the adjacent states. Expand-
ing the destruction probabilities of Eq. 3 in a Taylor series

〈s〉 = 100

k/kD

I
(r
;s
)

(a)

 

I
(r
;s
)

(b)

λ

Figure 1: Mutual information (measured in
bits) plotted against (a) parameter values of the
transcription-translation kinetics, k/kD and (b) the
width of the input distribution, λ.

about ∆t = 0, we find, in the limit ∆t→ 0:

d

dt
p(r|s; t) = ω(s)p(r − 1|s; t)− ω(s)p(r|s; t)

+ ν(r + 1)p(r + 1|s; t)− νrp(r|s; t). (4)

The steady-state condition is limt→∞ dp(r|s; t)/dt = 0, and
applying it to Eq. 4 yields:(

r +
ω(s)

ν

)
p(r|s) =

ω(s)

ν
p(r − 1|s) + (r + 1)p(r + 1|s).

(5)
This equation can be solved exactly to give a Poisson distri-
bution:

p(r|s) =
1

r!

(
ω(s)

ν

)r
e−ω(s)/ν , (6)

which depends on only a single dimensionless parameter,
ω/ν, that contains the s-dependence of the protein kinetics.

2.2 Parameter values
Protein production kinetics can be related to the state-transition
probabilities ω and ν by inspection with experimental re-



sults. Without losing any generality, consider an experiment
wherein the mean protein concentration, R̄(t), is measured
using a fluorescent reporter protein within a clonal popula-
tion of prokaryotic cells (e.g., E. coli bacteria). The activity
of these proteins changes in response to an up-regulatory
interaction with a single transcription factor species present
in concentration S̄(t), measured across the cell population.
If S̄(0) = 0 and S̄(t > 0) = S0 is constant–a good approx-
imation to a bistable switch [3], then R̄(t) can be modeled
dynamically with first-order reaction-limited chemical kinet-
ics:

d

dt
R̄(t) = kS0 − kDR̄(t). (7)

Here, 1/k is the characteristic time to create a protein,
and ln 2/kD is the protein half-life. Equation 7 can be ex-
pected to hold if transcription achieves an mRNA steady-
state much faster than the translational kinetics–a condi-
tion that holds approximately for some bacterial proteins [4].
The steady-state solution of Eq. 7 is given by limt→∞ R̄(t) =
(k/kD)S0, and the mean number of response proteins per
cell, r̄, is:

r̄ = (k/kD)s0, (8)

wherein s0 = S0Vcell. Here, Vcell is the volume of a typical
E. coli bacterium.

Alternatively, Eq. 6 can be used to calculate the expectation
value of r on a per-cell basis: 〈r〉 =

∑
r rp(r|s0) = ω(s0)/ν.

Because 〈r〉 should be comparable with the value measured
from experiment, we equate it with Eq. 8:

ω(s0)

ν
=

k

kD
s0. (9)

This identification can be used with Eq. 6 to give, generally:

p(r|s) =
1

r!

(
k

kD
s

)r
e−(k/kD)s. (10)

While Eq. 10 reflects mass-action kinetics, alternative ki-
netic models, such as the Hill equation, can be accommo-
dated in a similar manner.

3. RESULTS AND DISCUSSION
The mutual information can be evaluated using Eq. 1 with
the joint probability distribution determined by Eqs. 2, and
10:

p(r, s) =
1

(2λ+ 1) r!

(
k

kD
s

)r
e−(k/kD)s, (11)

for 〈s〉 − λ ≤ s ≤ 〈s〉+ λ, and p(r, s) = 0 otherwise. Results
for the mutual information are plotted in Fig. 1 for fixed
〈s〉 = 100.

Generally, the mutual information increases monotonically
with both the dimensionless parameter k/kD (Fig. 1(a)),
which is related to the variance in the conditional probabil-
ity, σr

2, by σr
2 = (k/kD)s0 (the same as the mean in this

case), and the parameter λ (Fig. 1(b)), which is related to
the variance in the signal distribution, σs

2 = λ(λ+ 1)/3.
This should be expected, because more information about
the source should relate with a larger information transmis-
sion, and, therefore, larger mutual information. In contrast
with some continuous models of biological communication

“channels” [13, 14], the channel noise, σr
2, is fixed in our

model by biochemistry, rather than being a tunable param-
eter.

Some experimental data exists to support that the number of
proteins per cell is approximately Poisson- distributed [4], as
predicted by our model. However, phenomena such as tran-
scriptional and translational “bursting” can lead to larger
fluctuations than expected from a purely Poisson process [4,
8] and will consequently affect the mutual information. Our
model could be readily extended to accommodate this phe-
nomenon by incorporating an exponential wait-time distri-
bution into the creation probability ω, making it a dynamic
quantity. Although models that incorporate bursting are
rather complicated [5], they otherwise result in approxi-
mately Poisson-distributed probabilities. It is therefore likely
that protein-bursting processes will not substantially affect
the qualitative features of the mutual information observed
from our model.

The mutual information, Eq. 1, measures the logarithm of
the number of input states that can be resolved by a receiver
from a noisy communication channel [2]. In the biological
setting of our model, a mutual information of 1 bit can be
interpreted as the threshold to resolve whether the tran-
scriptional activator is in a “high” (ON) or “low” (OFF) con-
centration state by examining the protein response at steady
state. Figure 1 illustrates that 1 bit can be reached by either
manipulating the input signal to allow for a larger number
of signaling molecules (e.g., by increasing λ), or by choosing
a transcriptional/translational system biased toward protein
production (i.e., larger k/kD).

4. CONCLUSIONS
We investigated the qualities of the mutual information be-
tween a number of (source) transcription factors and the
number of associated (response) proteins whose activity is
regulated by a single, stimulatory transcriptional interac-
tion. We developed a master equation to estimate the joint
probability between source and response proteins, and solved
it exactly in the long-time limit to reveal that the response
follows a Poisson distribution. Other master-equation based
models [15, 5] exhibit this feature, whereas continuous mod-
els exhibit mostly Gaussian behavior [13, 14]. This model
requires values for only three parameters: the average (con-
stant) number of source molecules, 〈s〉; the width of the
source distribution, 2λ; and the ratio of creation to annihi-
lation kinetic parameters, k/kD. The former two quantities
parameterize the source distribution, while the latter quan-
tifies the protein kinetics. While parameters of the source
distribution could be measured by single-cell fluorescent la-
beling techniques (e.g., [10]), rate constants are typically
accessible through curve-fitting.

Numerical evaluation of the mutual information shows that
it rises monotonically with λ and k/kD (Fig. 1), because
an increase in these parameters accompanies a respective in-
crease in the information capacity of the source or“channel.”
A forthcoming paper will demonstrate, using a continuum
model, that these findings persist for a regulatory chain of
arbitrary length and do not depend upon the assumption
of mass-action kinetics if the system is sufficiently close to
steady state. The present work complements previous stud-



ies of intracellular molecular-transport channels [1, 6, 12],
which together may enable the use of synthetic biological
methods to engineer signaling pathways in novel ways, or to
inspire improved “design principles” for current communica-
tion technologies, such as wireless sensor networks.
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