
Testing Software Using Swarm Intelligence: A Bee Colony

Optimization Approach

Omar El Ariss
Computer & Mathematical Sciences

The Pennsylvania State University

Harrisburg, PA, USA

1 (717) 948-6669

oelariss@psu.edu

Steve Bou ghosn
Computer Science &Information

Systems

Westfield State University

Westfield, MA

1(413) 572‐ 5294

sboughosn@westfield.ma.edu

Weifeng Xu
Department of Computer Science

Bowie State University

Bowie, MD

1 (301) 860-3965

wxu@bowiestate.edu

ABSTRACT

Software testing is a critical activity in increasing our confidence

of a system under test and improving its quality. The key idea for

testing a software application is to minimize the number of faults

found in the system. Software verification through testing is a

crucial step in the application's development life cycle. This

process can be regarded as expensive and laborious, and its

automation is valuable. We propose a multi-objective search

based test generation technique that is based on both functional

and structural testing. Our Search Based Software Testing (SBST)

technique is based on a bee colony optimization algorithm that

integrates adaptive random testing from the functional side and

condition/decision and multiple condition coverage from the

structural side. The constructive approach that the bee colony

algorithm uses for solution generation allows our SBST to address

the limitations of previous approaches relying on fully random

initial solutions and single objective evaluation. We perform

extensive experimental testing to justify the effectiveness of our

approach.

Categories and Subject Descriptors

D.2.4 Software/Program Verification; D.2.5 Testing and

Debugging; F.1.2 Modes of Computation; I.2.8 Problem Solving,

Control Methods, and Search.

General Terms

Algorithms, Reliability, Verification.

Keywords

Swarm Intelligence; unit testing; automated test generation;

branch coverage; search based testing

1. INTRODUCTION

It is estimated that software testing corresponds to 30% to

50% of a project’s budget [4]. Generating test cases is a

very challenging problem because it is unfeasible to find a

suite of test cases that fully evaluates a program, as the

input domain of most programs is nearly infinite. Thus,

human testers spend a lot of time striving to find a high

quality set of test cases that will allow them to detect a

large percentage of faults in a software system. Automated

testing research attempts to find ways to make this process

more efficient by automatically generating the test cases.

A lot of research has been done in the area of search based

methods of automated test case generation. Some of the

SBST research has focused on local search methods such as

hill climbing, simulated annealing and tabu search. In [2] a

hill climbing approach was used to generate test cases,

while in [24] the authors experimented with the use of

simulated annealing. In [7] a tabu search metaheuristic

algorithm was used to generate tests for structured

software. Another local search technique used for test case

generation is the alternating variable method[13][14].The

main problem with the use of local search techniques is that

because they only consider the neighborhood of a high

quality solution they often get stuck in local optima.

Advanced local search techniques like simulated annealing

and tabu search address this shortcoming by either

restarting the search with random values or temporarily

accepting low quality solutions.

Due to the limitations of local search techniques, various

research efforts have been dedicated to global search

methods that are less prone of getting stuck in local

optimal. One of the most popular techniques are

evolutionary algorithms such as Genetic Algorithm (GA).

Various work has been done using GA techniques, for

example [12], [20] and [3] are some of the early works.

One of the problems with global search methods like

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262529

genetic algorithms when applied to test generation is that

they tend to alter the solutions too much. Operators like

crossover and mutation drastically change the solution and

make it harder to improve in a more focused way that

relates to aspects of the test cases. In addition to that, these

changes might generate invalid or illegal input.

To overcome this problem many recent approaches have

used a hybrid method that combines genetic algorithms

with other approaches, for example a local search method.

One such work is the augmentation of the GA approach

with constraint-based testing [17]. In addition, the authors in

[8] use a memetic algorithm while in [21] an approach that

combines genetic algorithms and tabu search is applied.

Another limitation of genetic algorithms approaches for

software testing is having a candidate solution represent a

test case and the entire population represent a single test

suite. This choice of representation strips the GA approach

from one of its main features, which is working on multiple

candidate solutions instead of one. In addition, the genetic

operators like crossover and mutation tend to not be very

suitable when dealing with test cases as the chromosomes.

Also the use of randomness when selecting an initial

population of solutions isn’t appropriate when performing

test case generation, it seems more appropriate to base it on

a partial set of functional tests [1].

In our research we propose three main contributions. First,

our implementation is based on a Bee Colony Optimization

(BCO) algorithm, which is a very recent heuristic proposed

in [16] and used successfully to solve many different

problems [22], [6], [15]. We believe BCO would work very

well because of its use of a constructive approach to

solution generation. A test suite can be generated

adaptively using these techniques as opposed to generating

complete random solutions as in GA. The second is

encoding a suite of test cases as a candidate solution instead

of an independent test case; some recent research seems to

be following this approach too [8]. We find this approach

to be more natural and have a one to one correspondence to

how software testers construct a test suite. We seldom see

them directly think of the entire test suite. Instead, they

constructively modify the test suite by adding to it more

test cases in order to improve the test coverage. We believe

that genetic algorithms due to the limitations mentioned

above wouldn’t be particularly feasible for this approach.

Our third contribution lies in the objective function used.

Previous work in search based testing focused on a single

objective function, which is mainly decision coverage [10,

11]. Our fitness function is multi objective, where the focus

is on achieving condition and decision coverage, while

multi-condition coverage is considered as a bonus

objective.

This paper is divided as follows: in Section 2 we give an

introduction to BCO, in section 3 we describe our

implementation using BCO for automated test case

generation. In section 4 we perform some experiments on

our approach using a known set of test case samples.

Finally in section 5 we present our observations and

conclusions.

2. BEE COLONY OPTIMIZATION (BCO)

Colonies of social insects such as ants and bees have highly

organized behavior that enables them to work collectively

to solve problems and thus perform much more efficiently

than having each member working individually [22]. This

interaction and collective behavior of the decentralized

agents or members of the colony constitutes swarm

intelligence. In a bee colony an organized collaborative

effort is used in order to find flowers that are potential food

sources and exploit them, allowing bees to harvest nectar

from different food sources separated by long distances.

There are two groups of bees that are formed as part of this

strategy, scouts and workers. The set of bees working as

scouts are constantly searching the environment for new

potentially promising nectar sources. Any scout that finds a

promising source returns to the hive and communicates the

information to its peers by performing a special dance

called a waggle dance. Other bees in the colony that are

initially idle will observe the waggle dances performed by

the scout bees and become worker bees on one of the

advertised food sources. The amount of worker bees that

will join on exploiting a particular food source is directly

proportional to the quality of that source. Only a small

percentage of the bees in the colony assume the role of

scouts at any given time leaving the majority of the

workforce to be concentrated on exploiting nectar sources.

As long as sources are still deemed profitable, the bees

working on them will continue to advertise them thus

optimizing the workforce in the colony to focus on the best

areas.

When using bee colony optimization (BCO), the search

space of all possible solutions is represented by the field the

bees are exploring. Each possible partial solution is a point

in the field which is basically a potential source of nectar.

The quality of the source is determined by an objective

function that evaluates how optimal the solution is in

solving the problem. There are two stages in BCO, the

forward phase and the backward phase. The forward phase

represents the bees flying to search for food sources, every

source found becomes a new partial solution that is being

analyzed. During the backward phase bees return to the

hive and scout bees use the waggle dance to advertise those

partial solutions. At that stage, some bees will join the

workforce on each of those partial solutions that show

promise while other bees will assume the role of scouts and

search for new sources.

The effectiveness of the bee algorithm relies on the use of

both an intensification and diversification strategies when

constructing solutions. While a large number of the bees

are performing a local search by exploring existing

solutions (intensification), a small number of bees make

sure the algorithm doesn’t get stuck in a local optimal by

always exploring new areas of the search space

(diversification). This combination of both a local search

and a global search and the fact that solutions are being

constructed dynamically rather than randomly generated is

one of the most important features of BCO.

3. AUTOMATED TEST GENERATION

USING BCO

In this section we describe the Bee Colony Optimization

(BCO) approach to unit testing. Our testing strategy is a

white-box one, where we rely on the source code to

generate the test cases. Therefore the Control Flow Graph

(CFG) of the function under test is used to determine the

coverage criteria and to guide the testing process. Adaptive

random testing, a black-box approach, is also integrated

into BCO to diversify the input values.

Our proposed work brings various novelties to the current

techniques used by evolutionary search methods. Firstly,

we address some of the limitations of known approaches

such as random initial solutions [1], fixed test suite size and

evolving operators that alter solutions too much [1]. We do

that by encoding a population of test suites. The reason we

chose to use BCO as opposed to other evolutionary

algorithms is that BCO is inherently a constructive

algorithm. While other approaches start with fully random

solutions, BCO starts with an empty solution and constructs

it gradually through an iterative process.

Another feature of our approach is that in contrast to

previous works like [18] that constrain the input domain of

test variables to make the search space more manageable,

and [9] that limit the range of values for bloat control, our

approach imposes no limitations in the input domain. A

final innovation lies in how we evaluate the quality of the

tests. We use a multi-objective fitness function, contrary to

the prevalent use of a single objective function in most

previous work.

3.1 Solution Encoding

The problem of automated test case generation is to come

up with suite of tests that exercise the component under

test. In this paper we target standalone functions, therefore

the output of our BCO algorithm is a test suite that is

suitable for efficiently evaluating the function under test.

BCO is a population based algorithm where multiple

solutions are constructed at the same time. Each solution

stands for a full test suite. An individual test suite is a set of

test cases, where each test case is a tuple of values that

stands for the input variables of the function under test. We

focus in this paper on integer values but the approach can

be easily modified to handle other data types.

The constructive nature of the BCO algorithm supports our

choice of encoding. Once a test case is added to the test

suite, the test case will not change. This simplifies the

calculation of the coverage criteria and makes it an

incremental one. Other approaches, such as the GA based

ones, have to recalculate the coverage criteria for the entire

test suite every time the crossover and mutation operators

are applied. This is time consuming and has a detrimental

effect on the performance of the automated test generation

process. This also addresses other limitations of recent

evolutionary approaches. Operators that function on the test

case level evolve and modify the solution excessively and

impact negatively on the effectiveness of the search.

Because these approaches encode solutions as a single test

case, even a slight mutation of the solution brings too much

alteration, the use of a test suite as a solution addresses

these problems because operators alter an individual test

case within the larger solution rather than all of it.

The BCO algorithm as the search engine and the full test

suite solution encoding described above make a

straightforward and natural way to automatic software test

generation that parallels how testers think about the

problem. Our approach works by building a test suite one

test case at a time, In other words, we start with an empty

test suite and then try to add new test cases, the test that is

added in every iteration should be the most suitable and

profitable for efficiently testing the System Under Test

(SUT) and should be based on the current tests already

added to the suite. The technique we use to generate the

tests takes into consideration many criteria of coverage and

is an integral part of our approach; we discuss the coverage

criteria later in this section.

3.2 Fitness Function

When evaluating the quality of a given solution we are

trying to determine how thorough is the set of tests

composing that solution with respect to evaluating the

SUT. This is where the fitness function plays a role; this

function indicates how close a solution is to the optimal test

suite. The fitness function is calculated while taking into

consideration the following coverage criteria:

Condition/Decision Coverage: Also called

branch/condition coverage. The test cases should guarantee

that both condition and decision coverage are satisfied:

Branch Coverage: Also known as decision coverage. The

test cases should guarantee that each branch in a control

flow graph is exercised at least once. In other words, all

decisions (whether they are simple or compound) should be

evaluated to true and false. For example the entire

condition (x>8 && x<50) should be exercised when it is

true and when it is false.

Condition Coverage: The test cases should guarantee that

each simple condition in the program is evaluated as true

and false at least once. For example the entire condition

(x>8 && x<50) should be exercised when it is true and

when it is false. For example to cover the condition (x>8

&& x<50) we need to test x>8 and x<50 when it is true

and false, where TF and FT combinations is enough.

Multiple Condition Coverage: The test cases should

guarantee that all true-false combinations of simple

conditions in a compound predicate are evaluated at least

once. In other words to cover (x>8 && x<50) (which is

composed of two simple conditions) we need TT, TF, FT

and FF combinations. This coverage criterion isn’t a feature

tested in most previous works.

We consider the minimum optimal solution to be a test

suite that has a complete condition/decision with the least

number of test cases. A higher fitness value than the

minimal optimal solutions indicates better multi-condition

coverage. The value of the fitness function for a test suite

that is constructed by a single bee bi (the ith bee) is

determined with the following formula:

𝐹𝑖 = (𝑚𝑐 + 1) ∗ (𝑐𝑑 + ⌈∑ 𝐷𝑖𝑠𝑡𝐶𝑜𝑠𝑡(𝑏𝑖 , 𝑐𝑗)
|𝑐𝑐|
𝑗=1 ⌉) (1)

Where mc stands for the number of multiple conditions that

were not covered, cc for the number of simple conditions,

and cd stands for the amount of conditions and decisions

that weren’t covered. Since the value of the fitness is higher

when the coverage is lower this fitness function should be

used with a bee algorithm that seeks to minimize the

fitness.

The DistCost function is used to determine how far the

solution is from covering a compound condition (decision)

in the program. This function helps in distinguishing test

suites that are closer to covering a condition from solutions

that are farther away. This function is applied to all

compound conditions in the function under test and their

total sum is added to the fitness value. The distance cost is

evaluated in the following way:

𝐷𝑖𝑠𝑡𝐶𝑜𝑠𝑡(𝑏𝑖 , 𝑐𝑗) = {

0 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑚𝑒𝑡 𝑏𝑦 𝑡ℎ𝑒 𝑏𝑒𝑒 𝑏𝑖

 1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑏𝑒𝑒 𝑏𝑖
𝑑𝑖𝑠(𝑐𝑖)

1+𝑑𝑖𝑠𝑚𝑎𝑥
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

Where the value of dis(Ci) depends on the type of the

compound predicate, and is computed as described on table

1 similar to the authors’ work in[23]. We decided to target

the coverage criteria at the source code level instead of the

byte code level such as the work done in [5, 19]. Byte code

instructions have a simpler decision structure, where

compound decision statements are transformed into simple

nested decision statements. Our goal is to determine the

capability of our algorithm on complex decision structures.

3.3 BCO Algorithm Process

Our bee colony algorithm follows the general format

described in [16]. In this approach we start with a total of n

number of bees and a k number of recruiter bees among

them, where k < n and n > 1. These two values are

determined by tuning parameter that can be adjusted during

the testing phase, we normally try to set the number of

recruiter bees to 25% of the total number of bees. These

tuning parameters are referred hereafter in this work as

numBees and numRecruiters. The experimental testing

and parameter tuning process is discussed in details in

Section 4.

The algorithm keeps alternating between a forward phase

and a backward phase. Every iteration of the process

consists of those two phases and the algorithm continues

iterating until a satisfaction criterion is fulfilled. Each bee is

assigned exclusively to work in one specific solution at a

time, many bees could be working on the same solution but

no bee can be working in more than one solution at the

same time. The solutions as described before each consist

of a full test suite. Figure 1 illustrates the general process of

the algorithm.

During the forward phase all bees work on their current

solutions by generating a new test to be added to the test

suite they are constructing. During every forward phase,

each bee generates and adds only one test to its solution.

The process to generate the tests will be explained later in

this section. During the backward phase all bees return to

the hive and among them a number equal to numRecruiters

will be selected and those bees will advertise their solutions

to try to convince other bees to follow them. When a bee

follows another it basically abandons the solution it was

working on and shifts its work power to the solution of the

recruiter. The way the recruiters are selected among the

bees depends on the quality of the solutions they are

working on. The higher the quality of a solution, the higher

the probability of becoming a recruiter. The quality of a

given solution is determined by using the fitness function

described in Section 3.2. Before determining which bees

will be recruiters in the backward phase of a given

iteration, all the fitness values of all solutions are first

normalized.

Table 1. How the dis(Ci) value is computed

Expression e Distance Measure dis(e), k=2

x < y x – y + k

x ≤ y x – y

x = y |x – y|

x ≠ y k

x > y y - x + k

x ≥ y y - x

e1 ∧ e2 ∧… en ∑ 𝑑𝑖𝑠(𝑒𝑖)𝑛
𝑖=1

e1 ∨ e2 ∨… en 𝑑𝑖𝑠𝑚𝑖𝑛 ∀𝑒𝑖 𝑤ℎ𝑒𝑟𝑒 𝑑𝑖𝑠(𝑒𝑖) > 0

Figure 1. The general process of our BCO algorithm

For each fitness value we compute the normalized fitness

using the following formula:

𝑁𝑜𝑟𝑚𝐹𝑖 = 1 −
𝐹𝑖

𝐹𝑚𝑎𝑥
 (3)

We also compute the fitness probability using the following

formula:

𝑝𝑖 =
𝑁𝑜𝑟𝑚𝐹𝑖

∑ 𝑁𝑜𝑟𝑚𝐹𝑗
𝑛
𝑗=1

 (4)

In eq. 3 we are normalizing the fitness function of a

particular solution i over the bee with the maximum fitness

value. We are then subtracting this value from one to turn

the problem from a minimization to a maximization one,

since the fitness function gives lower values to higher

quality solutions as described before. In eq.4 we divide the

normalized fitness of solution i over its sum and selecting

based on that. After the normalization and calculating the

fitness probability, the selection process continues as

follows:

 The first recruiter is selected using elitism that is the bee

that has the highest quality solution is always chosen first.

The remaining recruiters are selected using a roulette wheel

selection based on the fitness probabilities of their

solutions. For all the non-recruiter bees we decide for each

one whether they will be loyal or not. A loyal bee will

continue working on its current solution during that

iteration, while a non-loyal bee will follow one of the

recruiter bees. For non-loyal bees the recruiter it is assigned

to is picked randomly from the existing recruiters. To

determine if a bee is loyal or not we compute a loyalty

probability and compare it with a random value, if the

loyalty probability of that bee is higher, then the bee is

considered loyal otherwise it is considered non loyal. The

loyalty probability of bee bi is computed using the

following formula:

𝑙𝑏𝑖

𝑢+1 = 2𝜋
−

𝑁𝑜𝑟𝑚𝐹𝑚𝑎𝑥− 𝑁𝑜𝑟𝑚𝐹𝑖
√𝑢 (5)

Where u stands for the number of forward phases the

algorithm went through while NormFmax stands for the

maximum normalized fitness value among all bees.

Parameter u is introduced to allow the bees to easily change

the solution they are currently working on at early stages of

the algorithm while making it harder in later stages.

Figure 2 gives an example of the forward phase. Here we

have four bees working on the solution. In the first forward

phase, each bee selects one test case from the set of

candidate test cases (8 possible test cases in this example).

The bee selects a test case based on the probability of this

test case improving the bee’s fitness function. Here we can

see that both bee 1 and bee 2 select Candidate Test Case

(CTC) one as their first test in their respective paths. On the

other hand, the third and fourth bees select CTC5 and

CTC7 respectively. After the backward phase, which is not

shown in the figure, the next forward phase commences.

Each bee will add again a single test case to its test suite

(path).

Figure 2. The forward Phase of our BCO implementation

Figure 3 shows an example of the backward phase. After

the second forward phase, the four bees return to the hive to

evaluate their constructed paths (their partial solutions).

The first step is to determine the recruiter bees. In this

example we have a single recruiter, which is the fourth bee.

The next step is to determine the loyalty of the rest of the

bees. The first and second bees decide to be loyal to their

paths while the third bee abandons its paths. The third bee

in phase 3 will have the same two test cases as the fourth

bee but will choose a new test case on its own.

3.4 Test Generation

As mentioned before, during every forward phase each

independent bee will generate a new test and incorporate it

to its current solution. When generating these new tests we

integrate three main features: graph coverage, local search

and randomness. We try to generate many different tests

using different techniques including having a focus on

branch and condition coverage, local search, pure

randomness and adaptive techniques. The bee will then

pick the best test among them using roulette wheel to be the

actual test added in that phase. So basically we generate n

tests cases, we then evaluate the fitness function of the

whole test suite and for each test case check how much

improvement that particular test case will do to the overall

solution. We then use roulette wheel to select the most

suitable test case to add to the bee’s path.

Figure 3. The backward phase of our BCO implementation

For graph coverage, the way this is performed is we first

generate one test case that targets a specific simple

condition in the control flow graph. The test case

generation here makes use of the concept of boundary

value analysis. For each simple condition with a relational

operator a test case is randomly generated by choosing

between three options: on the boundary, above or below the

boundary by a certain percentage. For example, for the

simple condition x = 9, the input is generated to cause the

variable x to be 9, 9+δ and 9-δ where δ is a value within 0

to 30% of the value of x, in this case 9.

Hence we will have one test case for each control flow

condition. That is the particular test case will be partially

random with the only requirement being that when that test

is performed that particular condition in the program flow

graph will either be covered or δ covered.

Then we generate a number of test cases equal to the

number of input variables that the STU has, these test cases

are slight variations of the last test case in the bee’s path

(test suite). Those test cases are modified based on a

probability constant by just adding a small change to the

input variable that corresponds to that test case, since each

test case is assigned to a specific input parameter. This

basically amounts to a local search being performed with

those test cases.

Then we also generate one completely random test case and

an adaptive random test case [5]. Adaptive random testing

usually outperforms ordinary random testing since the input

is more evenly distributed. The way this adaptive random

test case is generated is the following:

 For a given bee we create a random test case that is the

farthest test case from all cases used before by that bee. The

way we do this is to first generate ten random test cases and

for each case compare it and calculate the Euclidean

distance with all the test cases used by the bee then choose

the test case among the random cases that is farthest away.

The test generation step does not concentrate on one test

strategy, whether it is black box or white box. We do not

want our approach to mimic boundary value testing or

random testing, we want the algorithm to select either of

both as required. The bee will choose the test case type that

best benefits it during a particular forward phase. Thus,

showing adaptability and flexibility.

4. EVALUATION

The evaluation of search based testing approaches is a

challenging process since there is no single agreement on

the best evaluation strategy. It is usually very difficult to

compare one approach to previous approaches since each

approach has different constraints such as the range of

values used, the component that is under test (whether it is

a standalone function or a class), the number of test cases

generated or the size of the test suite. In addition, most

SBST approaches are randomized algorithms and therefore

produce different results on multiple runs. On the other

hand, comparison of SBST techniques that are white box

strategies with black box testing strategies such as random

testing does not really help since each strategy has its own

merits.

We opted to evaluate our approach through the use of

mutation testing. After all, the ultimate question is whether

the generated test suite is adequate enough. We ran our

algorithm until a 100% condition/decision coverage or after

a fixed number of forward phases. The case study used here

is the triangle program, which is a very popular example

and the benchmark in software testing literature. The

program receives the lengths of the three sides of a triangle

as input. The value of each side is an integer value. The

output of the function is a string that indicates whether the

input does not form a triangle or the type of the triangle

whether it is isosceles, equilateral or scalene. The code,

which is based on [19], is shown in Figure 4 while Figure 5

shows its corresponding control flow diagram. The optimal

test suite size for this problem is 5.

We generated 46 different mutants from the original

triangle program. Twenty eight of them are first order

mutants, where a single fault is introduced to the original

program using one of the mutation operators. The rest of

the mutants are high order, where each mutant contained

two to three different mutations. An example of the

generated mutants can be seen in Figure 5; the highlighted

code shows two mutations. We then run our BCO

algorithm several times and obtained thirteen different

solutions. As described before each solution consists of a

complete test suite. Table 2 shows a description for each of

the test suites generated including the number of test cases

comprising the solution, the range of the input values used,

the number of bees, the number of recruiters and the code

coverage. We tried to vary the values of the first 4

parameters to determine their effect on the quality of the

test suite.

Figure 4. The triangle type program

We then evaluated each test suite solution against all the

generated mutants to see if the set of tests can detect all the

software defects. Table 3 shows the results of our

experiment for all tests and all mutants. The letter Y

denotes that the given test suite killed the mutant, while an

N indicates that the mutant wasn’t killed. It is interesting to

notice that most mutants were killed by all the test suites.

Higher order mutants, as expected, were more challenging

than first order mutants. Seven of the mutants were not

killed, where one of them (Figure 6) is an equivalent

mutant. The rest of the live mutants are on the boundary

type faults such as if (a > b) is mutated into if (a >= b);

these types of faults are hard to kill. One final thing to

notice is that although all test suites have the same

coverage percentage some of them were unable to kill a

mutant while others did. For example the 2nd and 11th test

suite where unable to detect the 46th mutant, which contains

an on the boundary type fault. The rest of the test suites

were capable of killing this mutant.

Figure 5. CFG for the triangle program

String triangleType(int b, int a, int c)

 {

 String type;

 if (a > b)

 . . .

Figure 6. An example of a mutant of the triangle program

5. CONCLUSIONS

In this paper we used a Bee colony optimization technique

in order to perform automated test generation. This is one

of the first works that applies this kind of swarm

intelligence technique to the problem of software testing.

With regards to previous approaches, our work improves

on them by not limiting the input domain, avoiding random

initial solutions and by using a dynamic constructive

approach, using test suites as solutions rather than

independent tests and by taking into consideration multiple

condition coverage.

Table 2. Summary of the test suites used

Table 3. Mutation Results

We tested our approach by using the popular triangle type

program and by generating a set of mutants from it. We

then verified how well all the test suites generated by our

approach were able to detect the defects on the mutated

programs. The results looked highly promising and

encouraging as almost 90% of the software defects were

found.

In the future we plan to improve on our approach by

experimenting with different selection techniques. In this

paper we were using roulette wheel and plan to try

alternatives like tournament selection. We will try to test

our BCO approach on software systems that contain more

complex decision structures. We will also address the few

mutants that weren’t detected by improving the fitness

function and the test case generation.

6. REFERENCES

[1] Aljahdali, S., Taif, A., Ghiduk and El-Telbany, M. 2010. The

limitations of genetic algorithms in software testing. In

Computer Systems and Applications, Ham-mamet, 2010.

[2] Arcuri, A. and Yao, X. 2008. Search based software testing

of object-oriented containers. Inf. Sci. 178, 15 (August 2008),

3075-3095.

[3] Baresel, A., Sthamer, H., and Schmidt, M. 2002. Fitness

Function Design to Improve Evolutionary Structural Testing.

In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2002), Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1329-1336.

[4] Blanco, R., Tuya, J., and Adenso- Díaz, B. 2009. Automated

test data generation using a scatter search approach. Inf.

Softw. Technol. 51, 4 (April 2009), 708-720.

[5] Chen, T.Y., Leung, H., Mak, I.K. 2004. Adaptive random

testing. In Proceedings of the Ninth Asian Computing

Science Conference (ASIAN’04), Lecture Notes in Computer

Science, Vol 3321, 320–329.

[6] Chong, C. S., Sivakumar, A. I., Malcolm Low, Y. H., Gay,

K. L. 2006. A bee colony optimization algorithm to job shop

scheduling. In Proceedings of the 38th conference on Winter

simulation WSC '06, California, 1954-1961.

[7] Díaz, E., Tuya, J., Blanco, R., and Dolado, J.J. 2008. A tabu

search algorithm for structural software testing. Comput.

Oper. Res. 35, 10 (October 2008), 3052-3072.

[8] Fraser, G., Arcuri, A., and McMinn, P. A Memetic

Algorithm for Whole Test Suite Generation. Journal of

Systems and Software. 103, 311-327.

[9] Fraser, G., and Arcuri, A. 2013. Whole Test Suite

Generation, IEEE Transactions on Software Engineering,

vol.39, no.2, (February 2013), 276,291.

[10] Harman, M., Jia, Y., and Zhang, Y. 2015. Achievements,

Open Problems and Challenges for Search Based Software

Testing. Software Testing, Verification and Validation

(ICST), 2015 IEEE 8th International Conference. (April

2015), 1,12, 13-17, 13-17.

[11] Harman, M., Afshin Mansouri, S., and Zhang, Y. 2012.

Search-based software engineering: Trends, techniques and

applications. ACM Comput. Surv. 45, 1, Article 11.

[12] Jones, B.F., Sthamer, H.H., and Eyres, D.E. 1996. Automatic

Structural Testing Using Genetic Algorithms. Software

Engineering Research Journal. (September 1996), 299-306.

[13] Kempka, J., McMinn, P. and Sudholt, D. To Appear. Design

and Analysis of Different Alternating Variable Searches for

Search-Based Software Testing. Theoretical Computer

Science.

[14] Korel, B.. 1990. Automated software test data generation.

Software Engineering, IEEE Transactions on, vol.16, no.8,

870-879.

[15] L.P.Wong, M. Y. H. low, and C. S. Chong. 2008. A Bee

Colony Optimization Algorithm for Travelling Salesman

Problem. Second Asia International Conference on Modeling

& Simulation, IEEE Computer Society, Washington, DC,

USA, 818-823.

[16] Lucic, P. and Teodorovic, D. 2001. Bee system: Modeling

combinatorial optimization transportation engineering

problems by swarm intelligence. In Preprints of the Tristan

IV Triennial Symposium on Transportation Analysis.

SaoMiguel, Azores Islands, Portugal, 441-445.

[17] Malburg, J., and Fraser, G. 2011. Combining search-based

and constraint-based testing. In Proceedings of the 2011 26th

IEEE/ACM International Conference on Automated Software

Engineering (ASE '11). IEEE Computer Society,

Washington, DC, USA, 436-439.

[18] Mansour, N., and Salame, M. 2004. Data generation for path

testing. Software Quality Journal, 2004, 121-36.

[19] McMinn, P. 2004. Search-based software test data

generation: a survey: Research Articles. Softw. Test. Verif.

Reliab. 14, 2 (June 2004), 105-156.

[20] Pargas, R. P., Harrold, M.J., and Peck, R.R. 1999. Test Data

Generation Using Genetic Algorithms. Journal of Software

Testing, Verifications, and Reliability. 9, (September 1999),

263-282.

[21] Rathore, A., Bohara, A., Gupta Prashil, R., Lakshmi, T.S.,

et al. 2011. Application of genetic algorithm and tabu search

in software testing. In Proceedings of the Fourth Annual

ACM Bangalore Conference (COMPUTE '11). ACM, New

York, NY, USA, Article 23, 4 pages.

[22] Teodorovic, D., and Dell, M. O. 2005. Bee colony

optimization - a cooperative learning approach to complex

transportation problems. In Proceedings of 10th EWGT

Meeting and 16th Mini EURO Conference, 51- 60.

[23] Tracey, N., Clark, J., Mander, K., and McDermid, J. 1998.

An automated framework for structural test-data generation.

In Proceedings of the International Conference on

Automated Software Engineering. Hawaii, USA, 1998, 285–

288.

[24] Waeselynck, H., Fosse, P. T., and Kaddour, O. A. 2007.

Simulated annealing applied to test generation: landscape

characterization and stopping criteria. Empirical Softw.

Engg. 12, 1 (February 2007), 35-63.

