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ABSTRACT 

Software testing is a critical activity in increasing our confidence 

of a system under test and improving its quality. The key idea for 

testing a software application is to minimize the number of faults 

found in the system. Software verification through testing is a 

crucial step in the application's development life cycle. This 

process can be regarded as expensive and laborious, and its 

automation is valuable. We propose a multi-objective search 

based test generation technique that is based on both functional 

and structural testing. Our Search Based Software Testing (SBST) 

technique is based on a bee colony optimization algorithm that 

integrates adaptive random testing from the functional side and 

condition/decision and multiple condition coverage from the 

structural side. The constructive approach that the bee colony 

algorithm uses for solution generation allows our SBST to address 

the limitations of previous approaches relying on fully random 

initial solutions and single objective evaluation. We perform 

extensive experimental testing to justify the effectiveness of our 

approach.   

Categories and Subject Descriptors 

D.2.4 Software/Program Verification; D.2.5 Testing and 

Debugging; F.1.2 Modes of Computation; I.2.8 Problem Solving, 

Control Methods, and Search. 

General Terms 

Algorithms, Reliability, Verification. 

Keywords 

Swarm Intelligence; unit testing; automated test generation; 

branch coverage; search based testing 

 

1. INTRODUCTION 

It is estimated that software testing corresponds to 30% to 

50% of a project’s budget [4]. Generating test cases is a 

very challenging problem because it is unfeasible to find a 

suite of test cases that fully evaluates a program, as the 

input domain of most programs is nearly infinite.  Thus, 

human testers spend a lot of time striving to find a high 

quality set of test cases that will allow them to detect a 

large percentage of faults in a software system. Automated 

testing research attempts to find ways to make this process 

more efficient by automatically generating the test cases. 

A lot of research has been done in the area of search based 

methods of automated test case generation. Some of the 

SBST research has focused on local search methods such as 

hill climbing, simulated annealing and tabu search. In [2] a 

hill climbing approach was used to generate test cases, 

while in [24] the authors experimented with the use of 

simulated annealing. In [7] a tabu search metaheuristic 

algorithm was used to generate tests for structured 

software. Another local search technique used for test case 

generation is the alternating variable method[13][14].The 

main problem with the use of local search techniques is that 

because they only consider the neighborhood of a high 

quality solution they often get stuck in local optima. 

Advanced local search techniques like simulated annealing 

and tabu search address this shortcoming by either 

restarting the search with random values or temporarily 

accepting low quality solutions. 

Due to the limitations of local search techniques, various 

research efforts have been dedicated to global search 

methods that are less prone of getting stuck in local 

optimal. One of the most popular techniques are 

evolutionary algorithms such as Genetic Algorithm (GA). 

Various work has been done using GA techniques, for 

example [12], [20] and [3] are some of the early works. 

One of the problems with global search methods like 
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genetic algorithms when applied to test generation is that 

they tend to alter the solutions too much. Operators like 

crossover and mutation drastically change the solution and 

make it harder to improve in a more focused way that 

relates to aspects of the test cases. In addition to that, these 

changes might generate invalid or illegal input.  

To overcome this problem many recent approaches have 

used a hybrid method that combines genetic algorithms 

with other approaches, for example a local search method. 

One such work is the augmentation of the GA approach 

with constraint-based testing [17]. In addition, the authors in 

[8] use a memetic algorithm while in [21] an approach that 

combines genetic algorithms and tabu search is applied. 

Another limitation of genetic algorithms approaches for 

software testing is having a candidate solution represent a 

test case and the entire population represent a single test 

suite. This choice of representation strips the GA approach 

from one of its main features, which is working on multiple 

candidate solutions instead of one. In addition, the genetic 

operators like crossover and mutation tend to not be very 

suitable when dealing with test cases as the chromosomes. 

Also the use of randomness when selecting an initial 

population of solutions isn’t appropriate when performing 

test case generation, it seems more appropriate to base it on 

a partial set of functional tests [1]. 

In our research we propose three main contributions. First, 

our implementation is based on a Bee Colony Optimization 

(BCO) algorithm, which is a very recent heuristic proposed 

in [16] and used successfully to solve many different 

problems [22], [6], [15]. We believe BCO would work very 

well because of its use of a constructive approach to 

solution generation. A test suite can be generated 

adaptively using these techniques as opposed to generating 

complete random solutions as in GA. The second is 

encoding a suite of test cases as a candidate solution instead 

of an independent test case; some recent research seems to 

be following this approach too [8]. We find this approach 

to be more natural and have a one to one correspondence to 

how software testers construct a test suite. We seldom see 

them directly think of the entire test suite. Instead, they 

constructively modify the test suite by adding to it more 

test cases in order to improve the test coverage. We believe 

that genetic algorithms due to the limitations mentioned 

above wouldn’t be particularly feasible for this approach. 

Our third contribution lies in the objective function used. 

Previous work in search based testing focused on a single 

objective function, which is mainly decision coverage [10, 

11]. Our fitness function is multi objective, where the focus 

is on achieving condition and decision coverage, while 

multi-condition coverage is considered as a bonus 

objective. 

This paper is divided as follows: in Section 2 we give an 

introduction to BCO, in section 3 we describe our 

implementation using BCO for automated test case 

generation. In section 4 we perform some experiments on 

our approach using a known set of test case samples. 

Finally in section 5 we present our observations and 

conclusions. 

2. BEE COLONY OPTIMIZATION (BCO) 

Colonies of social insects such as ants and bees have highly 

organized behavior that enables them to work collectively 

to solve problems and thus perform much more efficiently 

than having each member working individually [22]. This 

interaction and collective behavior of the decentralized 

agents or members of the colony constitutes swarm 

intelligence. In a bee colony an organized collaborative 

effort is used in order to find flowers that are potential food 

sources and exploit them, allowing bees to harvest nectar 

from different food sources separated by long distances. 

There are two groups of bees that are formed as part of this 

strategy, scouts and workers. The set of bees working as 

scouts are constantly searching the environment for new 

potentially promising nectar sources. Any scout that finds a 

promising source returns to the hive and communicates the 

information to its peers by performing a special dance 

called a waggle dance. Other bees in the colony that are 

initially idle will observe the waggle dances performed by 

the scout bees and become worker bees on one of the 

advertised food sources. The amount of worker bees that 

will join on exploiting a particular food source is directly 

proportional to the quality of that source. Only a small 

percentage of the bees in the colony assume the role of 

scouts at any given time leaving the majority of the 

workforce to be concentrated on exploiting nectar sources. 

As long as sources are still deemed profitable, the bees 

working on them will continue to advertise them thus 

optimizing the workforce in the colony to focus on the best 

areas. 

When using bee colony optimization (BCO), the search 

space of all possible solutions is represented by the field the 

bees are exploring. Each possible partial solution is a point 

in the field which is basically a potential source of nectar. 

The quality of the source is determined by an objective 

function that evaluates how optimal the solution is in 

solving the problem. There are two stages in BCO, the 

forward phase and the backward phase. The forward phase 

represents the bees flying to search for food sources, every 

source found becomes a new partial solution that is being 



analyzed. During the backward phase bees return to the 

hive and scout bees use the waggle dance to advertise those 

partial solutions. At that stage, some bees will join the 

workforce on each of those partial solutions that show 

promise while other bees will assume the role of scouts and 

search for new sources.  

The effectiveness of the bee algorithm relies on the use of 

both an intensification and diversification strategies when 

constructing solutions. While a large number of the bees 

are performing a local search by exploring existing 

solutions (intensification), a small number of bees make 

sure the algorithm doesn’t get stuck in a local optimal by 

always exploring new areas of the search space 

(diversification). This combination of both a local search 

and a global search and the fact that solutions are being 

constructed dynamically rather than randomly generated is 

one of the most important features of BCO. 

3. AUTOMATED TEST GENERATION 

USING BCO 
 

In this section we describe the Bee Colony Optimization 

(BCO) approach to unit testing. Our testing strategy is a 

white-box one, where we rely on the source code to 

generate the test cases. Therefore the Control Flow Graph 

(CFG) of the function under test is used to determine the 

coverage criteria and to guide the testing process. Adaptive 

random testing, a black-box approach, is also integrated 

into BCO to diversify the input values.  

Our proposed work brings various novelties to the current 

techniques used by evolutionary search methods. Firstly, 

we address some of the limitations of known approaches 

such as random initial solutions [1], fixed test suite size and 

evolving operators that alter solutions too much [1]. We do 

that by encoding a population of test suites. The reason we 

chose to use BCO as opposed to other evolutionary 

algorithms is that BCO is inherently a constructive 

algorithm. While other approaches start with fully random 

solutions, BCO starts with an empty solution and constructs 

it gradually through an iterative process. 

Another feature of our approach is that in contrast to 

previous works like [18] that constrain the input domain of 

test variables to make the search space more manageable, 

and [9] that limit the range of values for bloat control, our 

approach imposes no limitations in the input domain. A 

final innovation lies in how we evaluate the quality of the 

tests. We use a multi-objective fitness function, contrary to 

the prevalent use of a single objective function in most 

previous work.   

3.1 Solution Encoding 

The problem of automated test case generation is to come 

up with suite of tests that exercise the component under 

test. In this paper we target standalone functions, therefore 

the output of our BCO algorithm is a test suite that is 

suitable for efficiently evaluating the function under test. 

BCO is a population based algorithm where multiple 

solutions are constructed at the same time. Each solution 

stands for a full test suite. An individual test suite is a set of 

test cases, where each test case is a tuple of values that 

stands for the input variables of the function under test.  We 

focus in this paper on integer values but the approach can 

be easily modified to handle other data types. 

The constructive nature of the BCO algorithm supports our 

choice of encoding. Once a test case is added to the test 

suite, the test case will not change. This simplifies the 

calculation of the coverage criteria and makes it an 

incremental one. Other approaches, such as the GA based 

ones, have to recalculate the coverage criteria for the entire 

test suite every time the crossover and mutation operators 

are applied. This is time consuming and has a detrimental 

effect on the performance of the automated test generation 

process. This also addresses other limitations of recent 

evolutionary approaches. Operators that function on the test 

case level evolve and modify the solution excessively and 

impact negatively on the effectiveness of the search. 

Because these approaches encode solutions as a single test 

case, even a slight mutation of the solution brings too much 

alteration, the use of a test suite as a solution addresses 

these problems because operators alter an individual test 

case within the larger solution rather than all of it.  

The BCO algorithm as the search engine and the full test 

suite solution encoding described above make a 

straightforward and natural way to automatic software test 

generation that parallels how testers think about the 

problem. Our approach works by building a test suite one 

test case at a time, In other words, we start with an empty 

test suite and then try to add new test cases, the test that is 

added in every iteration should be the most suitable and 

profitable for efficiently testing the System Under Test 

(SUT) and should be based on the current tests already 

added to the suite. The technique we use to generate the 

tests takes into consideration many criteria of coverage and 

is an integral part of our approach; we discuss the coverage 

criteria later in this section.  

3.2 Fitness Function 

When evaluating the quality of a given solution we are 

trying to determine how thorough is the set of tests 

composing that solution with respect to evaluating the 



SUT. This is where the fitness function plays a role; this 

function indicates how close a solution is to the optimal test 

suite. The fitness function is calculated while taking into 

consideration the following coverage criteria: 

Condition/Decision Coverage: Also called 

branch/condition coverage. The test cases should guarantee 

that both condition and decision coverage are satisfied: 

Branch Coverage: Also known as decision coverage. The 

test cases should guarantee that each branch in a control 

flow graph is exercised at least once. In other words, all 

decisions (whether they are simple or compound) should be 

evaluated to true and false. For example the entire 

condition (x>8 && x<50) should be exercised when it is 

true and when it is false. 

Condition Coverage: The test cases should guarantee that 

each simple condition in the program is evaluated as true 

and false at least once. For example the entire condition 

(x>8 && x<50) should be exercised when it is true and 

when it is false. For example to cover the condition (x>8 

&& x<50) we need to test x>8 and x<50 when it is true 

and false, where TF and FT combinations is enough. 

Multiple Condition Coverage: The test cases should 

guarantee that all true-false combinations of simple 

conditions in a compound predicate are evaluated at least 

once. In other words to cover (x>8 && x<50) (which is 

composed of two simple conditions) we need TT, TF, FT 

and FF combinations. This coverage criterion isn’t a feature 

tested in most previous works. 

We consider the minimum optimal solution to be a test 

suite that has a complete condition/decision with the least 

number of test cases. A higher fitness value than the 

minimal optimal solutions indicates better multi-condition 

coverage. The value of the fitness function for a test suite 

that is constructed by a single bee bi (the ith bee) is 

determined with the following formula: 

  

𝐹𝑖 =  (𝑚𝑐 + 1) ∗ (𝑐𝑑 + ⌈∑ 𝐷𝑖𝑠𝑡𝐶𝑜𝑠𝑡(𝑏𝑖 , 𝑐𝑗)
|𝑐𝑐|
𝑗=1 ⌉)    (1) 

 

Where mc stands for the number of multiple conditions that 

were not covered, cc for the number of simple conditions, 

and cd stands for the amount of conditions and decisions 

that weren’t covered. Since the value of the fitness is higher 

when the coverage is lower this fitness function should be 

used with a bee algorithm that seeks to minimize the 

fitness. 

The DistCost function is used to determine how far the 

solution is from covering a compound condition (decision) 

in the program. This function helps in distinguishing test 

suites that are closer to covering a condition from solutions 

that are farther away. This function is applied to all 

compound conditions in the function under test and their 

total sum is added to the fitness value. The distance cost is 

evaluated in the following way: 

 

𝐷𝑖𝑠𝑡𝐶𝑜𝑠𝑡(𝑏𝑖 , 𝑐𝑗) =  {

0 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑚𝑒𝑡 𝑏𝑦 𝑡ℎ𝑒 𝑏𝑒𝑒 𝑏𝑖

    1 𝑖𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑏𝑒𝑒 𝑏𝑖
𝑑𝑖𝑠(𝑐𝑖)

1+𝑑𝑖𝑠𝑚𝑎𝑥
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               

        (2) 

 

Where the value of dis(Ci) depends on the type of the 

compound predicate, and is computed as described on table 

1 similar to the authors’ work in[23]. We decided to target 

the coverage criteria at the source code level instead of the 

byte code level such as the work done in [5, 19]. Byte code 

instructions have a simpler decision structure, where 

compound decision statements are transformed into simple 

nested decision statements. Our goal is to determine the 

capability of our algorithm on complex decision structures. 

3.3 BCO Algorithm Process 

Our bee colony algorithm follows the general format 

described in [16]. In this approach we start with a total of n 

number of bees and a k number of recruiter bees among 

them, where k < n and n > 1. These two values are 

determined by tuning parameter that can be adjusted during 

the testing phase, we normally try to set the number of 

recruiter bees to 25% of the total number of bees. These 

tuning parameters are referred hereafter in this work as 

numBees and numRecruiters. The experimental testing 

and parameter tuning process is discussed in details in 

Section 4.  

The algorithm keeps alternating between a forward phase 

and a backward phase. Every iteration of the process 

consists of those two phases and the algorithm continues 

iterating until a satisfaction criterion is fulfilled. Each bee is 

assigned exclusively to work in one specific solution at a 

time, many bees could be working on the same solution but 

no bee can be working in more than one solution at the 

same time. The solutions as described before each consist 

of a full test suite. Figure 1 illustrates the general process of 

the algorithm. 

During the forward phase all bees work on their current 

solutions by generating a new test to be added to the test 

suite they are constructing. During every forward phase, 

each bee generates and adds only one test to its solution. 

The process to generate the tests will be explained later in 

this section. During the backward phase all bees return to 



the hive and among them a number equal to numRecruiters 

will be selected and those bees will advertise their solutions 

to try to convince other bees to follow them. When a bee 

follows another it basically abandons the solution it was 

working on and shifts its work power to the solution of the 

recruiter. The way the recruiters are selected among the 

bees depends on the quality of the solutions they are 

working on. The higher the quality of a solution, the higher 

the probability of becoming a recruiter. The quality of a 

given solution is determined by using the fitness function 

described in Section 3.2. Before determining which bees 

will be recruiters in the backward phase of a given 

iteration, all the fitness values of all solutions are first 

normalized. 

 

Table 1. How the dis(Ci) value is computed 

Expression e Distance Measure dis(e), k=2 

x < y x – y + k 

x ≤ y x – y 

x = y |x – y| 

x ≠ y k 

x > y y - x + k 

x ≥ y y - x 

e1 ∧ e2 ∧… en ∑ 𝑑𝑖𝑠(𝑒𝑖)𝑛
𝑖=1   

e1 ∨ e2 ∨… en 𝑑𝑖𝑠𝑚𝑖𝑛 ∀𝑒𝑖  𝑤ℎ𝑒𝑟𝑒 𝑑𝑖𝑠(𝑒𝑖) > 0  

 
Figure 1. The general process of our BCO algorithm 

 

For each fitness value we compute the normalized fitness 

using the following formula: 

 

𝑁𝑜𝑟𝑚𝐹𝑖 =  1 −  
𝐹𝑖

𝐹𝑚𝑎𝑥
     (3) 

We also compute the fitness probability using the following 

formula: 

𝑝𝑖 =  
𝑁𝑜𝑟𝑚𝐹𝑖

∑ 𝑁𝑜𝑟𝑚𝐹𝑗
𝑛
𝑗=1

        (4) 

 

In eq. 3 we are normalizing the fitness function of a 

particular solution i over the bee with the maximum fitness 

value. We are then subtracting this value from one to turn 

the problem from a minimization to a maximization one, 

since the fitness function gives lower values to higher 

quality solutions as described before. In eq.4 we divide the 

normalized fitness of solution i over its sum and selecting 

based on that. After the normalization and calculating the 

fitness probability, the selection process continues as 

follows: 

 The first recruiter is selected using elitism that is the bee 

that has the highest quality solution is always chosen first. 

The remaining recruiters are selected using a roulette wheel 

selection based on the fitness probabilities of their 

solutions. For all the non-recruiter bees we decide for each 

one whether they will be loyal or not. A loyal bee will 

continue working on its current solution during that 

iteration, while a non-loyal bee will follow one of the 

recruiter bees. For non-loyal bees the recruiter it is assigned 

to is picked randomly from the existing recruiters. To 

determine if a bee is loyal or not we compute a loyalty 

probability and compare it with a random value, if the 

loyalty probability of that bee is higher, then the bee is 

considered loyal otherwise it is considered non loyal. The 

loyalty probability of bee bi is computed using the 

following formula: 

𝑙𝑏𝑖

𝑢+1 = 2𝜋
−

𝑁𝑜𝑟𝑚𝐹𝑚𝑎𝑥− 𝑁𝑜𝑟𝑚𝐹𝑖
√𝑢     (5) 

 

Where u stands for the number of forward phases the 

algorithm went through while NormFmax stands for the 

maximum normalized fitness value among all bees. 

Parameter u is introduced to allow the bees to easily change 

the solution they are currently working on at early stages of 

the algorithm while making it harder in later stages. 

Figure 2 gives an example of the forward phase. Here we 

have four bees working on the solution. In the first forward 

phase, each bee selects one test case from the set of 

candidate test cases (8 possible test cases in this example). 

The bee selects a test case based on the probability of this 

test case improving the bee’s fitness function. Here we can 

see that both bee 1 and bee 2 select Candidate Test Case 

(CTC) one as their first test in their respective paths. On the 



other hand, the third and fourth bees select CTC5 and 

CTC7 respectively. After the backward phase, which is not 

shown in the figure, the next forward phase commences. 

Each bee will add again a single test case to its test suite 

(path). 

 

Figure 2. The forward Phase of our BCO implementation 

 

Figure 3 shows an example of the backward phase. After 

the second forward phase, the four bees return to the hive to 

evaluate their constructed paths (their partial solutions). 

The first step is to determine the recruiter bees. In this 

example we have a single recruiter, which is the fourth bee. 

The next step is to determine the loyalty of the rest of the 

bees. The first and second bees decide to be loyal to their 

paths while the third bee abandons its paths. The third bee 

in phase 3 will have the same two test cases as the fourth 

bee but will choose a new test case on its own. 

3.4 Test Generation 

As mentioned before, during every forward phase each 

independent bee will generate a new test and incorporate it 

to its current solution. When generating these new tests we 

integrate three main features: graph coverage, local search 

and randomness. We try to generate many different tests 

using different techniques including having a focus on 

branch and condition coverage, local search, pure 

randomness and adaptive techniques. The bee will then 

pick the best test among them using roulette wheel to be the 

actual test added in that phase. So basically we generate n 

tests cases, we then evaluate the fitness function of the 

whole test suite and for each test case check how much 

improvement that particular test case will do to the overall 

solution. We then use roulette wheel to select the most 

suitable test case to add to the bee’s path.  

 

 

Figure 3. The backward phase of our BCO implementation 

 

For graph coverage, the way this is performed is we first 

generate one test case that targets a specific simple 

condition in the control flow graph. The test case 

generation here makes use of the concept of boundary 

value analysis. For each simple condition with a relational 

operator a test case is randomly generated by choosing 

between three options: on the boundary, above or below the 

boundary by a certain percentage. For example, for the 

simple condition x = 9, the input is generated to cause the 

variable x to be 9, 9+δ and 9-δ where δ is a value within 0 

to 30% of  the value of x, in this case 9. 

Hence we will have one test case for each control flow 

condition. That is the particular test case will be partially 

random with the only requirement being that when that test 

is performed that particular condition in the program flow 

graph will either be covered or  δ covered.  

Then we generate a number of test cases equal to the 

number of input variables that the STU has, these test cases 

are slight variations of the last test case in the bee’s path 

(test suite). Those test cases are modified based on a 

probability constant by just adding a small change to the 

input variable that corresponds to that test case, since each 

test case is assigned to a specific input parameter. This 

basically amounts to a local search being performed with 

those test cases. 

Then we also generate one completely random test case and 

an adaptive random test case [5]. Adaptive random testing 

usually outperforms ordinary random testing since the input 

is more evenly distributed. The way this adaptive random 

test case is generated is the following: 



 For a given bee we create a random test case that is the 

farthest test case from all cases used before by that bee. The 

way we do this is to first generate ten random test cases and 

for each case compare it and calculate the Euclidean 

distance with all the test cases used by the bee then choose 

the test case among the random cases that is farthest away. 

The test generation step does not concentrate on one test 

strategy, whether it is black box or white box. We do not 

want our approach to mimic boundary value testing or 

random testing, we want the algorithm to select either of 

both as required. The bee will choose the test case type that 

best benefits it during a particular forward phase. Thus, 

showing adaptability and flexibility.  

 

4. EVALUATION 

 

The evaluation of search based testing approaches is a 

challenging process since there is no single agreement on 

the best evaluation strategy. It is usually very difficult to 

compare one approach to previous approaches since each 

approach has different constraints such as the range of 

values used, the component that is under test (whether it is 

a standalone function or a class),  the number of test cases 

generated or the size of the test suite. In addition, most 

SBST approaches are randomized algorithms and therefore 

produce different results on multiple runs. On the other 

hand, comparison of SBST techniques that are white box 

strategies with black box testing strategies such as random 

testing does not really help since each strategy has its own 

merits. 

We opted to evaluate our approach through the use of 

mutation testing. After all, the ultimate question is whether 

the generated test suite is adequate enough. We ran our 

algorithm until a 100% condition/decision coverage or after 

a fixed number of forward phases. The case study used here 

is the triangle program, which is a very popular example 

and the benchmark in software testing literature. The 

program receives the lengths of the three sides of a triangle 

as input. The value of each side is an integer value. The 

output of the function is a string that indicates whether the 

input does not form a triangle or the type of the triangle 

whether it is isosceles, equilateral or scalene. The code, 

which is based on [19], is shown in Figure 4 while Figure 5 

shows its corresponding control flow diagram. The optimal 

test suite size for this problem is 5. 

We generated 46 different mutants from the original 

triangle program. Twenty eight of them are first order 

mutants, where a single fault is introduced to the original 

program using one of the mutation operators. The rest of 

the mutants are high order, where each mutant contained 

two to three different mutations. An example of the 

generated mutants can be seen in Figure 5; the highlighted 

code shows two mutations. We then run our BCO 

algorithm several times and obtained thirteen different 

solutions. As described before each solution consists of a 

complete test suite. Table 2 shows a description for each of 

the test suites generated including the number of test cases 

comprising the solution, the range of the input values used, 

the number of bees, the number of recruiters and the code 

coverage. We tried to vary the values of the first 4 

parameters to determine their effect on the quality of the 

test suite. 

 

Figure 4. The triangle type program 

 

We then evaluated each test suite solution against all the 

generated mutants to see if the set of tests can detect all the 

software defects. Table 3 shows the results of our 

experiment for all tests and all mutants. The letter Y 

denotes that the given test suite killed the mutant, while an 

N indicates that the mutant wasn’t killed. It is interesting to 

notice that most mutants were killed by all the test suites. 

Higher order mutants, as expected, were more challenging 

than first order mutants. Seven of the mutants were not 

killed, where one of them (Figure 6) is an equivalent 

mutant. The rest of the live mutants are on the boundary 

type faults such as if (a > b) is mutated into if (a >= b); 

these types of faults are hard to kill. One final thing to 

notice is that although all test suites have the same 



coverage percentage some of them were unable to kill a 

mutant while others did. For example the 2nd and 11th test 

suite where unable to detect the 46th mutant, which contains 

an on the boundary type fault. The rest of the test suites 

were capable of killing this mutant. 

 

Figure 5. CFG for the triangle program 

String triangleType(int b, int a, int c) 

        { 

            String type; 

            if (a > b) 

            . . .  

Figure 6. An example of a mutant of the triangle program 

 

5. CONCLUSIONS 
 

In this paper we used a Bee colony optimization technique 

in order to perform automated test generation. This is one 

of the first works that applies this kind of swarm 

intelligence technique to the problem of software testing. 

With regards to previous approaches, our work improves 

on them by not limiting the input domain, avoiding random 

initial solutions and by using a dynamic constructive 

approach, using test suites as solutions rather than 

independent tests and by taking into consideration multiple 

condition coverage. 

Table 2. Summary of the test suites used 

 

Table 3. Mutation Results 

 

We tested our approach by using the popular triangle type 

program and by generating a set of mutants from it. We 

then verified how well all the test suites generated by our 

approach were able to detect the defects on the mutated 

programs. The results looked highly promising and 

encouraging as almost 90% of the software defects were 

found. 

In the future we plan to improve on our approach by 

experimenting with different selection techniques. In this 

paper we were using roulette wheel and plan to try 

alternatives like tournament selection. We will try to test 

our BCO approach on software systems that contain more 



complex decision structures.  We will also address the few 

mutants that weren’t detected by improving the fitness 

function and the test case generation. 
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