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ABSTRACT
We propose an architecture of neural network that can learn
and integrate sequential multimodal information using Long
Short Term Memory. Our model consists of encoder and
decoder LSTMs and multimodal autoencoder. For integrat-
ing sequential multimodal information, firstly, the encoder
LSTM encodes a sequential input to a fixed range feature
vector for each modality. Secondly, the multimodal autoen-
coder integrates the feature vectors from each modality and
generate a fused feature vector which contains sequential
multimodal information in a mixed form. The original fea-
ture vectors from each modality are re-generated from the
fused feature vector in the multimodal autoencoder. The de-
coder LSTM decodes the sequential inputs from the regener-
ated feature vector. Our model is trained with the visual and
motion sequences of humans and is tested by recall tasks.
The experimental results show that our model can learn and
remember the sequential multimodal inputs and decrease the
ambiguity generated at the learning stage of LSTMs using
integrated multimodal information. Our model can also re-
call the visual sequences from the only motion sequences and
vice versa.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
multimodal integration, deep learning, autoencoder, Long
Short Term Memory

1. INTRODUCTION
Human use information from multiple sources in order to
recognize various representation, such as objects, speech,
motion, etc. In machine learning, also, using multimodal
information for recognition tasks is efficient, because mul-
tiple modalities make recognition more robust than single
modality.

Recently, deep neural networks improved accuracy in image
recognition, and several researches show multimodal inte-
gration learning using deep neural network is efficient. While
deep network has significantly improved static image learn-
ing, sequential information learning such as video and speech
learning is still a challenging task. Studying more efficient
deep network learning architecture for temporal informa-
tion is catching great attention. Ngiam et al. used multi-
modal deep autoencoder architecture for speech recognition
task with mouth motion [6]. In their model, information
from audio and vision is fused in a central hidden layer in
a deep autoencoder. The multimodal representation can be
constructed in the layer for the recognition task. Their model
shows good recognition performance in the task, however
the length of time series information which can be learnt is
restricted to the network input size.

Noda et al. studied multimodal learning for long time se-
ries information of sensory-motor coordination in real-world
robotics [7]. They used time-delay neural network (TDNN)
architecture dealing with long time series. Recurrent neural
network (RNN) is often used for long time series learning,
however unfortunately RNN’s learning is slow and unsta-
ble, particularly in high dimensional input like videos. Un-
like RNN, TDNN does not have any recurrent mechanisms.
TDNN’s learning becomes stable even in high dimensional
input. This is why their model works well. However TDNN
also has limitation that it cannot remember context infor-
mation longer than input length in principle.

The Long Short Term Memory (LSTM) architecture, which
is a kind of RNN, has shown better performance than simple
RNN. Srivastava et al. proposed unsupervised video learning
architecture using LSTM ([9]) based on the model proposed
by Sutskever et al. [11]. The input to the model is raw pixel
data of the images, which means that any dimension reduc-
tion techniques are not applied. They showed that the LSTM
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Figure 1: LSTM unit [2].

memorizes and recalls the images with a high precision in
spite of using high dimensional inputs.

The LSTM autoencoder model has no limitation for sequen-
tial information learning different from TDNN and shows
good performance even for high dimensional inputs. There-
fore, we combine the LSTM architecture to learn sequential
inputs with a multimodal autoencoder to integrate differ-
ent modality information in order to realize temporal multi-
modal representation. We use vision and motion as learning
modalities, having a motivation to apply our study to imita-
tion learning that requires fusing both modalities in future.
We evaluate our model in terms of cross-modal recall abil-
ity. Cross-modal recall is another aspect of effectiveness of
multimodal learning, because it enables generating missing
modality from the other and more flexible situation aware-
ness by using information across modalities.

2. MODEL

2.1 Long Short Term Memory
RNN is an artificial neural network model that has feed-
back connections in the hidden units. Because the previous
states in the hidden units are used as inputs, RNN can store
historical information like memory and can solve context-
dependent tasks with the architecture. The popular method
of training RNN is gradient descent such as backpropagation
through time (BPTT) [12] and real time recurrent learning
(RTRL) [8]. The gradient based training of RNN has a prob-
lem that derivatives propagated via recurrent connections
become too small or too large. This vanishing and explosion
gradient problem makes learning of RNN difficult.

Long Short Term Memory (LSTM) is a special type of RNN
architecture to overcome the vanishing gradient problem [4].
The schematic view of LSTM is shown in Fig. 1. LSTM units
receive external inputs and generate hidden outputs. LSTM
consists of three gates (input, output, and forget gates) and
a memory cell. The gates and memory cell are internally
connected with weighted links, and the gates are also con-
nected with external sources, which are current sequential
inputs, xt and previous hidden states, ht−1. The hidden
output, ht, is calculated from xt, ht−1, and previous state
of the memory cell, ct−1. The equations of LSTM can be
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Figure 2: LSTM autoencoder.

expressed as follows.

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (1)

f t = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) (2)

ct = f tct−1 + it tanh (Wxcxt +Whcht−1 + bc) (3)

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (4)

ht = ot tanh (ct) (5)

where σ is the sigmoid function, i, f , o, c and h are the in-
put, forget, output gates, memory cell and hidden activation
vectors, respectively.

The weights of the connection from α to β are denoted by
Wαβ , which is a matrix (e.g. Whf means hidden-forget
gate weight matrix). The bias terms are denoted by bγ (e.g.
bi means the bias for the input gate activation). The role
of gates is as follows. Unless the input gate is open, the
state of memory cell is not overwritten. Also, unless the
output gate is open, the activation of the network is not
transmitted. This prevents the LSTM from storing useless or
noisy input information. The forget gate releases the mem-
ory that becomes no longer required in order to store new
useful memory. These mechanisms work to suppress the van-
ishing gradient problem. To prevent the explosion problem,
we clipped the derivatives that are propagated via recurrent
connections in the LSTM within a predefined range. This
technique is used by a predecessor [2]. The details of LSTM
are described in [1].

For obtaining the output, an additional activation layer is
attached to LSTM unit. x̂t is calculated as follows.

x̂t = a (Wx̂hht + bx̂) (6)

where a is an activation function. There are two kinds of
activation functions, i.e., sigmoid and linear function, one
of which is chosen for the different modalities. The detail is
described later in Section 3.

2.2 LSTM Autoencoder Model
LSTM autoencoder model proposed by Srivastava et al. [9].
consists of encoder LSTM and decoder LSTM. The encoder
LSTM receives input sequences and encode them to a fixed
range feature vector as the normal LSTM generates hid-
den outputs from the external inputs. Then, the decoder
LSTM receives the feature vector and decodes it into the
original input sequences as the autoencoder. The schematic
view of LSTM autoencoder is shown in Fig. 2. Srivastava et
al. also proposed future predictor model where the decoder



LSTM predicts the future input sequences instead of the
original inputs. These models are based on the sequence to
sequence learning framework [11]. The sequence to sequence
learning allows to use different lengths of input and output
sequences, however it should be same in the LSTM autoen-
coder. Because it is reported that reversed order decoding
makes learning easier [9, 11], it is used in our model. For
example, if the input sequence is {xt,xt+1, . . . ,xt+k}, then
the target sequence is {xt+k,xt+k−1, . . . ,xt}. The reason for
this is that because the last input has a stronger correlation
to the feature vector, which is sent to the decoder, than the
earlier inputs, decoding the feature vector to the last input
is easier than to the first input. Recalling the earlier inputs
can be performed through gradual memory state transitions
from the last to the first inputs.

2.3 Multimodal LSTM autoencoder
For multimodal learning, we use encoder and decoder LSTMs
for each modality. The modalities are integrated by a mul-
timodal autoencoder, which consists of three layers, i.e., in-
put, hidden, and output layers. The schematic view of our
proposed model is shown in Fig. 3. Our model consists of en-
coder part and decoder part similar to vanilla autoencoder.
The advantages of the multimodal autoencoder are as fol-
lows. One is that memorized patterns can be reconstructed
from incomplete or single modality information. Another is
that the multimodal encoder can be naturally combined with
the encoder and decoder LSTMs and the whole structure can
be learned with the simple gradient descent method. We call
our model multimodal LSTM autoencoder.

The multimodal LSTM autoencoder can encode the sequen-
tial inputs of multiple modalities to a fused feature vector
and decode the vector to the separated sequential outputs of
each modality. There are four stages of encoding or decod-
ing in the multimodal LSTM autoencoder. The first stage is
encoding the sequence to fixed range feature vector by the
encoder LSTM for each modality. The feature vectors are
combined and converted to a fused feature vector once in
the multimodal autoencoder as the second stage. The mul-
timodal autoencoder also decode the fused feature vector
to the two separated feature vectors which are sent to the
decoder LSTMs at the third stage. At the last stage, the de-
coder LSTM reproduces the original input sequences from
the feature vectors for each modality.

The training procedure of our model has three stages to train
the encoder and decoder LSTMs and multimodal encoder in
a separate and integrated ways. Firstly, the encoder and
decoder LSTMs are trained to be able to encode an input
sequence to a feature vector and to decode the feature vec-
tor to the input sequence in a usual way of LSTM learning.
Secondly, only multimodal autoencoder is trained to encode
the feature vectors of two modalities, which is passed by the
encoder LSTMs, to the fused feature vector and decode the
vector to the original vectors of two modalities. By the sec-
ond stage, the encoder and decoder LSTMs and multimodal
autoencoder can be used as a multimodal LSTM autoen-
coder if learning of both LSTMs and multimodal autoen-
coder is perfect. However, because the multimodal autoen-
coder cannot completely recall the feature vectors, recalling
ability of simply connected LSTMs and multimodal autoen-
coder becomes poor. Therefore, the encoder and decoder
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Figure 3: Multimodal LSTM autoencoder.

LSTMs and the multimodal autoencoder are trained as a
whole network as the third stage. Although training entire
network in a single stage is possible in principle, the training
is more difficult and slower than the three stages training in
practice.

After training, it is expected that the fused feature vector
encoded by the multimodal autoencoder contains informa-
tion of multiple modalities in a mixed form. However, in case
that the number of units in the hidden layer of multimodal
autoencoder is same as the sum of each modality’s or more,
the vector might be merely identical mapping of modalities,
and that ends up result that we get no benefit of using mul-
timodal integration approach. By reducing the number of
nodes in the hidden layer of multimodal autoencoder less
than the sum of each modality’s, we can force the output to
be mixed.

3. EXPERIMENTS
In order to evaluate our proposed method, it is applied to
crossmodal recalling and recognition between motion and
vision.

3.1 Dataset
We used motion capture (mocap) data from CMU Graph-
ics Lab Motion Capture Database for motion patterns (see
acknowledgments). The mocap data consists of time series
of skeleton data of human figure, i.e., joint angles of body
parts, and motion data that contains translational and rota-
tional movements of a reference point of the human figure.
The endpoints of the other body parts can be sequentially
calculated from the reference. Because the learning effect of
crossmodality is evaluated here, we eliminate the transla-
tional movements of the reference point. Because the degree
of freedom of whole body is 56 and the rotational degree of
freedom of the reference point is three, the dimensions of in-
put motion patterns become 59. The visual images for vision
are created from the mocap data manually. The body parts
are colored with white and black for the background. The
frame size of the visual images is 64×64. As the translational
movements of the reference are eliminated, the position of
the reference point is fixed at the center of the frame. The
examples of input patterns for vision and motion are shown
in Fig. 4. Several people participated in CMU database as
subjects to capture motion data, and data are separated by
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Figure 4: Left: Joints and degrees of freedom of the body skeleton in the motion patterns. Right: Example of
1-shot motion and visual data (denoted by xm1 and xv1 respectively). The motion and visual image sequences
consist of multiple data of this.

subjects number. We used data of subject #1 for training
our model. The data contains 14 trials. One trial is composed
of a continuous motion sequence that possibly contains more
than two kinds of motion. Data have been captured in 120
fps. In the original fps data, the differences between suc-
ceeded visual images or motions are often so small that the
data are downsampled to 8 fps for input visual and motion
data. The total number of frames in downsampled data is
about 3, 600 frames. The length of the recalled data is set to
10, which corresponds to 1.125 sec. Finally, we obtain 360
input data sequences of vision and motion for training.

3.2 Memorizing and Recalling Visual Images
At the first stage of training our model, we train the encoder
and decoder LSTMs that receive and recall visual images.
As described before, the activation function of eq. (6) for
the visual images is a sigmoid activation function. For the
learning, we used stochastic gradient descent with learning
rate of 0.7. To compute the gradient, the reconstruction error
is computed by cross entropy loss function. The size of inputs
for the LSTM is 4096, and we set the number of hidden units
of the LSTM to 1024. The parameters are updated on mini-
batch method, and the size of mini-batch is 10.

Figure 5 shows the recall error of the output patterns to the
target input patterns. The all errors gradually decrease and
converge by 250 epochs1. The LSTM recalls the last-input
visual image first and the fist-input in the end (reverse or-
der). That is why the error of the first recalling output be-
come the smallest. Figure 6 (the second row from the top)
shows the visual images recalled by the best trained LSTM

1In one epoch, a network is trained on each data in training
set once.
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Figure 5: Recall errors during training of visual
LSTM autoencoder.

at 250 epochs. The left and right most images are the first
and last outputs of LSTM, respectively. In the opposite di-
rection, the left most of the target is the last input. It is
remarkable that the images of recalled outputs are similar
to the target even the middle recalled images are blurry. It
means that the training has been reasonably successful and
the LSTM can recall the sequential visual information.

3.3 Memorizing and Recalling Motion Data
For the motion data, another LSTM is trained in the same
way as the visual images except for a few implementations.
Because a value of the motion data has no limit, sigmoid
activation function which has bound in (0, 1) and cross en-
tropy loss function which assumes the input in (0, 1), are
not suitable for the implementations. Therefore, we use a
linear activation function in eq. (6) and euclidean loss func-
tion to train on the motion data and recall the data. The
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(See the main text for the details).

learning rate is 0.7 for the weights that direct inward. For
the weights of outward connections (i.e. the connections to
the linear activation layer), the learning rate is 0.007. That is
because the linear activation has no limit in their values and
updating the parameters should be performed carefully. The
size of inputs for the LSTM is 59, and the number of hidden
units is 512. Although the number of hidden units is rela-
tively large to the input size, the parameter is determined
to balance between vision and motion at the multimodal
integration stage. If the number of hidden units of motion
LSTM is much less than that of vision LSTM, motion modal-
ity might not be able to contribute the fused representation
in multimodal autoencoder efficiently.

Figure 7 shows recall error as training epochs, and it shows
that the training has been done successfully. All errors be-
come very small and the training has been done successfully.
Though it is possible to visualize recalled motion data in the
same way as creating video data, almost no difference can
be seen between the images of target and recall, and the
visualization is not shown.

3.4 Experiment on Multimodal Integration
The trained visual and motion LSTMs are integrated by
a multimodal autoencoder. Firstly, the multimodal autoen-
coder is trained to receive and reconstruct the feature vec-
tors which is the output from the trained encoder LSTM. In
this stage, the parameters of the only multimodal autoen-
coder are updated to reconstruct the feature vectors. Af-
ter that, the trained multimodal autoencoder is connected
to the encoder and decoder LSTMs (also trained in previ-
ous section), and we train them as a whole network. These
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Figure 7: Recall errors during training of motion
LSTM autoencoder.

greedy layer-wise training process is the practical way of
the learning on deep network. The number of nodes at the
hidden layer of the multimodal autoencoder is 256. For the
multimodal autoencoder, the learning rate is 0.7. For the
encoder and decoder LSTMs, the learning rate is also 0.7
except for the linear output layer of the decoder LSTM for
motion described in the above section, and we decrease the
rate linearly 0.7 to 0.1 after the monitoring errors looks con-
verged.

Figure 8 shows the errors of the visual images and motion re-
called by the multimodal LSTM autoencoder during training
as a whole deep network. The recall error of visual sequence
is lower than that showed in the previous section even be-
fore the learning rate has been annealed. However, the error
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Figure 8: Recall errors during training of multi-
modal LSTM autoencoder. The vertical dashed line
indicates the epoch when learning rate annealing
starts. The horizontal dashed line indicates the best
recall error of the LSTM autoencoder for visual im-
ages.

of the motion sequence becomes higher. While the error of
motion sequence is decreasing after annealing the learning
rate, that of video sequence is increasing. We discuss about
the reason of this in Section 4.

3.4.1 Recalling from multiple modalities
For the evaluation of the multimodal recall, we use the
trained model at 550 epoch which is the time before the
error of visual images start increasing. In Fig. 6, the third
row shows the recalled visual images of multimodal LSTM
autoencoder when the motion and visual images are given
at the same time. The recall by the multimodal LSTM au-
toencoder is clearer than the recall of the single modal in-
formation by the encoder and decoder LSTM. The details
of the arms and legs in the human figure are recalled better.
These results show that the two modalities are integrated by
the hidden unit of the multimodal autoencoder and the mo-
tion input sequences contribute to disambiguate the recalled
visual image sequences.

3.4.2 Recalling of Both Vision and Motion from Ei-

ther Modality
The multimodal LSTM autoencoder can be also used to
generate missing inputs. For example, even if the input se-
quences of visual images are not given, the visual images can
be recalled from the only motion sequences. However, recall
obtained with missing input is much noisy and not similar
to the target. To make the noisy output clear to some ex-
tent, we can use the output as the input which is absent. By
iteratively inputting the output to the missing modality, the
output become more closer to the target in some cases. It
should be noted that there are some cases that the output
is still far from the target.

The forth and fifth row in Fig. 6 show the results of recalling
from a single modal information, i.e., visual images recalled
from motion sequences and motion sequences recalled from
visual image sequences, respectively. The results of motion
sequences are visualized in the same way as creating visual

images from mocap data. Although the recall from only mo-
tion input (the forth row in Fig. 6) is very blurry and noisy,
the feature of the target can be observed (hands-up in the
recalled images). In the case of recall from only visual im-
ages (the fifth row in Fig. 6), while the facing direction in
the recalled visual images is correct however it fails to recall
the features of hands-up and turning on the way. Figure 9
shows another example of recall from missing visual images.
The facing direction of the visual images recalled from the
motion is wrong, however, it is interesting that the images of
hands-up is successfully recalled. This is probably because
the distance between turning away and turning front is far
in the feature space. As the first recall is noisy and some-
times close to another training input rather than the target,
once the feature is trapped in unfavorable subspace, which
is far from where the target is, it is difficult to escape from
there. Figure 10 shows changes of the recall errors of the vi-
sual images and motion while obtaining the result shown in
Fig. 9 when the recalled outputs are fed back into the input
of the multimodal LSTM autoencoder repeatedly. While the
errors of the motion become nearly zero, that of visual im-
ages increased rather than decreased. This is caused due to
the same reason described just before.

3.5 Generalization Capability of Trained Model
In this section, we test generalization capability of trained
model. We prepare extra data for the test from data of sub-
ject #2 in CMU database, on which the model is not trained.
Although the test data is unknown visual images and mo-
tion patterns, if the trained model has high generalization
ability, the model can output the visual images from only
motion patterns or motion patterns from only visual image
inputs. Figure 11 shows the recall of visual images without
input visual images and visualization of motion sequences
without input motion sequences. The recalled sequence cap-
tures at most one feature of target, and the feature appears
in quite different style. The sample shown in the Fig.11 is
one of the most successful sample, and the other recall is
not good. It show that generalization ability of our model is
fairly low.

4. DISCUSSION
Our results showed that the proposed model can integrate
the temporal multimodal sequences and can recall missing
sequential information from either modality. However, there
is an asymmetric ability of recalling between vision and mo-
tion. The recalling from motion to vision is better.

The encoder LSTM is trained to map the input sequences
to the fixed dimensional feature vectors. At this stage, the
different sequences should be mapped to different feature
vectors with certain distances, but it is not an easy task
for high dimensional inputs such as visual image sequences.
On the other hand, the number of dimensions of motion se-
quence data is much less than the vision and the differences
of trained motions are relatively large. In fact, the gap be-
tween the recall errors of the first and last outputs for vision
is bigger than for motion. Therefore, there is a difference of
LSTM abilities between vision and motion to map the in-
put sequences to the feature vectors. Those feature vectors
are fused in the multimodal autoencoder, however it is just a
multi-layer autoencoder. If the feature vectors are not clearly
separated, the fused feature vectors and reconstructed fea-
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Figure 11: Visual images recalled from the only motion sequences and visualized motion sequences recalled
from the only visual images. The input and target is not used to train the model. The rotation of motion
pattern is set to that of target to clarify the motion of limbs.



ture vectors of each modality would be vague. When the
only motion sequences are given and the visual images are
reconstructed, the feature vectors of the motion sequences
are clearly separated, and the fused feature vectors and re-
constructed feature vectors of each modality would approach
to the original trained feature vectors during repetition of
recalling while compensating the missing modality. However,
when the only visual image sequences are given, the feature
vectors are not so clearly separated that the repeated recall-
ing in multimodal autoencoder would not improve. That is
because there is an asymmetricity between vision and mo-
tion. It might be related to the multimodal processes of hu-
man. It is relatively easy to imagine how we have moved dur-
ing motion, but it is usually difficult to imitate the other’s
motion after looking.

When the LSTM autoencoder is trained with only vision,
the recall error could not be small enough to show sharp mo-
tion figures. It might be because the feature vectors of vision
encoded by LSTM were not separated among different in-
put sequences in the feature space as described above. The
errors of vision were slightly improved in the multimodal
training (Fig. 8). The motion sequences help to classify
the feature vectors to be separated. However, the motion
errors were improved and not for vision in the end when
the learning rate was set to the smaller values. This might
be because the classification of fused feature vectors in the
multimodal autoencoder was specialized too much for the
motion, which broke down the decoded feature vectors of
vision in the multimodal autoencoder and it also breaks the
trained structure of the decoded LSTM autoencoder of vi-
sion. The fused feature vectors should be classified in the
feature space properly for both vision and motion. This bal-
ancing problem can be overcome by a deep LSTM model
because the deep LSTM model can build up high level rep-
resentation in deep layers ([3]) and multimodal integration
using the high level representation which has no statistical
deviation depending on input modality is easier than using
low level representation [10].

The current generalization ability of our model is not good
enough as shown in Section 3.5. The possible reasons ex-
cept for deficiency of LSTM are that the number of trained
samples is too small and that our model is not a proba-
bilistic model such as Boltzmann machine. A probabilistic
version of autoencoder has been proposed, which is called
variational autoencoder[5] and it is compatible with LSTM
because it can be trained by backpropagation. One of our
future works is to introduce the variational autoencoder to
our multimodal LSTM model to obtain high generalization
ability among modalities and apply it to imitation.

5. CONCLUSION
We proposed an architecture of neural network that can
learn and integrate sequential multimodal information using
LSTM. Our model consists of encoder and decoder LSTMs
and multimodal autoencoder. Each LSTM deal with sequen-
tial information and multimodal autoencoder integrates mul-
timodal information. We tested our proposed model by recall
tasks on the visual and motion sequence. The experimen-
tal results have shown that our model has ability to learn
and remember the sequential multimodal inputs, and even
decrease the ambiguity generated at the learning stage of

LSTMs using integrated multimodal information. Our model
can also recall the visual sequences from the only motion se-
quences and vice versa. However, generalization ability for
unknown input of our model is fairly low, therefore improv-
ing the ability is our future work.

Although we used two modalities, vision and motion, for
multimodal information in this paper, our model can also
deal with more than two modalities, for example vision, mo-
tion and sound. It is expected that additional modalities
contribute to decrease the ambiguity of fused information.
It is another future work to test our model on additional
modalities.
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