
A Tuple Space for Data Sharing in Robot Swarms

Carlo Pinciroli
Polytechnique Montréal

PO Box 6079, Succ.
Centre-ville Montréal

Québec, Canada H3C 3A7
carlo.pinciroli@polymtl.ca

Adam Lee-Brown
Royal Melbourne Institute of

Technology
124 La Trobe St, Melbourne

VIC 3000, Australia
s3434074@student.rmit.edu.au

Giovanni Beltrame
Polytechnique Montréal

PO Box 6079, Succ.
Centre-ville Montréal

Québec, Canada H3C 3A7
giovanni.beltrame@polymtl.ca

ABSTRACT
In this paper, we present a system to allow a swarm of robots
to agree on a set of (key,value) pairs. This system enables
a form of information sharing that has the potential to be
an asset for coordination in complex environments, such as
globally optimized task allocation. Taking inspiration from
the environment-mediated communication of social insects,
we call the system virtual stigmergy. Experimental evalu-
ation indicates that virtual stigmergy can work in a wide
variety of running conditions including heavy packet loss,
and can cope with random motion trajectories.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Coherence
and coordination; I.2.11 [Distributed Artificial Intelli-
gence]: Multiagent systems; C.2.1 [Network Architec-
ture and Design]: Distributed networks; C.2.2 [Network
Protocols]: Applications; C.2.4 [Distributed Systems]:
Distributed applications; I.2.9 [Robotics]: Autonomous ve-
hicles

Keywords
Swarm robotics, Collective robotics, Information sharing,
Stigmergy

1. INTRODUCTION
In nature, animal swarms display remarkable levels of co-
ordination. Activities such as nest building and foraging in
insect colonies are well-known examples of globally coordi-
nated, complex behaviors that arise from purely local inter-
actions between individuals and with the environment [9]. In
nest building, the environment is used as a common medium
to share information (i.e., the current state and progress of
the nest). Based on the configuration of a certain area, in-
sects decide to drop or modify the placement of the build-
ing material. In foraging, ants construct pheromone trails
that produce globally optimized routes between nest and
source [7]. In these examples, the key to coordination is em-

ploying the environment as a common ‘information storage
unit’, which can be ‘read’ and ‘written’ in parallel. This form
of indirect, environment-mediated communication modality
is commonly called stigmergy [17].

Stigmergy has been used often in swarm robotics [4, 13]
to achieve coordination. Examples include ‘physical’ imple-
mentations of the concept, such as the projection of light on
the ground [14], smart material [1], and inert material de-
tected and placed by the robots [31, 34]; ‘logical’ implemen-
tations that mimic the behavior of natural pheromone [10,
26]; and ‘embodied’ implementations whereby robots act as
environmental markers [25].

We propose a new use for this concept, which we call virtual
stigmergy1. Virtual stigmergy, at its essence, is a distributed
tuple space similar to Linda [15] that allows robots to share
a collection of (key,value) pairs. Virtual stigmergy is part
of the Buzz programming language [27]. In this paper, we
substantiate three statements:

1. Virtual stigmergy is a valuable concept for swarm ro-
botics, which enables the implementation of a wide
class of swarm behaviors in a simple way;

2. The peculiar aspects that characterize robot swarms
(large numbers of individuals, limited bandwidth, lim-
ited computational capabilities, and dynamic topol-
ogy) render existing designs of distributed tuple space
impractical for swarms; and

3. The algorithms that embody the mechanisms of vir-
tual stigmergy are efficient and robust, and suitable
for real-world swarm applications.

The rest of the paper is organized as follows. In Section 2 we
review related work on distributed tuple spaces. In Section 3
we present the design of virtual stigmergy. In Section 4 we
analyze the robustness and scalability of virtual stigmergy
in several experimental conditions. In Section 5 we conclude
the paper and outline future research directions.

1The term ‘virtual stigmergy’ was also used in [22] to refer
to an algorithm for information spreading loosely inspired
by [26] which, combined with a PSO-based algorithm, was
demonstrated in a search-and-cleanup task with multiple
robots. This mechanism is unrelated to the algorithm pre-
sented in this paper.

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262503

2. BACKGROUND AND RELATED WORK
In this section, we set the context in which our work is
placed. We first discuss the challenges in the design of a dis-
tributed tuple space for swarm robotics that derive from the
communication modality that is dominant in robot swarms.
Subsequently, we review past works that proposed the idea
of using tuple spaces as a shared medium for inter-robot
coordination. We relate these works to the mentioned chal-
lenges. Finally, we present a number of existing designs of
distributed tuple spaces that focus on networks with volatile
topology, highlighting their applicability limitations in robot
swarms.

2.1 Communication Challenges
One of the cornerstones of coordination in swarm robotics is
situated communication [32]. This communication modality
is based on wireless devices that are capable of exchanging
data payloads as well as detecting the location of message
originators with respect to the receiver’s frame of reference.
To make mutual localization possible, data exchange is com-
pleted exclusively when two robots are in direct line-of-sight.

Robots capable of situated communication in 2D include
the Kilobot [30], the e-puck [23], and the marXbot [8]; re-
cently, a low-cost device for 3D communication was also pro-
posed [12].

Current devices for situated communication suffer from two
main problems:

1. The useful payload that can be exchanged is very small,
typically on the order of just a few bytes. For instance,
the Kilobot and the marXbot exchange 12-byte mes-
sages, and the e-puck up to 4 bytes.

2. Message loss is a significant issue. We are not aware
of thorough studies on this aspect; however, our per-
sonal experience is that more than 1 in 4 messages are
typically lost at each control step, with bursts of lost
messages occurring relatively infrequently.

These issues alone render implementing an effective distri-
buted tuple space for a robot swarm a challenging task.

In addition, robots move in ways that are unpredictable in
the general case, because they depend on the task being
executed. The combination of small payloads, message loss
and dynamic network topology poses serious challenges for
the maintenance of data integrity across the swarm.

2.2 Tuple Spaces in Swarm Robotics
An interesting use of tuple spaces to achieve dynamic, space-
aware computation is illustrated in [33]. This study is pre-
sented from a purely theoretical standpoint. The authors
formalize a calculus for the possible operations that can be
performed, but no real-world implementation of the concept
is shown.

Karma [11] and Voltron [24] are programming languages
whose run-time platform incorporates a tuple space to achieve
efficient task allocation in single-robot single-task scenar-
ios [16]. Both languages separate the environment into dis-
joint areas that must be visited by a robot. The states of

the areas (visited/not visited/being visited) are stored in the
tuple space. The tuple space is implemented as a hash map
storing one entry for each area.

In Karma, the tuple space is stored in a centralized server.
The robots are assumed unable to communicate between
each other and interact solely by updating the tuple space,
which effectively acts as a stigmergic communication medium.
While this system shows that task allocation can be achieved
without direct communication, a centralized implementation
constitutes a single point of failure. In addition, the system
requires the robots to physically return to the ‘nest’ where
the server is located, which limits the update rate of the
tuple space and the applicability of this approach to more
complex scenarios.

In Voltron, the robots communicate through a traditional
WiFi network. The authors propose two functionally equiv-
alent versions of the tuple space: one centralized, analo-
gous to Karma’s, and one distributed, based on virtual syn-
chrony [6], a tuple space widely used in cloud computing.
Being based on a traditional WiFi network, the system is
not scalable above about a dozen robots; also, the bandwith
requirements of virtual synchrony exceed what situated com-
munication can typically offer.

2.3 Tuple Spaces for Dynamic Topologies
The communication modalities of robot swarms push to-
wards gossip-based, low-bandwidth, and drop-resistant de-
signs of tuple spaces.

In [18], Heer et al. discuss the issues of realizing distributed
hash tables (DHTs) in mobile ad hoc networks (MANETs).
The main assumption in DHTs is that each node possesses
a view of the complete system, and that the system is ca-
pable of maintaining a body of metadata such as lists of
participating nodes and routing tables. While remarkable
results can be obtained with clever management of this in-
formation [21], these assumptions are difficult to realize with
robot swarms due to the low bandwidth and the high rate
of mobility of the robots.

Cell Hash Routing [2] is a low-bandwith DHT based on the
assumption that nodes know their position in the environ-
ment. Using this information, the nodes are organized in
groups that aggregate and manage information collectively.
Positional knowledge is a hard assumption to respect in
robot swarms, making the applicability of this design prob-
lematic in real-world scenarios.

3. VIRTUAL STIGMERGY DESIGN
In the design of virtual stigmergy, we realized that band-
width limitations make it impossible to share the entire tuple
space at any time. Instead, in virtual stigmergy, data is ex-
changed only when it is accessed in reading or writing. This
design is fundamentally different from existing implementa-
tions of distributed hash tables, as discussed in Section 2.3.

Operations. Virtual stigmergy offers six fundamental op-
erations:

Executed at init time
function init() {

Create a vstig
VSKEY = 1
vs = stigmergy.create (1)
Set onconflict manager
vs.onconflict(function(k,l,r) {

Return local value if
- Remote value is smaller than local , OR
- Values are equal , robot of remote record is
smaller than local one
if(r.data < l.data or

(r.data == l.data and
r.robot < l.robot)) {

return l
}
Otherwise return remote value
else return r

})
Initialize vstig
vs_value = id
vs.put(VSKEY , vs_value)

}

Executed at each time step
function step() {

Get current value
vs_value = vs.get(VSKEY)

}

Figure 1: The Buzz code executed on the robots to test the
performance of virtual stigmergy.

• put(key,value) writes a tuple (key,value);

• get(key) returns the value corresponding to key, or
nil if no matching tuple exists;

• has(key) returns true if a tuple indexed by key is
present in the structure, and false otherwise;

• size() returns the number of (key,value) pairs in
the structure;

• onconflict() is a user-defined function called when a
write conflict occurs (more on this below);

• conflictlost() is a user-defined function called when
a robot published an update that conflicted with an-
other one, and the update was rejected (more on this
below).

Local storage. Each robot maintains a local copy of the
virtual stigmergy data. The data is stored in a hash map in-
dexed by key. Each data entry consists of a record that con-
tains the corresponding value, as well as additional meta-
data used to maintain integrity: timestamp and robot_id.
The timestamp field is a Lamport clock [20] that induces a
temporal ordering on the updates; the robot_id field stores
the numerical identifier of the robot that originated the
stored value, and is used to detect conflicts arising from
simultaneous updates by different robots.

Writing. Whenever a robot needs to update an entry, the
change is first made locally. If the structure does not al-
ready contain an element for key, a new tuple (key,value,

1,id) is created, in which id denotes the numerical iden-
tifier of the current robot. Conversely, if the structure al-
ready contains an entry e, the new entry is (key,value,

timestamp,id) where timestamp is set to e.timestamp+1.

Subsequently, the robot broadcasts a message <PUT,key,

value,timestamp,id> in its neighborhood. Nearby robots
who receive the message compare the locally known times-

tamp for the entry that matches key. If the local timestamp
is lower, they update the entry and propagate the message;
if the local timestamp is higher, they ignore the message
to prevent an infinite flood of messages throughout the net-
work.

Conflict management. It might happen that two robots
publish conflicting data on the same key simultaneously, i.e.,
with the same timestamp. In this case, an update conflict
occurs. More in general, a conflicting update on a key is
characterized by two conditions: (i) The update is marked
with a timestamp that is equal to the locally known one,
and (ii) The robot_id of the originator is different from
the locally known one. When a robot detects a conflicting
update, it executes onconflict(). This user-defined func-
tion accepts as arguments the locally known entry and the
conflicting update, returning the entry that must be kept;
such entry is subsequently stored. If the robot_id of the
discarded entry corresponds to the identifier of the current
robot, then the conflictlost() function is called to allow
the robot to react to a rejected update (e.g., retry an update
with a new timestamp).

Reading. A robot R1 that needs to read data from the
virtual stigmergy accesses the locally known tuple. If the
tuple is unknown, the return value of this command is nil

(see [27]). After reading, the robot broadcasts a message
<GET,key,value1,timestamp1,robot1_id> to ask neighbors
whether the data is up-to-date. A nearby robot R2 that re-
ceives the message compares timestamp1 with the locally
known timestamp2. If timestamp1 and timestamp2 coin-
cide, R2 compares robot1_id and the local robot2_id. If
these match, R2 does nothing; otherwise, it performs con-
flict management as explained above. If timestamp1 is lower
than timestamp2, then R1 needs to be updated. Therefore,
R2 broadcasts <PUT,key,value2,timestamp2,robot2_id>.
Conversely, if timestamp2 is lower than timestamp1, then
R2 needs to be updated. In this case, R2 stores the new
entry, and then broadcasts <PUT,key,value1,timestamp1,

robot1_id>. This broadcast mechanism allows robots to re-
cover data integrity after temporary disconnections or ran-
dom message drops occurred.

Bandwidth usage. The limited bandwidth available on
the robots pushes towards minimal message exchange. In
virtual stigmergy, the robots never perform a ‘full’ update
of the structure—rather, messages are generated only when
a specific tuple is written or read. This means that virtual
stigmergy dedicates resources only on ‘hot’ (i.e., recently
used) data. This is a reasonable choice in many scenarios,
such as area-based task allocation in the style of Karma and
Voltron, in which, once a tuple is marked as ‘completed’,
there is not need to process it further. The fact that reading
on virtual stigmergy triggers the generation of a message
might produce long message queues on a robot. To alleviate
this problem, the message queue retains only the most up-to-
date message for a key, i.e., that with the highest timestamp.

4. EXPERIMENTAL EVALUATION

(a) Cluster (b) Line (c) Scale-free

Figure 2: Robot distribution for different topologies in the experiments discussed in Section 4.1. The cyan lines connect robots
within each others’ communication range and in direct line-of-sight. Screenshot taken with the ARGoS multi-robot simulator.

Experimental evaluation aims to assess the performance of
virtual stigmergy in diverse conditions. We conducted our
experiments in realistic physics-based simulations performed
with the ARGoS multi-robot simulator.2 The models present
in ARGoS have been validated, and robot controllers devel-
oped with this simulator have been ported to real platforms
in numerous works [28].

Performance measure. The most important performance
measure of virtual stigmergy is the time an update takes to
reach every robot in the swarm. We want convergence time
to be as short as possible, to allow the robots to react swiftly
to data updates. In the evaluation, we employ the number
of control steps as a measure of time, and the total time
for every robot to agree on a certain (key,value) pair as
a performance measure. In our simulations, a control step
lasts 0.1 s.

Communication model. We use the range-and-bearing
sensor of the marXbot robot [29]. This device is modeled
in ARGoS as an entity capable of broadcasting a message
within a predefined range. A robot within range and in
direct line-of-sight with the message originator has a prob-
ability P to ignore the message (also called packet drop).
If, at a certain location, multiple messages can be received
by a robot, each of them is tested for dropping individu-
ally. All robots perform independent tests on every mes-
sage in range. In our experiments we consider values for
P in [0, 0.25, 0.5, 0.75, 0.95]. Regarding bandwidth, each ex-
changed message is 8 bytes long and structured as follows:

• 1 bit to encode PUT or GET;

• 15 bits for the key;

• 2 bytes for the value;

• 2 bytes for the timestamp;

• 2 bytes for the robot_id.

The arena and the task. The experimental arena is a
square of side L in which N robots are distributed. In all our
experiments, the robots must agree on the highest numerical
identifier in the swarm. This task is representative of a large
class of scenarios in which the robots must agree on the

2http://www.argos-sim.info/

highest (or lowest) value of a quantity (typically detected
through the sensors) as a prerequisite to, e.g., construct a
swarm-wide gradient or elect a leader. The Buzz [27] code
executed by the robots is reported in Figure 1.

4.1 Scalability and Topology Dependence
We performed a set of experiments to assess the depen-
dency of convergence time from different types of topolo-
gies. In these experiments, once placed, the robots are not
allowed to move. To test for scalability, we chose N in the
set [10, 100, 1000]. We identified the three interesting classes
of topologies depicted in Figure 2.

Cluster topology. The robots form a tight aggregate in
which every individual has many nearby robots. Robots in
the middle of the aggregate have up to 8 neighbors; robots
on the borders typically have less. This topology is an ex-
tremely ‘positive’ case, in which connectivity problems are
unlikely to increase convergence time. To generate clus-
ters, the position (x, y) of a robot is chosen uniformly from
U(−L/2, L/2).3 To ensure comparable results across multi-
ple experiments, we keep the density of the robots constant.
We define the density D as the ratio between the ‘commu-
nication area’ occupied by all robots and the total area in
the environment. The ‘communication area’ of a robot is a
circle centered in the robot with a radius R corresponding
to its communication range (for marXbots, R = 3 m). To
keep D constant across different values of N and ensure a
tight cluster, we set D = 5 and calculate the arena side L
as follows:

D =
tot comm area

arena area
=
NπR2

L2
⇒ L =

√
NπR2

D
.

Line topology. The robots form a straight line. With the
exception of the robots at the ends of the line, every robot
has exactly two neighbors; the robots at the ends of the line
only one. This topology is an extremely ‘negative’ case, in
which every packet drop results in a convergence delay. To
form the line, each robot i ∈ [1, N] is placed at position (i, i)
in the arena.

Scale-free topology. The robots are distributed so as to
form multiple clusters connected by thin lines of robots.

3When a coordinate choice causes physical overlap with al-
ready placed robots, a new coordinate is picked until no
overlap occurs.

0.00 0.25 0.50 0.75 0.95

Packet drop probability

100

101

102

103

104

105
C

o
n
tr

o
l
st

e
p
s

[l
o
g
]

10 Robots

100 Robots

1000 Robots

(a) Static cluster topology.

0.00 0.25 0.50 0.75 0.95

Packet drop probability

100

101

102

103

104

105

C
o
n
tr

o
l
st

e
p
s

[l
o
g
]

10 Robots

100 Robots

1000 Robots

(b) Static line topology.

0.00 0.25 0.50 0.75 0.95

Packet drop probability

100

101

102

103

104

105

C
o
n
tr

o
l
st

e
p
s

[l
o
g
]

10 Robots

100 Robots

1000 Robots

(c) Static scale-free topology.

Figure 3: Convergence time (in control steps) for static
topologies in different experimental configurations. The
plot reports the median, max, and min values of the
distributions obtained for each experimental configuration
〈N,P, topology〉 over 50 runs. The markers are slightly off-
set to make them visible.

This case logically falls between the two extremes and it
corresponds to the ‘most likely’ topology a swarm might
form over time. To place the robots in a scale-free topology,
we utilized the Barabási-Albert preferential attachment al-
gorithm [3]. The first robot is placed in the origin of the sim-
ulated arena. Subsequent robots are placed by first choosing
randomly an already placed robot to connect to (a.k.a. the
‘pivot’), and then picking a random location within the com-
munication range of the pivot.2 Each robot can become a
pivot with a probability proportional to the number of con-
nected robots in the arena.

Results. The results are reported in Figure 3. The cluster
topology (Figure 3a) displays a graceful degradation of per-
formance with the increase of packet drop probability. Up
to P = 0.75, convergence time does not increase; only with
the extreme value P = 0.95 performance drops significantly.
This result can be explained by noticing that, in the cluster
topology, every robot has on average more than 4 neighbors.
With P = 0.75, 3 out of 4 messages are lost, but the high
number of neighbors allows messages to circulate anyway.
Convergence time is also not significantly affected by the
swarm size—for 〈N = 10, P = 0.75〉 the average is 6 control
steps, while for 〈N = 1000, P = 0.75〉 it is 13 control steps.
In contrast, the line topology (Figure 3b) displays severe
dependence from both message drop probability and num-
ber of robots. This is intuitive, as each failure to deliver a
message entails a delay in convergence time. The scale-free
topology (Figure 3c) behaves almost analogously to the clus-
ter case. The main difference between cluster and scale-free
topology is in the max-min span of the data distribution.
For instance, when 〈N = 1000, P = 0.75〉, the cluster topol-
ogy convergence time is in the range [10, 15] control steps;
for the scale-free topology, it is in the range [11, 26] control
steps.

4.2 Motion
In this set of experiments we test the role of motion on
convergence time. To highlight the role of motion, the ex-
perimental arena is also endowed with obstacles meant to
divide the environment in several ‘regions’. The robots dif-
fuse throughout the arena following a simplified version of
the algorithm presented in [19].

The arena is divided in 9 regions as shown in Figure 4 by
placing 4 identical columns with radius L/10. The robots
are distributed in the environment in a uniform way. To
assess the performance of virtual stigmergy, we studied two
parameters: the robot density and their maximum forward
speed.

Robot density. In these experiments, the robot density
is defined as the fraction between the ‘communication area’
occupied by the robots (see Section 4.1) and the ‘walkable
area’ in the arena. The ‘walkable area’ is the difference be-
tween the total area of the arena (L2) and the total area
occupied by the four columns (4π(L/10)2). The robot den-
sity D is thus calculated with:

D =
tot comm area

walkable area
=

NπR2

L2 − 4π(L/10)2
.

Setting N = 100, we experimented with D to identify three
values that would produce (i) A sparse robot distribution,

(a) Density = 1. (b) Density = 3. (c) Density = 5.

Figure 4: Robot distribution for different values of density in the experiments discussed in Section 4.2. The cyan lines connect
robots within each others’ communication range and in direct line-of-sight. Screenshot taken with the ARGoS multi-robot
simulator.

in which small islands of unconnected robots exist and mo-
tion is necessary for information to spread (D = 1); (ii) A
more compact robot distribution, in which most robots are
connected, but a few must move to receive the data (D = 3);
and (iii) A fully connected robot distribution, analogous to
the cluster/scale-free case studied in Section 4.1 (D = 5).
Similarly to the cluster topology in Section 4.1, for each con-
figuration we calculated the value of L that would produce
the desired D.

Maximum forward speed. To assess the role of motion,
we identified three values for the maximum forward speed
(S) of a robot. The marXbot is capable of moving with a
speed of up to 20 cm/s; in our experiments, we considered
S ∈ [5, 10, 20] cm/s.

Results. The results are reported in Figure 5. The plots
show that, when the robots are fully connected (D = 5)
or almost (D = 3), the performance of virtual stigmergy
degrades gracefully. Also, the faster the robots move, the
more efficient information spreading is. In contrast, when
the robots are too sparse (D = 1), information spreads
slowly, with the forward speed being the limiting factor in
convergence time. While the impact of S over convergence
time is intuitive, given the simple diffusion logic employed
in these experiments, it is interesting to notice that virtual
stigmergy can ensure efficient information spreading even
when a minority of the swarm is disconnected (D = 3).

5. CONCLUSIONS
We presented a distributed tuple space that enables effi-
cient and robust information sharing in robot swarms with
severe communication limitations. Results indicate that vir-
tual stigmergy is efficient across several experimental con-
ditions that vary in terms of swarm size, message loss, and
network topology.

Future work will be devoted to augmenting virtual stigmergy
with the possibility to affect the network topology to prevent
catastrophic disconnection of large portions of the swarm.
A promising approach in this direction is to employ spectral
graph theory [5] to detect dangerous topologies and derive
motion strategies to correct them [35].

Acknowledgments
This work was supported by an NSERC Engage Grant. Com-
putations were made on the supercomputer Mammouth-Ms
from Université de Sherbrooke, managed by Calcul Québec
and Compute Canada. The operation of this supercomputer
is funded by the Canada Foundation for Innovation (CFI),
NanoQuébec, RMGA and the Fonds de recherche du Québec
— Nature et technologies (FRQ-NT).

6. REFERENCES
[1] M. Allwright, N. Bhalla, H. El-faham, A. Antoun,

C. Pinciroli, and M. Dorigo. SRoCS: Leveraging
stigmergy on a multi-robot construction platform for
unknown environments. In Swarm Intelligence,
number 8667 in Lecture Notes in Computer Science,
pages 158–169. Springer International Publishing,
Berlin, Germany, September 2014.

[2] F. Araújo, L. Rodrigues, J. Kaiser, C. Liu, and
C. Mitidieri. CHR: A Distributed Hash Table for
Wireless Ad Hoc Networks. In 25th IEEE
International Conference on Distributed Computing
Systems Workshops, pages 407–413. IEEE, 2005.

[3] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[4] G. Beni. From Swarm Intelligence to Swarm Robotics.
Swarm Robotics, 3342:1–9, 2005.

[5] A. Bertrand and M. Moonen. Seeing the bigger
picture: How nodes can learn their place within a
complex ad hoc network topology. IEEE Signal
Processing Magazine, 30(3):71–82, 2013.

[6] K. Birman and T. Joseph. Exploiting virtual
synchrony in distributed systems. In Proceedings of
the eleventh ACM Symposium on Operating systems
principles (SOSP ’87), volume 21, pages 123–138.
ACM New York, 1987.

[7] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm
Intelligence: From Natural to Artificial Systems. Santa
Fe Institute Studies in the Sciences of Complexity.
Oxford University Press, New York, NY, 1999.

[8] M. Bonani, V. Longchamp, S. Magnenat, P. Rétornaz,
D. Burnier, G. Roulet, F. Vaussard, H. Bleuler, and
F. Mondada. The marXbot, a miniature mobile robot
opening new perspectives for the collective-robotic
research. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and

0.00 0.25 0.50 0.75 0.95

Packet drop probability

100

101

102

103

104

105
C

o
n
tr

o
l
st

e
p
s

[l
o
g
]

Density = 1

Density = 3

Density = 5

(a) Max speed = 5 cm/s.

0.00 0.25 0.50 0.75 0.95

Packet drop probability

100

101

102

103

104

105

C
o
n
tr

o
l
st

e
p
s

[l
o
g
]

Density = 1

Density = 3

Density = 5

(b) Max speed = 10 cm/s.

0.00 0.25 0.50 0.75 0.95

Packet drop probability

100

101

102

103

104

105

C
o
n
tr

o
l
st

e
p
s

[l
o
g
]

Density = 1

Density = 3

Density = 5

(c) Max speed = 20 cm/s.

Figure 5: Convergence time (in control steps) for dynamic
topologies in different experimental configurations. The plot
reports the median, max, and min values of the distributions
obtained for each experimental configuration 〈N,P, S〉 over
50 runs. The markers are slightly offset to make them visi-
ble.

Systems (IROS), pages 4187–4193. IEEE Press,
Piscataway, NJ, 2010.

[9] S. Camazine, J.-L. Deneubourg, N. R. Franks,
J. Sneyd, G. Theraulaz, and E. Bonabeau.
Self-Organization in Biological Systems. Princeton
University Press, 2003.

[10] A. Campo, A. Gutiérrez, S. Nouyan, C. Pinciroli,
V. Longchamp, S. Garnier, and M. Dorigo. Artificial
pheromone for path selection by a foraging swarm of
robots. Biological Cybernetics, 103(5):339–352, 2010.

[11] K. Dantu, B. Kate, J. Waterman, P. Bailis, and
M. Welsh. Programming micro-aerial vehicle swarms
with Karma. In Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems -
SenSys ’11, pages 121–134, New York, New York,
USA, 2011. ACM Press.

[12] O. De Silva, G. Mann, and R. Gosine. An ultrasonic
and vision-based relative positioning sensor for
multirobot localization. IEEE Sensors Journal,
15(3):1716–1726, 2014.

[13] M. Dorigo, M. Birattari, and M. Brambilla. Swarm
robotics. Scholarpedia, 9(1):1463, 2014.

[14] S. Garnier, F. Tache, M. Combe, A. Grimal, and
G. Theraulaz. Alice in pheromone land: An
experimental setup for the study of ant-like robots. In
Swarm Intelligence Symposium (SIS 2007), pages
37–44. IEEE, 2007.

[15] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 7(1):80–112, 1985.

[16] B. P. Gerkey and M. J. Matarić. A formal analysis
and taxonomy of task allocation in multi-robot
systems. International Journal of Robotics Research,
23(9):939–954, 2004.

[17] P. Grassé. La reconstruction du nid et les
coordinations inter-individuelles chez bellicositermes
natalensis et cubitermes sp. la théorie de la stigmergie:
Essai d’interprétation des termites constructeurs.
Insects Sociaux, 6:41–83, 1959.

[18] T. Heer, S. Götz, S. Rieche, and K. Wehrle. Adapting
Distributed Hash Tables for Mobile Ad Hoc Networks.
In Fourth Annual IEEE International Conference on
Pervasive Computing and Communications Workshops
(PERCOMW’06), pages 173–178. IEEE, 2006.

[19] A. Howard, M. Matarić, and G. Sukhatme. Mobile
sensor network deployment using potential fields: A
distributed, scalable solution to the area coverage
problem. In Proceedings of the International
Symposium on Distributed Autonomous Robotic
Systems (DARS), pages 299–308. Springer, New York,
2002.

[20] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[21] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,
A. Rajendran, Z. Zhang, and I. Raicu. ZHT: A
Light-weight Reliable Persistent Dynamic Scalable
Zero-hop Distributed Hash Table. In 2013 IEEE 27th
International Symposium on Parallel & Distributed
Processing, pages 775–787. IEEE Computer Society
Press, 2013.

[22] Y. Meng and J. Gan. Livs: Local interaction via

virtual stigmergy coordination in distributed search
and collective cleanup. In Proceedings of the 2007
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1371–1376. IEEE, 2007.

[23] F. Mondada, M. Bonani, X. Raemy, J. Pugh,
C. Cianci, A. Klaptocz, J.-C. Zufferey, D. Floreano,
and A. Martinoli. The e-puck , a Robot Designed for
Education in Engineering. In P. J. S. Gonçalves,
P. J. D. Torres, and C. M. O. Alves, editors,
Proceedings of Robotica 2009 – 9th Conference on
Autonomous Robot Systems and Competitions,
volume 1, pages 59–65. IPCB, Castelo Branco,
Portugal, 2006.

[24] L. Mottola, M. Moretta, K. Whitehouse, and
C. Ghezzi. Team-level Programming of Drone Sensor
Networks. In SenSys ’14 Proceedings of the 12th ACM
Conference on Embedded Network Sensor
SystemsSystems, pages 177–190. ACM New York, NY,
2014.

[25] S. Nouyan, A. Campo, and M. Dorigo. Path formation
in a robot swarm. Swarm Intelligence, 2(1):1–23, 2008.

[26] D. Payton, R. Estkowski, and M. Howard. Pheromone
Robotics and the Logic of Virtual Pheromones. Swarm
Robotics, 3342:45–57, 2005.

[27] C. Pinciroli, A. Lee-Brown, and G. Beltrame. Buzz:
An extensible programming language for
self-organizing heterogeneous robot swarms. Available
online at http://arxiv.org/abs/1507.05946, 2015.

[28] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini,
A. Brutschy, M. Brambilla, N. Mathews, E. Ferrante,
G. Di Caro, F. Ducatelle, M. Birattari, L. M.
Gambardella, and M. Dorigo. ARGoS: a modular,

parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence, 6(4):271–295, 2012.

[29] J. F. Roberts, T. S. Stirling, J.-C. Zufferey, and
D. Floreano. 2.5d infrared range and bearing system
for collective robotics. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS
2009)., pages 3659–3664. IEEE, 2009.

[30] M. Rubenstein, C. Ahler, and R. Nagpal. Kilobot: A
low cost scalable robot system for collective behaviors.
2012 IEEE International Conference on Robotics and
Automation, pages 3293–3298, May 2012.

[31] T. Soleymani, V. Trianni, M. Bonani, F. Mondada,
and M. Dorigo. Bio-inspired construction with mobile
robots and compliant pockets. Robotics and
Autonomous Systems, 2015. In press.

[32] K. Støy. Using situated communication in distributed
autonomous mobile robots. In Proceedings of the 7th
Scandinavian Conference on Artificial Intelligence,
pages 44–52. IOS Press, 2001.

[33] M. Viroli, D. Pianini, and J. Beal. Linda in
Space-Time: An Adaptive Coordination Model for
Mobile Ad-Hoc Environments. Coordination 2012,
LNCS 7274, pages 212–229, 2012.

[34] J. Werfel, K. Petersen, and R. Nagpal. Designing
collective behavior in a termite-inspired robot
construction team. Science, 343(6172):754–758, 2014.

[35] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas.
Graph Theoretic Connectivity Control of Mobile
Robot Networks. Proceedings of the IEEE, 99(9):1525

– 1540, 2011.

