
From Swarm Simulations to Swarm Intelligence∗

Andrew Schumann
University of Information Technology and Management in Rzeszow

Sucharskiego 2
35-225, Rzeszow, Poland

andrew.schumann@gmail.com

ABSTRACT
In self-organizing systems such as collective intelligent be-
haviors of animal or insect groups: flocks of birds, colonies
of ants, schools of fish, swarms of bees, etc. there are ever
emergent patterns which cannot be reduced to a linear com-
position of elementary subsystems properly. This reduction
is possible only due to many repellents and an artificial en-
vironment. The emergent patterns are studied in the so-
called swarm intelligence. In this paper we show that any
swarm can be represented as a conventional automaton such
as Kolmogorov-Uspensky machine, but with a very low accu-
racy because of deleting emergent phenomena. Furthermore,
we show as well that implementing some unconventional al-
gorithms of p-adic arithmetic and logic are much more appli-
cable than conventional automata. By using p-adic integers
we can code different emergent patterns.

Categories and Subject Descriptors
B.2 [Arithmetic and Logic Structures]: Miscellaneous;
D.3.2 [Language Classifications]: [concurrent, distributed,
and parallel languages]

General Terms
Theory

Keywords
swarm intelligence, Kolmogorov-Uspensky machine, p-adic
valued logic

1. INTRODUCTION
Recently, a new approach in unconventional computing

called swarm intelligence has developed [5], [14], [33]. For
example, it was discovered experimentally that swarms of so-
cial insects [9] can solve complex computational problems in

∗This research is supported by FP7-ICT-2011-8.

.

searching for food and in transporting sources and informa-
tion due to massive-parallel behaviour with labour divisions.

Now there are many algorithms in simulating swarms: the
Particle Swarm Optimization (PSO) [15], the Bacterial For-
aging Optimization Algorithm (BFOA) [19], the Artificial
Bee Colony (ABC) [12], the Cuckoo Optimization Algorithm
(COA) [20], the Social Spider Optimization (SSO) [6], the
Ant Colony Optimization (ACO) [8], etc.

In this paper we try to formulate swarms as labelled tran-
sition systems with the same set of labels (events, or ac-
tions): direction, splitting, fusion, repelling (Section 2). Then
we show that these labelled transition systems can imple-
ment Kolmogorov-Uspensky machines, but with a low accu-
racy because of emergent patterns which occur if we have
many states of appropriate transition system (Section 3).
Then we propose p-adic arithmetic and logic to formalize
emergent patterns of swarms (Section 4).

To sum up, we offer a general logical approach to swarm
intelligence.

2. FROM EMERGENT COMPUTING TO
SWARM COMPUTING

In conventional logic circuits some electrical properties of
transistors are used. In particular, the voltage is managed
to be in only one of two states: high (if the voltage runs
the range from 2.8 to 5.0V) or low (if the voltage is in the
range from 0 to 0.8V). The high state of voltage means ‘1’
or logical true. The low state means ‘0’ or logical false. The
main idea of electric devices based on electrical properties
of transistors is that the Boolean logic can be implemented
with a very high accuracy. In this logic any complex logic
expression is considered a composition of logical atoms (i.e.,
of simple logical propositions). In other words, there are no
emergent phenomena. Let us recall that the emergence is
detected, when new patterns of a highly structured collective
behavior appear and these patterns cannot be reduced to a
linear composition of simple subsystems.

Notably, emergent phenomena are key phenomena in all
self-organizing systems such as collective intelligent behav-
iors of animal groups: flocks of birds, colonies of ants, schools
of fish, swarms of bees, etc. Emergence is observed in the
economy as well: macroeconomic fluctuations, traffic jams,
hierarchy of cities, motion picture industry and mass protest
behavior [18]. There are attempts to formalize the notion of
emergence by algorithmic complexity theory. However, the
Kolmogorov complexity function is not computable. There
is no way to define the emergence by minimum linear com-
positions. Wolfram proposed a more useful approach in a

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262484

mathematical definition of emergency [34]. He showed that
the behavior of one-dimensional cellular automata is divided
into the following four cases:

• there are limit points of the system, i.e. we obtain a
homogeneous state of the system;

• there are limit cycles of the system, i.e. we obtain
separated periodic structures;

• there are chaotic attractors, i.e. we face chaotic pat-
terns;

• there are complex localized structures.

In the last case we deal with an emergent phenomenon in
the true sense. On the basis of the Wolfram’s approach the
so-called emergent computing has developed. In this kind of
computing (i) the computation process is distributed over
a set of parallel and autonomous processing units; (ii) each
unit computes locally and can interact directly only with
a small number of other units; (iii) there is a consistency
among the processing units; (iv) there are more outputs,
than inputs.

One of the most studied instance of emergent computing is
represented by swarm computing [5], [15]. This computing
is based on labor division in animal groups. Any swarm
as a result of collective behavior, such as birds flocking or
fish schooling, is a self-organizing system, where, on the one
hand, each unit responds to local stimuli individually and,
on the other hand, all together they accomplish a global task
(transporting, eating, self-protecting, etc.).

There were proposed many swarm algorithms to simu-
late the behavior of insect or animal groups: the Parti-
cle Swarm Optimization (PSO) [15], the Bacterial Forag-
ing Optimization Algorithm (BFOA) [19], the Artificial Bee
Colony (ABC) [12], the Cuckoo Optimization Algorithm
(COA) [20], the Social Spider Optimization (SSO) [6], the
Ant Colony Optimization (ACO) [8].

In the PSO it is assumed that the particles (agents) know
(i) their best position ‘local best’ (lb) and (ii) their neigh-
borhood’s best position ‘global best’ (gb). The next position
is determined by velocity. Let xi(t) denote the position of
particle i in the search space at time step t, where t is dis-
crete. Then the position xi is changed by adding a velocity
to the current position:

xi(t+ 1) = xi(t) + vi(t+ 1),

where vi(t+1) = vi(t)+c1r1(lb(t)−xi(t))+c2r2(gb(t)−xi(t))
and i is the particle index, c1, c2 are acceleration coefficients,
such that 0 ≤ c1, c2 ≤ 2, r1, r2 are random values (such that
0 ≤ r1, r2 ≤ 1) regenerated every velocity update.

One of the possible PSO algorithms can be exemplified by
the bird flocking [21], [22]. In flocks ‘local best’ and ‘global
best’ of birds are defined by the following three rules: (i)
collision avoidance (birds fly away before they crash into one
another); (ii) velocity matching (birds fly about the same
speed as their neighbors in the flock); and (iii) flock centering
(birds fly toward the center of the flock as they perceive it).
So, the position of a bird i at time t is given by its placement
xi at time t− 1 shifted by its current velocity vi. This vi is
determined by the rules (i) – (iii).

All the algorithms PSO, BFOA, ABC, COA, SSO, ACO
are used to simulate swarms of different insects or animals.
Let us try to answer the question, whether swarms can

be considered an unconventional computer, i.e. whether
swarms can calculate.

Each swarm is a natural transition system

TS = (S,E, T, I),

where:

• S is the non-empty set of states;

• E is the set of events;

• T ⊆ S × E × S is the transition relation;

• I ⊆ S is the set of initial states.

Any transition system is a labeled graph with nodes corre-
sponding to states from S, edges representing the transition
relation T , and labels of edges corresponding to events from
E.

Let us consider some examples.

2.1 Ant Colony Transitions
Any ant colony is a swarm of ants localized first at the

nest. This nest can be regarded as an initial state of ant
colony transitions. Then ants use a special mechanism called
stigmergy to build up all transitions. Stigmergy (stigma +
ergon) means ‘stimulation by work’. This mechanism has
the following steps [8]:

• At first ants are looking for food randomly, laying down
pheromone trails.

• If ants find food, they return to the nest, leaving be-
hind pheromone trails. So there is more pheromone on
the shorter path than on the longer one.

• Ants prefer to go in the direction of the strongest
pheromone smell. As a consequence, the concentra-
tion of pheromone is so strong on the shorter path,
that all the ants prefer this path.

Thus, stigmergy allows ants to transport food to their
nest in a remarkably effective way. Food localizations are
considered new states and ant roads to food places are re-
garded as transitions. Let Pant = {n} be an initial state of
ant transitions (i.e. the nest), Aant = {a1, a2, . . . , aj} be a
set of food pieces (attractants) localized at different places,
Vant = {r1, r2, . . . , ri} be a set of ant roads. So the ant
colony transition system, TSant = (Sant, Eant, Tant, Iant),
can be defined as follows:

• σ : Pant ∪Aant → Sant assigning a state to each origi-
nal point of the ant colony as well as to each attractant;

• τ : Vant → Tant assigning a transition to each ant road;

• ι : Pant → Iant assigning an initial state to the nest.

Each event of the set of events Eant is assigned to ant tran-
sitions in accordance with the following types of ant expan-
sion:

• direction (the ants move from one state / attractant /
initial point to another state / attractant),

• fusion (the ants move from different states / attrac-
tants to the same one state / attractant),

• splitting (the ants move from one state / attractant /
initial point to different states / attractants),

• repelling (the ants stop to move in one direction).

The system TSant can be used to solve the Travelling
Salesman Problem formulated as follows: given a list of cities
and the distances between each pair of cities, we must to
define the shortest possible route that visits each city exactly
once and returns to the origin city. This problem is NP-
hard. Let Pant be considered the origin city, Aant be a
set of all other cities, and Vant be a set of all connections
between cities. The Travelling Salesman Problem can be
solved, because the ants lay down pheromone trails faster on
the shortest path so that the shortest path gets reinforced
with more pheromone to attract more future ants. As a
result, pheromone trails on the edges between cities depend
on the distance: more shorter, more attracting. This allows
ants to find shorter tours of cities.

2.2 Bee Colony Transitions
A bee colony is another example of swarm intelligence [13].

The bee nest is an initial state of bee colony transitions. Any
bee colony exploits a mechanism called waggle dance to op-
timize the food transporting to the nest. This mechanism is
as follows. In the nest there is an area for communication
among bees. At this area the bees knowing, where the food
source is precisely, exchange the information about the di-
rection, distance, and amount of nectar on the related food
source by a waggle dance. The direction of waggle dancing
bees shows the direction of the food source in relation to the
Sun, the intensity of the waggles is associated to the dis-
tance, and the duration of the dance shows the amount of
nectar. Due to this form of communication the bee colony
transitions are built up by the following steps [12]:

• There are two kinds of bees: employed and unem-
ployed. Employed bees know exactly, where a partic-
ular food source (nectar) is, and visit just this source.
Unemployed bees do not know and seek a food source.
The unemployed bees are divided into the following
two groups: scouts and onlookers. A scout bee carries
out search for new food sources without any guidance.
An onlooker bee follows the instruction of a waggle
dancing bee and visits the food source for the first
time. An employed bee visits this source many times.
So, the first step in constructing the bee transporting
system is in sending scout bees.

• Then onlookers are sent.

• At the next step the food source is exploited by em-
ployed bees.

• An employed bee tests if the nectar amount of the new
food source is higher than that of the previous one. If it
is so, the bee memorizes the new place and forgets the
old one. If the nectar amount decreased or exhausted
and the employed bee dos not know a new place, this
bee become an unemployed bee. So, at this step the
employed bees exchange the nectar information of the
food sources to change their decision.

Assume that Pbee = {n} is an initial state of bee tran-
sitions (i.e. the bee nest), Abee = {a1, a2, . . . , aj} is a set
of food sources (attractants) localized at different places,

Vonlooker = {r1, r2, . . . , rk} is a set of onlooker bee roads,
and Vemployed = {r1, r2, . . . , rl} is a set of employed bee
roads. Then the bee colony transition system, TSbee =
(Sbee, Ebee, Tbee, Ibee), can be defined thus:

• σ : Pbee∪Abee → Sbee assigning a state to each original
point of the bee colony as well as to each attractant;

• τ : Vonlooker ∪ Vemployed → Tbee assigning a transition
to each bee road;

• ι : Pbee → Ibee assigning an initial state to the bee
nest.

In the set of events Ebee there are the following types of
labels for transitions:

• direction (the onlooker or employed bees move from
one state / attractant / initial point to another state
/ attractant),

• fusion (the onlooker or employed bees move from dif-
ferent states / attractants to the same one state / at-
tractant),

• splitting (the onlooker or employed bees move from one
state / attractant / initial point to different states /
attractants),

• repelling (the onlooker or employed bees stop to move
in one direction).

The system TSbee, if we use only Vemployed as a set of
roads, can solve the Travelling Salesman Problem, also. The-
reby, Pbee is examined as the origin city, Abee is a set of all
other cities, and Vemployed is a set of all connections between
cities. The point is that the greater the number of iterations
in sending onlooker or employed bees, the higher the influ-
ence of the distance in attracting the bees to appropriate
food sources. As a result, the shorter distance seems to be
more attracting for employed bees.

There is another NP-hard problem that can be solved by
TSbee, the so-called Generalized Assignment Problem for-
mulated as follows: there are a number of agents and a num-
ber of tasks, each agent has a budget and each task assumes
some cost and profit; we must find an assignment in which
all agents do not exceed their budget and total profit of the
assignment is maximized. In the case of the bee colony, the
bees are regarded as agents, the nectar sources as tasks, the
amount of nectar as profit, and the distance as cost. Hence,
in this interpretation the bee colony can solve the General-
ized Assignment Problem.

2.3 Paenibacillus vortex Transitions
Notice that there are bacteria with intelligent and suc-

cessful swarming strategies such as Paenibacillus vortex [4].
These strategies help Paenibacillus vortex bacteria to carry
out a cooperative colonization of new territories. When
Paenibacillus vortex is inoculated on hard agar surfaces with
peptone, it develops complex colonies of vortices. When it
is inoculated on soft agar surfaces, it organizes a special
network of swarms with intricate internal traffic. In con-
trast to Escherichia coli, the Paenibacillus vortex swarms
are sensitive to chemotaxis (attractants). As a consequence,
the Paenibacillus vortex network is built up on the basis
of interactions between swarms allowing them to transport
nutrients, spores and other organisms [11], [29].

Let Pone P.vortex = {n1, n2, . . . , nm} be a set of initial
states of Paenibacillus vortex transitions, Aone P.v. = {a1,
a2, . . . , aj} be a set of attractants (nutrient gradients),
Vone P.v. = {r1, r2, . . . , rk} be a set of paths for each Paeni-
bacillus vortex bacterium. Then the Paenibacillus vortex
transition system,

TSone P.v. = (Sone P.v., Eone P.v., Tone P.v., Ione P.v.),

is as follows:

• σ : Pone P.v. ∪ Aone P.v. → Sone P.v. assigning a state
to each original point of the Paenibacillus vortex pop-
ulation as well as to each attractant;

• τ : Vone P.v. → Tone P.v. assigning a transition to each
path of each Paenibacillus vortex bacterium;

• ι : Pone P.v. → Ione P.v. assigning initial states to initial
positions of Paenibacillus vortex bacteria.

The four types of labels for transitions in the set of events
Eone P.v.:

• direction: the Paenibacillus vortex bacterium moves
from one state / attractant / initial point to another
state/attractant presented by a nutrient gradient;

• tumbling : the Paenibacillus vortex bacterium can tum-
ble for a while;

• repelling : the Paenibacillus vortex bacterium stops to
move in one direction, as it avoids some chemical con-
centrations;

• repropuction: the health bacterium splits into two bac-
teria.

Paenibacillus vortex bacteria can be organized in swarms.
The locomotion in a swarm can be explained hydrodynam-
ically by collisions among the bacteria and by the bound-
ary of the layer of lubricant collectively generated by them.
However, interactions among swarms can be considered in-
telligent. Each swarm has a snake-like formation. It looks
for food and can cross each other’s trail. When food is de-
tected, swarms change their direction. The Paenibacillus
vortex swarms can split and fuse in accordance with topol-
ogy of nutrients.

So, for these swarms we can propose another transition
system

TSP.v. swarm = (SP.v. swarm, EP.v. swarm, TP.v. swarm,

IP.v. swarm),

where

• σ : PP.v. swarm ∪ AP.v. swarm → SP.v. swarm, where
PP.v. swarm = {n1, n2, . . . , nl} is a set of initial states of
Paenibacillus vortex swarm transitions andAP.v. swarm
= Aone P.v. is a set of attractants (nutrient gradients).
The function σ assigns a state to each original point
of the Paenibacillus vortex swarms as well as to each
attractant;

• τ : VP.v. swarm → TP.v. swarm, where VP.v. swarm =
{r1, r2, . . . , rk} is a set of paths for each Paenibacillus
vortex swarm. The function τ is to assign a transition
to each path of each Paenibacillus vortex swarm;

• ι : PP.v. swarm → IP.v. swarm is to assign initial states
to initial positions of Paenibacillus vortex swarms.

Each event of the set of events EP.v. swarm is assigned to
swarm motions according to the following types of maneu-
vers:

• direction: the Paenibacillus vortex swarm moves from
one state / attractant / initial point to another state
/ attractant,

• fusion: the Paenibacillus vortex swarms move from
different states / attractants / initial points to the
same one state/attractant,

• splitting : the Paenibacillus vortex swarm moves from
one state / attractant / initial point to different states
/ attractants (for the experimental details see [10]),

• repelling : the Paenibacillus vortex swarm stops to move
in one direction if it faces a repellent.

As we see, the Paenibacillus vortex transition system for
swarms can solve the Travelling Salesman Problem, too.

2.4 Conclusion: Towards Physarum machines
In the project Physarum Chip Project: Growing Com-

puters From Slime Mould [2] supported by FP7 we are go-
ing to design an unconventional computer on plasmodia of
Physarum polycephalum. Notice that Physarum polycephalum
is a one-cell organism whose plasmodia behave as a swarm
organizing a network for transporting sources and informa-
tion. In order to simulate Physarum polycephalum networks
we have proposed Physarumsoft [28], a software tool for pro-
gramming Physarum computing and simulating Physarum
expansions.

Taking into account the fact that any plasmodium can be
considered a typical intelligent swarm, we can use Physarum-
soft for demonstrating computational powers of different
swarms: ant colonies, bee colonies, and Paenibacillus vor-
tex swarms. Indeed, let

TSP.polycephalum = (SP.polycephalum, EP.polycephalum,

TP.polycephalum, IP.polycephalum)

be a transition system for plasmodia and this system is de-
fined standardly. Let f be a mapping from SP.polycephalum
to S? and from IP.polycephalum to I?, where ? ∈ {ant, bee,
P.v. swarm}. Assume that all transitions denoted by −→
are the same for all systems: TSP.polycephalum, TSant, TSbee,
TSP.v. swarm. For example, we have the same direction, fu-
sion, splitting, and repelling. The function f is a homomor-
phism if and only if

• for all s ∈ (SP.polycephalum ∪ IP.polycephalum), if s −→
s′, for some s′ ∈ SP.polycephalum, then f(s) −→ f(s′);

• for all s ∈ SP.polycephalum, if f(s) −→ t, for some t ∈
S?, then there exists s′ ∈ SP.polycephalum with s −→ s′

and f(s′) = t.

If f : SP.polycephalum ∪ IP.polycephalum → S? ∪ I? is a ho-
momorphism as well as f−1 : S? ∪ I? → SP.polycephalum ∪
IP.polycephalum is a homomorphism, then f is an isomor-
phism. So, for any TS?, where ? ∈ {ant, bee, P.v. swarm},

there is an isomorphism from SP.polycephalum to S? and from
IP.polycephalum to I?. This means that it is enough to study
the Physarum machine TSP.polycephalum to know compu-
tational properties of different swarms: ant colonies, bee
colonies, Paenibacillus vortex swarms, etc.

According to our previous study of TSP.polycephalum we
know that it is impossible to define Physarum transitions
as atomic acts [26], [25]. For instance, under the same
conditions, the plasmodium can follow splitting or direc-
tion, fusion or direction, etc. Nevertheless, with a low ac-
curacy we can implement some conventional algorithms in
TSP.polycephalum.

3. CONVENTIONAL ALGORITHMS ON
PHYSARUM MACHINES

It is known that, theoretically, Turing machines and Kol-
mogorov-Uspensky machines [17], [32] have the same ex-
pressibility power. In other words, the class of functions
computable by these machines is the same. For the first time
A. Adamatzky [1] experimentally showed that the Physarum
machine TSP.polycephalum can be represented as a kind of
Kolmogorov-Uspensky machines. Hence, we can implement
conventional algorithms in TSP.polycephalum.

Let us show that TSP.polycephalum can be considered a
Kolmogorov-Uspensky machine. Let Γ = SP.polycephalum ∪
IP.polycephalum be an alphabet, k = |EP.polycephalum| a nat-
ural number. We say that a tree is (Γ, k)-tree, if one of
nodes is designated and it is called root and all edges are
directed. Each node is labelled by one of signs of Γ and
each edge from the same node is labelled by different num-
bers {1, . . . , k} (so, each node has not more than k edges).
We see that by this definition of (Γ, k)-tree, the plasmod-
ium grows from the one active zone (so, we simulate the
expansion from the one nest of ants or bees, or from the one
inoculation of Paenibacillus vortex swarms), where all at-
tractants are labelled by signs of Γ and protoplasmic tubes
(roads of ants or roads of bees) are labelled by numbers of
{1, . . . , k}. Thus, TSP.polycephalum (as well as TSant, TSbee,
or TSP.vortex swarm) can be represented as a (Γ, k)-tree.

(Γ, k)-Physarum complex is any initial finite digraph which
is connected (i.e. each vertex is accessible from the initial
one by a directed path), each node is labelled by one of
signs of Γ, and each edge from the same node is labelled
by different numbers {1, . . . , k}. The set of all vertices of
(Γ, k)-Physarum complex U is denoted by v(U).

The r-neighborhood of (Γ, k)-complex is represented by a
(Γ, k)-complex which consists of edges and vertices of ini-
tial complex that are accessible from initial vertex by a di-
rected path that is not longer than r. Notice that r can
be arbitrary. Any property of (Γ, k)-complex which is de-
pendent just of r-neighborhood is called r-local property of
(Γ, k)-complex. Hence, we can ever project Physarum transi-
tions (using attractants and repellents) for inducing different
numbers r and appropriate local properties.

A program of Physarum Kolmogorov-Uspensky machine
is any r-local action transforming some (Γ, k)-complexes of
growing plasmodia into other (Γ, k)-complexes of growing
plasmodia:

U → 〈W,γ, δ〉,
where U,W are (Γ, k)-Physarum complexes, γ is a mapping
from v(U) to v(W), δ is an injection from v(U) into v(W).
The algorithm of transformation complexes S → S∗ is as

follows [17], [32]:

• r-Neighborhood of complex S is the same as of U .

• v(S′) = v(S\U) ∪ v(W).

• If b ∈ U , a ∈ S\U , there is 〈a, b〉 in S and γ(b) is
defined, then 〈a, γ(b)〉 is an edge in S′ with the same
number as 〈a, b〉.

• If a ∈ U , b ∈ S\U , there is 〈a, b〉 in S and δ(a) is
defined, then 〈δ(a), b〉 is an edge in S′ with the same
number as 〈a, b〉 (due to injectivity of δ we have differ-
ent numbers for different edges from the same vertex).

• The initial vertex of W is an initial vertex of S′ and we
delete in S′ all vertices (with appropriate edges) which
are not accessible from the initial one. In this way we
obtain S∗.

The simpler version of Kolmogorov-Uspensky machines is
represented by Schönhage’s storage modification machines
[23], [24].

Unfortunately, the computational complexity of imple-
mentations Kolmogorov-Uspensky machines on the Physarum
polycephalum medium is very high. The point is that not ev-
ery computable functions can be simulated by plasmodium
behaviors:

• first, the plasmodium has a free will and can make
different decisions under the same conditions;

• second, the plasmodium follows emergent patterns wh-
ich are fully eliminated in conventional automata such
as Kolmogorov-Uspensky machines, although these pat-
terns are natural for occupying many attractants.

Thus, swarm intelligence can be reduced to conventional
automata, but with very low accuracy.

4. UNCONVENTIONAL ALGORITHMS ON
PHYSARUM MACHINES

Let us take a set of edges, X = {0, 1, . . . , p − 1}, where
p− 1 = |EP.polycephalum|, from each node. The set of alpha-
bet Γ = SP.polycephalum∪IP.polycephalum is identified with at-
tractants. Hence, we have assumed that at each step of plas-
modium propagation there are not more than p−1 neighbor-
ing attractants which can be directly occupied. This means
that our universe is p-adic and the plasmodium transition
system can be coded by p-adic integer. Let us remember
that the set of p-adic integers is denoted by Zp and each
p-adic integer n ∈ Zp has the following meaning:

n =

∞∑
i=0

ai · pi,

where ai ∈ {0, 1, . . . , p− 1}, and the following notation:

n = . . . aiai−1 . . . a1a0.

For each transition s −→ s′, the state s′ ∈ Γ is called the
child of s ∈ Γ. For each two transitions s −→ s′ and s′ −→
s′′, the state s′′ ∈ Γ is called the grandchild of s ∈ Γ. Let
us consider just strings γ0γ1 . . . γk, where γ1 is a grandchild
for γ0, γ2 is a grandchild for γ1, . . . , γk is a grandchild
for γk−1. Let each string γ0γ1 . . . γk have a numeric value
[γ0γ1 . . . γk] ∈ Zp which is defined as follows:

• Let [γ0] denote an integer ≤ p−1 for the node γ0 ∈ X.
This integer is equal to the number of children for γ0.
If γ0 has no grandchildren, then its value is coded by
a p-adic integer . . . 0000[γ0], see figures 1, 2, 3.

• Let [γ0] and [γ1] denote some integers ≤ p− 1 for the
nodes γ0, γ1 ∈ X, where γ1 is a grandchild of γ0. The
integer [γ0] is equal to the number of children for γ0
and the integer [γ1] is equal to the number of neigh-
bours for γ1 occupied by the plasmodium. If γ1 has
no grandchildren, then the value of γ0γ1 is coded by a
p-adic integer . . . 0000[γ1][γ0].

• . . .

• Let [γ0], [γ1], . . . , [γk] denote some integers ≤ p−1 for
the nodes γ0, γ1, . . . , γk ∈ X, respectively, where γ1 is
a grandchild of γ0, γ2 is a grandchild of γ1, . . . , γk is
a grandchild of γk−1. The integer [γ0] is equal to the
number of children for γ0, the integer [γ1] is equal to
the number of neighbours for γ1 occupied by the plas-
modium, . . . , the integer [γk] is equal to the number of
neighbours for γk occupied by the plasmodium. If γk
has no grandchildren, then the value of γ0γ1 . . . γk is
coded by a p-adic integer . . . 0000[γk] . . . [γ1][γ0]. See
figure 4.

Evidently that according to this definition if in the string
γ0γ1 . . . γk each γi (0 ≤ i ≤ k) has no neighboring attrac-
tants occupied by the plasmodium, then [γ0γ1 . . . γk] = 0 ∈
Zp and if in the string γ0γ1 . . . γk each γi (0 ≤ i ≤ k)
has all neighboring attractants occupied by the plasmod-
ium, then [γ0γ1 . . . γk] =

∑k
i=0(p− 1) · pi ∈ Zp. The strings

[γ0γ1 . . . γk] 6= 0 are called non-empty.

Figure 1: At each step of plasmodium propagation,
there are only two attractants which can be occu-
pied. At the first time step the plasmodium expan-
sion is coded by the 3-adic integer . . . 000001.

Let us analyze the case when we have two strings γ0γ1 . . . γk
and γ0γ

′
1 . . . γ

′
m started from the same state γ0. Suppose

that γik (0 ≤ ik ≤ k) and γ′im (0 ≤ im ≤ m) have some
neighboring attractants occupied by the plasmodium. This
means that we face a splitting of the plasmodium at the
node γ0. Assume that there is not more splitting for nodes
from γ0γ1 . . . γk and γ0γ

′
1 . . . γ

′
m and only γ0γ1 . . . γk and

γ0γ
′
1 . . . γ

′
m are non-empty. Then the transition system is

coded by the set

{[γ0γ1 . . . γk], [γ0γ
′
1 . . . γ

′
m]}.

Another similar situation is observed when we have two
strings γ0γ1γ2 . . . γk and γ0γ1γ

′
2 . . . γ

′
m started from the same

state γ0 and with the splitting at the node γ1. If only
γ0γ1γ2 . . . γk and γ0γ1γ

′
2 . . . γ

′
m are non-empty, then the tran-

sition system is coded by the set

{[γ0γ1γ2 . . . γk], [γ0γ1γ
′
2 . . . γ

′
m]}.

Figure 2: At each step of plasmodium propagation,
there are only three attractants which can be occu-
pied. At the first time step the plasmodium expan-
sion is coded by the 4-adic integer . . . 000002.

Figure 3: At each step of plasmodium propagation,
there are not more than four attractants which can
be occupied. At the first time step the plasmodium
expansion is coded by the 5-adic integer . . . 000002.

Let Aγ0 be a set of all strings started from γ0 and this
set be coded by [Aγ0], a set of p-adic integers obtained for
each string from Aγ0 . Now we can define compositions of
two sets Aγ0 and Aγ′0 , where γ0 6= γ′0:

• If no strings from Aγ0 have joint nodes with some
strings from Aγ′0 , then we have Aγ0,γ′0 = Aγ0 ∪ Aγ′0
and this system is coded by [Aγ0] ∪ [Aγ′0].

• If some strings from Aγ0 have joint nodes with some
strings from Aγ′0 , then we have Aγ0,γ′0 = Aγ0 +Aγ′0 and
this set contains all strings started from γ0 and started
from γ′0. The system Aγ0,γ′0 is coded by [Aγ0,γ′0].

By induction, we can define sets Aγ0,γ′0,...,γ′′0 .
Notably, the plasmodium expansion is time dependent.

So we can consider sets Atγ0,γ′0,...,γ′′0
at t = 0, 1, . . . Let us

define logical operations over the same sets Atγ0,γ′0,...,γ′′0
with

different t:

Figure 4: At each step of plasmodium propaga-
tion, there are not more than four attractants which
can be occupied. At the time step t > 0 the plas-
modium expansion is coded by the 4-adic integer
. . . 00000232.

conjunction At=kγ0,γ
′
0,...,γ

′′
0
∧At=lγ0,γ

′
0,...,γ

′′
0
: Notice that strings

from At=kγ0,γ
′
0,...,γ

′′
0

and At=lγ0,γ
′
0,...,γ

′′
0

, where k 6= l, are the

same, but they can be coded by different p-adic inte-
gers at t = k and t = l. Let us consider each string
γ0γ1γ2 . . . γm. Let [γ0γ1γ2 . . . γm]k be a p-adic numeri-
cal value of γ0γ1γ2 . . . γm at t = k and [γ0γ1γ2 . . . γm]l
be a p-adic numerical value of γ0γ1γ2 . . . γm at t = l.
Then we define min([γ0γ1γ2 . . . γm]k, [γ0γ1γ2 . . . γm]l)
digit by digit. The set At=kγ0,γ

′
0,...,γ

′′
0
∧ At=lγ0,γ

′
0,...,γ

′′
0

con-

tains such minimum for each string.

disjunction At=kγ0,γ
′
0,...,γ

′′
0
∨At=lγ0,γ

′
0,...,γ

′′
0
: Let us consider each

string γ0γ1γ2 . . . γm. Let [γ0γ1γ2 . . . γm]k be a p-adic
numerical value of γ0γ1γ2 . . . γm at t = k and [γ0γ1γ2
. . . γm]l be a p-adic numerical value of γ0γ1γ2 . . . γm
at t = l. Then we define max([γ0γ1γ2 . . . γm]k, [γ0γ1γ2
. . . γm]l) digit by digit. The setAt=kγ0,γ

′
0,...,γ

′′
0
∨At=lγ0,γ

′
0,...,γ

′′
0

contains such maximum for each string.

negation ¬At=kγ0,γ
′
0,...,γ

′′
0
: Let us define the universe Ωγ0,γ′0,...,γ′′0

as a set of all possible strings started from the nodes
γ0, γ′0, . . . , γ′′0 . A numerical value of each string
γ0γ1 . . . γm from Ωγ0,γ′0,...,γ′′0 is maximal: [γ0γ1 . . . γm]

=
∑m
i=0(p−1) ·pi. Then ¬At=kγ0,γ

′
0,...,γ

′′
0

= Ωγ0,γ′0,...,γ′′0 ∩
At=kγ0,γ

′
0,...,γ

′′
0

and it is coded by a set of p-adic inte-

gers
∑m
i=0(p− 1) · pi − [γ0γ1γ2 . . . γm]k for each string

γ0γ1γ2 . . . γm ∈ ¬At=kγ0,γ
′
0,...,γ

′′
0

.

By using this logic we can define an expansion strategy of
the plasmodium on γ0γ1γ2 . . . γm in the universeAγ0,γ′0,...,γ′′0 :

P (γ0γ1γ2 . . . γm ∈ Aγ0,γ′0,...,γ′′0) =
∧k=m
k=0

∑∞
t=0(max([γk]t,

[γk]t+1)) · pi.

P (Aγ0,γ′0,...,γ′′0) = {P (γ0γ1γ2 . . . γm) :

γ0γ1γ2 . . . γm ∈ Aγ0,γ′0,...,γ′′0 }.

5. CONCLUSIONS
In any intelligent swarm behaviour there are emergent

patterns that cannot be reduced to linear combinations of
subsystems properly. Therefore conventional algorithms such
as Kolmogorov-Uspensky machines have very low accuracy
of their implementations on swarm systems (Section 3). Nev-
ertheless, we can define a p-adic valued logic that can de-
scribe a massive-parallel behavior of swarms (Section 4).

Acknowledgment
This research is supported by FP7-ICT-2011-8.

6. REFERENCES
[1] A. Adamatzky, Physarum machine: implementation of

a Kolmogorov-Uspensky machine on a biological
substrate. Parallel Processing Letters, 17:455–467,
2007.

[2] A. Adamatzky, V. Erokhin, M. Grube, Th. Schubert,
A. Schumann, Physarum Chip Project: Growing
Computers From Slime Mould. International Journal
of Unconventional Computing, 8(4):319–323, 2012.

[3] A. Adamatzky. Physarum Machines: Computers from
Slime Mould. World Scientific Series on Nonlinear
Science, Series A, 2010.

[4] G. Ariel, A. Shklarsh, O. Kalisman, C. Ingham, and
E. Ben-Jacob. From organized internal traffic to
collective navigation of bacterial swarms. New Journal
of Physics, 15:125019 2013.

[5] E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm
Intelligence: From Natural to Artificial Systems.
Oxford University Press, Inc., New York, NY, USA,
1999.

[6] E. Cuevas, M. Cienfuegos, D. Zaldivar, M.
Perez-Cisneros. A swarm optimization algorithm
inspired in the behavior of the social-spider. Expert
Systems with Applications, 40(16):6374–6384, 2013.

[7] N. C. Darnton, L. Turner, S. Rojevsky, and H. C.
Berg. Dynamics of bacterial swarming. Biophysics
Journal, 98:2082–2090, 2010.

[8] M. Dorigo, T. Stutzle. Ant Colony Optimization. MIT
Press, 2004.

[9] D. Gordon. The Organization of Work in Social Insect
Colonies. Complexity, 8(1):43–46, 2003.

[10] C. J. Ingham, E. Ben-Jacob. Swarming and complex
pattern formation in Paenibacillus vortex studied by
imaging and tracking cells. BMC Microbiology, 8(36),
2008.

[11] C. J. Ingham, O. Kalisman, A. Finkelshtein, E. and
Ben-Jacob. Mutually facilitated dispersal between the
nonmotile fungus Aspergillus fumigatus and the
swarming bacterium Paeni bacillus vortex. Proceedings
of the National Academy of Sciences of the United
States of America, 108(49):19731–19736, 2011.

[12] D. Karaboga. An Idea Based on Honey Bee Swarm for
Numerical Optimization. Technical Report-TR06.
Engineering Faculty, Computer Engineering
Department, Erciyes University, 2005.

[13] D. Karaboga, B. Akay, A comparative study of
Artificial Bee Colony algorithm. Applied Mathematics
and Computation, 214(1):108–132, 1 August 2009.

[14] I. Kassabalidis, M.A. El-Sharkawi, R.J. II Marks, P.
Arabshahi, A.A. Gray. Swarm intelligence for routing
in communication networks, In Global
Telecommunications Conference, GLOBECOM’01, 6,
pages 3613–3617, IEEE, 2001.

[15] J. Kennedy, R. Eberhart. Swarm intelligence. Morgan
Kaufmann Publishers, Inc., San Francisco, CA., 2001.

[16] J. Kennedy and R. Eberhart. Particle swarm
optimization. In Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4,
pages 1942–1948, December 1995.

[17] A. N. Kolmogorov. On the concept of algorithm.
Uspekhi Matematicheskich Nauk, 8(4):175–176, 1953.

[18] C. Lee, Emergence and Universal Computation.
Metroeconomica, 55(2&3):219–238, 2004.

[19] K. M. Passino. Biomimicry of bacterial foraging for
distributed optimization and control. Control Systems,
22(3):52–67, IEEE, 2002.

[20] R. Rajabioun. Cuckoo Optimization Algorithm.
Applied Soft Computing, 11:5508–5518, 2011.

[21] C. W. Reynolds. Flocks, herds, and schools: A
distributed behavioral model. Computer Graphics,
21:25–34, 1987.

[22] R. G. Reynolds. An introduction to cultural
algorithms. In Proceedings of the Third Annual
Conference on Evolutionary Programming, pages
131–139, 1994.

[23] A. Schönhage, Real-time simulation of
multi-dimensional Turing machines by storage
modification machines. Project MAC Technical
Memorandum 37, MIT, 1973.

[24] A. Schönhage. Storage modification machines. SIAM
Journal of Computation, 9:490–508, 1980.

[25] A. Schumann. Towards context-based concurrent
formal theories. Parallel Processing Letters,
25:1540008, 2015.

[26] A. Schumann, A. Adamatzky. The double-slit
experiment with Physarum polycephalum and p-adic
valued probabilities and fuzziness. International
Journal of General Systems, 44(3):392–408, 2015.

[27] A. Schumann and A. Adamatzky. Physarum Spatial
Logic. New Mathematics and Natural Computation,
7(3):483–498, 2011.

[28] A. Schumann, K. Pancerz. Towards an
Object-Oriented Programming Language for
Physarum Polycephalum computing: A Petri Net
Model Approach. Fundamenta Informaticae,
133(2-3):271–285, 2014.

[29] A. Shklarsh, A. Finkelshtein, G. Ariel, O. Kalisman,
C. Ingham, and E. Ben-Jacob. Collective navigation of
cargo-carrying swarms. Interface Focus. 2:689–692,
2012.

[30] R. E. Tarjan, Reference machines require non-linear
time to maintain disjoint sets. STAN-CS-77-603,
March 1977.

[31] L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg.
Visualization of flagella during bacterial swarming.
Journal of Bacteriology, 192:3259–3267, 2010.

[32] V. U. Uspensky, Kolmogorov and mathematical logic.
Journal of Symbolic Logic, 57:385–412, 1992.

[33] Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, Q. Tian.

Self-adaptive learning based particle swarm
optimization. Information Sciences,
181(20):4515–4538, 2011.

[34] S. Wolfram. Universality and complexity in cellular
automata. Physica D, 10:1–35, 1984.

