Tough Behavior in the Repeated Bargaining Game.
A Computer Simulation Study.
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ABSTRACT

Bargaining behavior occupies an important part in economics
literature, or social sciences in general. Although there is an
extensive simulation literature on social tradeoff in the Pris-
oner’s Dilemma and the one-shot bargaining game, little has
been done for the repeated bargaining game. Part of reason
for this neglect is that, despite having a continuum of Nash
equilibria, under homogeneous settings, the one shot bar-
gaining game consistently gives a stable equilibrium of fair-
ness (50-50 division), robust to many kind of tough pertur-
bations. However, it’s true that social interaction doesn’t al-
ways yield unconditional egalitarianism. Hence we simulate
a population of homogeneous agents playing the repeated
bargaining game to test the stability of the 50-50 norm un-
der evolutionary force. It turns out that when it comes to
repeated interaction, the fair norm no longer stands strong.
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1. INTRODUCTION

In economics, bargaining behavior can be the salary negoti-
ation between the worker union and the managerial board.
Or it can be about setting a price to divide the distance be-
tween willingness to pay and willingness to sell of a buyer
and a seller. The simplest abstract version is in the analogy
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of dividing a pie. Though simple, it is able to represent a
vast range of actions from daily bargaining in the market
between individuals to claiming natural resources among
conventional nations. By studying this game, we hope to
contribute useful discussion on the question why the pie is
divided differently in different societies.

1.1 The game

NDG | High Medium Low
High 0,0 0,0 8,2
Medium | 0,0 5,5 5,2
Low 2,8 2,5 2,2

Table 1: Nash Demand Game payoff matrix

We consider a specific version of the bargaining game called
Nash Demand game (NDG) in which two players divide a
fixed pie of size 10 (Table 1). Each can claim a {High,
Medium, Low} fraction of the pie which is equivalent to
{8,5,2} out of 10. The hypothesis is that though the re-
peated interaction helps stabilise the cooperative behavior,
it destabilises the fair behavior. In the Prisoner’s Dilemma
(PD), as much as everyone prefers the optimal cooperative
outcome, the selfish logic pushes us all in the opposite di-
rection. However, if we play repeatedly, cooperation can
emerge and the society can prosper. In a broader sense, re-
garding reputation building and social image, the one-shot
interaction among homogeneous players are equivalent to
anonymous matching. Without reputation to signal and
gain trust, everybody defects everybody. It’s the possibility
of tomorrow that makes cooperation partly be in the inter-
est of both players. Hence we’d like to address the similar
question: Is 50-50 division still a stable norm when agents
interact repeatedly?

1.2 Evolutionary Game Theory

The difference between classical and evolutionary game the-
ory (EGT) [8] lies in the rationality assumption of the player.
In the classical paradigm, players are capable of doing com-
plex optimization and infinite recursive thinking of common
knowledge. This is criticised for not fitting with human be-
havior in reality. Until now the narrative has substantially
shifted from these ideal players to less demanding subjects.
As behavioral and experimental economists are incorporat-
ing psychological factors and neuro-economists are scanning
brains to crack open the black box of the decision maker,



theorists bring evolution into game theory to explain how
people can reach the so-called hyper-rational solution. De-
scriptively, the evolutionary process (or “generalised Dar-
winism” [8]) is an iteratively updating loop that manifests
beyond its origin field of biology. This process consists of
two mechanisms: selection and mutation. The selection part
(that measures on some particular dimension, such as pay-
off) will narrow down the set of fittest survivors and the
mutation part is to keep feeding variety into the selection
pool. Hence the equivalent to equilibrium concept here is
the “robust rest point of the dynamics” [13].

Evolutionarily Stable Strategy The central concept in
EGT is an evolutionarily stable strategy (ESS), proposed
by Maynard Smith [8]. This concept is used to describe the
persistence of one strategy against another, illuminating in
a population context. The scenario is as following: there
is one population hosting exclusively strategy A. A can be
pure or mixed. When there is € mutation B appearing in
the population, A is said to be evolutionarily stable against
B if A can repel B. Otherwise B invades A. Or they can be
neutrally stable and coexist at any possible ratios.

Replicator Dynamics and Adaptive Learning What
Maynard Smith provides is a static pairwise test of 2 strate-
gies. Economics theory then develops a sharp mathematical
tool to illuminate its underlying dynamics. Our simulation
tries to approximate the replicator dynamics (RD) with rein-
forcement learning by fixed aspiration, as in Vega-Redondo
[13], chapter 11. Intuitively speaking, in the RD, the repli-
cator is the strategy and the dynamics of the replicators is
a vector field representing the evolution of the population
over time. The underlying learning mechanism of the dy-
namics is reinforcement learning. After we have the payoff
vector of the whole population, the agents having the chance
to learn will change their strategy according to this payoff
vector. Better strategies have better chance to proliferate
over time at the expense of the poor doers. Technically,
the growth rate of one strategy is the difference between its
average payoff and the population average payoff.

2. SIMULATION SETTINGS
The PD has been extensively studied in both theoretical
[4] [6] [7] [10] and simulation literature [1] [9] [12], also the
bargaining game and social norm [2] [3] [11] [14]. In the
following we consider the repeated NDG.

2.1 Strategy in the Repeated NDG

In a one-shot game, there are only 3 possible strategies
{High, Medium, Low}. In a repeated game, the number
of strategies grows exponentially with the number of rounds
per match. We model these strategies similar to the rule-
based strategies in the iterated PD [10], in which the agent
conditions its next behavior on the outcome of the previous
round. Because the 3x3 NDG has 9 possible outcomes, a
strategy will have 9 rules to specify the next move based
on these 9 outcomes, plus 1 rule prescribing the first move.
These rules are deterministic because it prescribes claims
with probability 1. Hence there are 3'° strategies in the
entire set of deterministic strategies. Figure 1 shows the
representation in finite state machine of a strategy that pre-
scribes the agent to start by playing Medium then to play
best response to whatever the previous move of the oppo-

nent. In Figure 2, there are 3 basic unconditional strategies
that always claim High, Medium and Low no matter what.

Figure 1: An accommodating strategy, starting to
play Medium, then playing best response to the pre-
vious move of the opponent
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Figure 2: Unconditional strategies

2.2 Simulation Cycle
Round | Accommodator All Highs | Ac AH

1 M H 0 0
2 L H 2 8
3 L H 2 8

Table 2: Accommodator meets All Highs

A typical simulation cycle has 3 phases. Initially, each agent
adopts randomly a deterministic strategy. In the matching
phase, they are randomly pair-matched to play the NDG
for a number of rounds. Then we take the mean of the
resulted payoff sequences to calculate the relative fitnesses.
Table 2 shows the move sequences and the payoff sequences
when Accommodator meets All Highs. The learning phase
starts after we have the fitness vector of the whole popu-
lation. A fraction of the population will be allowed to ob-
serve the population and choose to change their strategy.
They use a weighted lottery that gives all available strate-
gies a chance (relative to their fitness) to be chosen. In the
mutation/mistake phase, new strategies are added into the
population. A fraction of the population will be allowed to
mutate from their current strategy.

3. RESULT: THE ONE SHOT GAME

In Figure 3, we have Ox being pr, (the fraction of population
playing Low), Oy being pas (the fraction of the population
playing Medium). The graph a shows 3 regions of population
states in which it’s best to play Low, Medium and High.
Figure 3b shows the theoretical RD of the one-shot NDG.
There are 3 rest points of the dynamics that are interesting
(marked in Figure 3a). Point 3 corresponds to the state of
population in which all agents play Medium. Point 1 and
2 are mixed rest points. However, we can see that point
2 has zero basin of attraction. The basin of attraction of
point 1 is small, it takes some mistakes and the population
will fall into the trajectory of another state. In contrast,
the basin of attraction of the Medium equilibrium is very



Figure 3: a, Regions of best responses for each pop-
ulation state. b, RD of the one shot NDG, with
respect to pL. and pM. c, The simulated RD approx-
imating the prediction in b.

large and nearly impossible to escape by mistaking. So the
stable equilibrium is the 50-50 division (point 3). Figure 5¢
is the evolution of population state that we simulate, quite
approximating the theoretical prediction.

4. RESULT: THE REPEATED GAME

Figure 4 is 20 typical runs of simulation, with different learn-
ing rate and rounds per match. We plot the population mean
over cycles. Note that 1 round per match is the one shot
game hence the bottom 4 plots are simulations of the one-
shot game. We can see that the theoretical prediction of the
one-shot game in which fairness preserves is replicated here.
The surprising result is in the repeated game simulations.
In general, when the rounds per match increase (along the
vertical direction), there are periods that the population’s
payoff is slightly but significantly less than 5. Second, there
are periods that the population mean goes down below 2.5.
When the speed of learning increases (fixed amount of mu-
tation) along the horizontal direction, the down periods are
more likely to span bigger. We investigate the demographic
of the population in those periods as follows.
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Figure 4: Population mean over cycles, different
learning rate and rounds per match. The bottom 4
are of the one-shot game, others are of the repeated.

4.1 Less Appealing Fairness
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Figure 5: Periods hosting tough fair players

When the population mean is slightly less than 5, the pop-
ulation is full of tough strategies that only revert to playing
5 after the first round being aggressive. The demographic
of one such period in Figure 5 is shown in Figure 6. The
strategy in Figure 6a takes up 23% of the population. It
immediately claims High in the first round and switches to
claim Medium in the second round, independent from what
the opponent does. From that second state, this strategy is
a moderate accommodator. The second strategy (Figure 6b)
takes up 10%. It starts by playing High also. If the opponent
is also tough in the first round, it retreats to playing Medium
and tries to stay in that state. Medium state is an absorbing
state in this machine hence it is a Fair strategy. The third
and fourth strategies (both 9% and not shown here) start
with a tough claim then revert to a medium claim.
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Figure 6: Top two strategies: 23% & 10%

Overall, the four dominant types in this population state all
start off the game by playing tough but for the first round
only. After that they behave fairly good. Some retreat im-
mediately regardless of the opponent move but some keeps
exploiting if the opponent keeps compromising. In this state,
because no strategies start by playing Low, all of them re-
treat right in the second round. Hence a typical payoff se-
quence in this period is: 05555 5... We can see that though
fairness stands, it is costly because of delayed negotiation.
Agents only reach the efficient (and nice) agreement from
the second round onward.

4.2 True Inequality and Inefficient Matching
4.2.1 A Mixture of Tough and Weak Strategies
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Figure 7: Periods with population mean very low

There are other periods that host very unequal mixture of
strategies. These periods can be recognised by very low
population mean (Figure 7). Examining one cycle of low
average payoff in Figure 7, we describe the population state
as follows. The top two strategies (34%) are essentially All
Highs. They start playing High and never leave that state
no matter what. Also the third one. The fourth strategy
is similar to an accommodator. It starts playing Medium
and keeps being fair if the opponent does so. But it can
switch to Low and High and from then. The fifth machine
is a weak accommodator. Because this population state is
indeed full of aggressive strategies that insist on getting 8
no matter what, the last two strategies retreat to play Low
eventually. The low population mean is due to inefficient
matching among the tough ones (both get 0) and among
the weak ones (both get 2).



4.2.2 Alternators
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Figure 8: 1 run of speed 20, rounds per match 200

Figure 8 shows another example of periods having very low
population mean but with different population demographic.
At cycle 65000 of Figure 9, there are 3 most popular ma-
chines. The first two machines (73%) start claiming High
and move back and forth between High and Medium alto-
gether. They both get the same payoff sequence which is an
alternating sequence of 0 and 5 (hence the average is 2.5).

Remark As these two kinds of states is too inefficient,
sooner or later the population will make it way out. How-
ever, these "bad” periods significantly exist along the evolu-
tion of the population.

4.3 Sufficiently Patient Agents

Up until now, we’ve always taken the mean of the payoff
sequence to calculate the fitness. This is equivalent to the
assumption that agents are infinitely patient. The payoff
at round 10 is just equally important as that at round 1.
To relax this, we run simulations with different discounting
factor ¢ in calculating the payoff sequence. If § is small, the
agent is very impatient and wants the benefit to come as
soon as possible. At § = 0, it’s such as they are playing the
one shot game. A patient agent, on the other hand, can bear
the cost of initial rounds and prefers the sequence (0008 8 8
..) to the sequence (555555 ..). Hence, we speculate that
impatient agents will gets to the 50-50 division quite fast
and patient agents will make the negotiation result messier.

Figure 9: § = {0,0.1,0.2,0.8,0.9,1}

Indeed, the simulations (Figure 9) show that with ¢ suffi-
ciently small, the 50-50 equilibrium is very stable. However,
when ¢ tends to 1, the "bad” periods appears consistently
over simulations. Hence we note that if agents are suffi-
ciently patient, the negotiation tends to go bad easier than
in the case of myopic agents.

S. CONCLUSION

As stated at the beginning, our motivation is on how re-
peated interaction affects two behaviors: cooperative and
bargaining. We speculate that, lengthening the interaction
horizon is good for fostering cooperation but it may do harm
to the case of resolving conflicts. Specifically in the PD,
classical game theory (CGT) can sustain any outcomes that
are better than the always-defecting because the agreement
will be well kept under a credible punishment threat. Rep-
etition doesn’t just secure these new better points as Nash

equilibria, it makes them subgame perfect equilibria [6]. The
evolutionary literature agrees that cooperation can emerge
with repeated interaction but proposes that the population
goes through a cycle of cooperating and defecting because
no punishment is good enough to keep cooperation in place
[4] [7]. In the bargaining game, CGT with rational players
says that negotiation ends in the first round with efficient
outcomes [11]. EGT also shows that the fair division is the
more stable outcome in the one shot negotiation [3]. As
our simulation adds, once the game is repeated, it takes
costly mechanisms to sustain fairness. At worst, there is the
dominance of tough strategies that stubbornly don’t retreat
because there are weak strategies accommodating them. In-
terpreting in term of patience, the zero-patient agent only
cares about today hence the nice division is very stable in
such society. As 0 increases, there is a threshold that once
the agents become sufficiently patient, the society will go
through periods of delayed negotiation and inefficient bar-
gaining. Note that overall, these down periods significantly
drive down the population mean, but not much. The popu-
lation spends a lot of time in the 50-50 norm.

6. REFERENCES

[1] Axelrod R.:The evolution of cooperation: Revised
edition. New York: Basic Books (2006)

[2] Binmore K., Samuelson L., Young P.: Equilibrium
Selection in bargaining models. Games and Economic
Behavior, 45, 296-328 (2003)

[3] Binmore K., Piccione M., Samuelson L.: Evolutionary
Stability in Alternating-Offers Bargaining Games.
Journal of Economic Theory, 80, 257-291 (1998)

[4] Boyd R., Lorberbaum J. P.: No pure strategy is
evolutionarily stable in the repeated Prisoner’s Dilemma
game. Nature, 327, 58-59 (1987)

[5] Hilbe C., Nowak M. A., Sigmund K.: Evolution of
extortion in Iterated Prisoner’s Dilemma games. PNAS,
110, 6913-6918 (2013)

[6] Kreps D. M.: A course in microeconomic theory.
Princeton University Press (1990)

[7] Lorberbaum J.: No strategy is evolutionarily stable in
the repeated Prisoner’s Dilemma. J. theor. Biol. 168,
117-130 (1994)

[8] Maynard Smith, J.: Evolution and Theory of Games.
Cambridge University Press. (1982)

[9] Nowak M., Sigmund K.: A strategy of win-stay,
lose-shift that outperforms tit-for-tat in the Prisoner’s
Dilemma game. Nature, 364, 56-58 (1993)

[10] Press W. H., Dyson F. J.: Iterated Prisoner’s
Dilemma contains strategies that dominate any
evolutionary opponent. PNAS, 109, 10409-10413 (2012)

[11] Rubinstein A.: Perfect equilibrium in a bargaining
model. Econometrica, 50, 97-109 (1982)

[12] van Veelen M., Garcia J., Rand D. G., Nowak M. A.:
Direct reciprocity in structured populations. Proceedings
of the National Academy of Sciences, 109, 9929-9934
(2012)

[13] Vega-Redondo, F.: Economics and Theory of Games.
Cambridge University Press (2003)

[14] Young P.: Individual Strategy and Social Structure.
Princeton University Press (1998)



