
Evolving and Controlling Perimeter, Rendezvous, and
Foraging Behaviors in a Computation-Free Robot Swarm

Matthew Johnson
Air Force Research Laboratory

26 Electronic Parkway
Rome, NY 13441

matthew.johnson.151@us.af.mil

Daniel S. Brown
Air Force Research Laboratory

26 Electronic Parkway
Rome, NY 13441

daniel.brown.81@us.af.mil

ABSTRACT
Designing and controlling the collective behavior of a swarm
often requires complex range, bearing sensors, and peer-
to-peer communication strategies. Recent work studying
swarm of robots that have no computational power has shown
that complex behaviors such as aggregation and object clus-
tering can be produced from extremely simple control poli-
cies and sensing capability. We extend previous work on
computation-free swarm behaviors and show that it is pos-
sible to evolve simple control policies to form a perimeter
around a target, rendezvous to a specific location, and per-
form foraging. We also demonstrate that simple manipula-
tions of the environment can be used to control, these collec-
tive behaviors. The robustness and expressiveness of these
behaviors, combined with the simple requirements for con-
trol and sensing, demonstrate the feasibility of implement-
ing swarm behaviors at small scales or in extreme environ-
ments.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems, coherence and coordination;
I.2.9 [Artificial Intelligence]: Robotics—intelligent vehi-
cles; I.2.6 [Artificial Intelligence]: Learning—parameter
learning

Keywords
swarm robotics, evolutionary algorithms, computation-free
robot, controlling collective behaviors

1. INTRODUCTION
Flocks of birds, schools of fish, and colonies of ants, bees,

and termites exhibit a remarkable robustness and resilience,
despite the limited capabilities of each individual. Recently
research into bio-inspired swarm robotics has been gaining
popularity due to the low-cost, robust, redundant, and dis-
tributed nature of swarms [3]. Potential applications for

.

robot swarms include search and rescue, construction, and
chemical spill clean-up, as well as nano-medical applica-
tions such as finding tumors [11]. Many of these applica-
tions would benefit from simple, cheap, disposable swarms
of robots that can accomplish these tasks quickly and with-
out much human supervision.

There has been much recent work on different swarming
algorithms and technologies; however, many still require lo-
calization, mapping, complex coordination algorithms, and
precise identification of neighboring robots’ orientations and
relative positions. This often results in swarm behaviors
that are interesting but extremely difficult to implement
on actual robotic platforms. For swarm applications in the
nano-medical field, developing collective behaviors that use
extremely simple controllers and sensors is especially impor-
tant if these behaviors have an hope of being implemented
on nano-robots [12].

Recently, Gauci et al. have shown that swarms of robots
with minimal computational power and memory can still
collectively solve canonical multi-robot problems such as ag-
gregation [7], and simple object clustering [6]. Researching
the capabilities of simple swarms is important for several
reasons: (1) simple robots are cheaper and more disposable,
(2) simple control algorithms are easier to transition from
simulation to actual robots [7, 9], and (3) even teams of com-
plex robots may need a “Plan B” consisting of simple robust
algorithms that require only the most basic capabilities in
case of malfunctions and failure.

This paper extends the work of Gauci et al. by investigat-
ing what behaviors swarms of computation-free robots can
achieve in an environment with a small number of targets.
We utilize the evolutionary model proposed in [7] to learn
simple robot controllers that lead to global behaviors that
include: forming a perimeter around a target, rendezvousing
with a target, and foraging. Additionally we show that sim-
ple manipulations of the environment can be used to control
these behaviors.

2. RELATED WORK
Trianni et al. evolved a neural network based controller

that performs aggregation using swarms of s-bots [14]. How-
ever, each s-bot uses eight infrared proximity sensors, three
microphones, three sensors for detecting connections on the
body and a gripper sensor. Baldassarre et al. evolved a
controller that aggregates a group of robots and then moves
them towards a light source [1]. Their controller utilizes a
neural network that takes in eight infrared proximity sensors
readings, four directional light source sensors readings, and

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262390



four directional sound sensors readings as control inputs.
Gauci et al. introduced the concept of robots that can’t
compute [5]. They showed that a simple reactive controller
could be used to allow a swarm of computation-free robots
with a single line-of-sight sensor to perform aggregation [7]
and clustering [6].

Other work has looked at controlling collective behaviors.
Examples include controlling collective transport using a
simple signals [13, 2], using termite-inspired stigmergic con-
trol to build complex structures [15], and controlling a small
subset of a swarm to cause global switches between stable
collective motion patterns [4]. However, none of this work
considers the extreme conditions of a single line-of-sight sen-
sor and zero computation.

3. PROBLEM FORMULATION
This paper investigates what collective behaviors are pos-

sible given a swarm of extremely simple robots operating
in a simple environment. For our experiments we consider
a circularly bounded 2D environment that is homogeneous
and contains no obstacles. Throughout this space n circular
robots are randomly distributed and randomly rotated such
that each robot faces a random direction. Robots learn to
interact with immovable targets, movable objects, and other
robots to achieve global behaviors. All entities (robots, tar-
gets, and objects) are rigid such that no two entities can
occupy the space at the same time.

We define simple robots as agents that are memoryless,
cannot perform computations and have limited input/output
capabilities. Specifically we look at robots that are only
equipped with a line of sight sensor and two wheels for dif-
ferential drive. The line of sight sensor can only detect the
presence or absence of objects and outputs a trinary value
where s = 2 corresponds to a target or object in line of
sight, s = 1 corresponds to a robot in line of sight, and
s = 0 corresponds to nothing in line of sight.

Simple robots are reactive in nature because they cannot
remember past input or actions. As a result simple robot
controllers can be to a sequential series of if-statements that
assign left and right wheel velocities based on current sensor
readings. This controller can be represented as a set of six
wheel velocities

V = [vl0, vr0, vl1, vr1, vl2, vr2]

where vl0/vr0 are the velocities of the left/right wheel when
there is no robot in the sensors current line of sight, vl1/vr1
are the respective velocities when a robot is within the line of
sight of the sensor and vl2/vr2 are the respective velocities
when a target or object is within the line of sight of the
sensor. Velocities are normalized such that v = [−1, 1] where
1 corresponds to a wheel spinning forward at full speed and
-1 corresponds to a wheel spinning backwards at full speed.

4. BEHAVIORS
This section explores several global behaviors learned us-

ing evolutionary optimization techniques. We discover global
behaviors by optimizing a universal robotic controller ac-
cording to a behavior dependent fitness function. Each po-
tential robot controller is evaluated by running a swarm sim-
ulation and calculating the fitness function at every time

Figure 1: Robot representation and corresponding
controller.

step to generate a fitness score, which is given by

U (V ) =

T−1∑
t=0

tu(t)

where T is the number of time steps in the simulation and
u(t) is the fitness function. Multiplying the fitness function
by the time step rewards controllers that achieve desired
behavior quickly. The robot controllers are optimized using
the average fitness score over multiple simulations to reduce
the effect of noise.

All simulations are run on the Enki 2.0 robot simulator,
which is able simulate hundreds of robots in a 2D environ-
ment in faster than real time [10]. For our experiments the
simulation physics are updated 100 times per second and the
robot controller is updated 10 times per second. Robots are
simulated using Enki’s e-puck model which have a diameter
of 7.4 cm, inter-wheel distance of 5.1 cm, and weight of 152
g. Targets and objects are simulated as cylinders with a di-
ameter of 10 cm using Enki’s physical object model. Objects
have a mass of 35g and a coefficient of friction of 0.58. Tar-
gets have a sufficiently large mass and coefficient of friction
to ensure that are immobile.

Robot controllers are optimized using the Covariance Ma-
trix Adaption Evolution Strategy (CMA-ES) [8]. This ge-
netic optimization technique uses the variance of each gene
to generate mutations between generation. Earlier work by
Gauci et al. has shown that CMA-ES can effectively op-
timize simple robotic controllers [6]. CMA-ES optimizes
across all real numbers, which can result in genes out of
normalized range. To avoid this we constrain genes by ap-
plying the following sigmoid function

v =
1− e−x

1 + e−x

where x is a gene optimized by CMA-ES. For our experi-
ments we utilized the following CMA-ES parameters: pop-
ulation size of 13, initial step size, σ(0) = 0.72, and starting
controller of V = [0, 0, 0, 0, 0, 0].

4.1 Aggregating to a Target
We first investigate what is possible when a single station-

ary target is placed in the environment. In this behavior
robots are initially distributed randomly throughout an en-
vironment and over time form a group around a randomly
positioned target. Our fitness function rewards global be-
haviors that minimize the total distance between each robot
and the target. Let pi (t) represent the position of robot i at
time step t and ptarget represent the position of the target.



(a) (b) (c)

(d) (e) (f)

Figure 2: Snapshots of perimeter formation around
a dynamic target at several time instances.

Then the rendezvous fitness function is given by

urendezvous(t) = −
n−1∑
i=0

‖pi (t)− ptarget‖22 .

This fitness function rewards solutions where the robots are
close to the objects locations.

4.1.1 Perimeter Formation
Using the procedure described above with the rendezvous

fitness function we evolved the following controller

V = [1.0, 0.37, 1.0, 1.0,−1.0, 0.83]

that results in the robots forming a perimeter around a tar-
get. Robots gravitate towards a target or other robots by
using the v0 velocities to scan the area. Then a combination
of the v0 and v2 velocities move the lead robot towards the
target, while the other robots simply follow the leader using
v1. The perimeter formation emerges once the v0 velocity
can not turn the lead robot far enough in a time step to see
the target.

Experiments with the controller show that behavior is ro-
bust to changes in the location of the target mid-simulation.
When a target is moved to a new location mid-simulation,
the entire swarm quickly moves to the location and reforms
the perimeter as shown in Figure 2. Controlling behavior
using the environment removes the need to broadcast infor-
mation to the swarm and simplifies control logic.

4.1.2 Rendezvous
We are also interested in having every member of the

swarm gather as close as possible to the target, rather than
just circle around it. Rendezvous is an important behavior
for swarms because it sets the stage for more complicated be-
haviors by assembling a group of robots to a specific desired
location. We first tried to find a controller for the rendezvous
problem using the fitness function described above; however,
all trials resulted in controllers in which robots would form
a circle around a target.

To solve this problem we seeded the starting controller
with an aggregation solution from Gauci’s et al. earlier work
[7]. Using the seeded optimization strategy we evolved the
following controller

V = [−0.72,−1.00, 1.00,−1.00, 0.99, 1.00]

(a) (b) (c)

(d) (e) (f)

Figure 3: Snapshots of rendezvous to dynamic tar-
get at several time instances.

which results in the rendezvous behavior. Using this con-
troller robots scan the area using the v0. If a robot encoun-
ters a target while scanning it moves toward it with v2. If
another robot is in view the scanning robot begins to form a
cluster using the v0 and v1 velocities. Over time the clusters
merge into a single cluster around the target. This behav-
ior is also robust to changes in the location of the target
mid-simulation as shown in Figure 3.

4.2 Foraging
In this behavior objects and robots are distributed ran-

domly throughout the environment and the robots must
gather the objects to a specified target location. Earlier
work by Gauci et al. found an computation-free controller
for clustering objects, we extend there work by showing that
this controller can be used for foraging, i.e. clustering ob-
jects to a specific location [6]. The clustering fitness function
rewards global behaviors that minimize the total distance
between each object and center of the cluster of objects.
Let oi (t) represent the position of object i at time step t
and o (t) represent the center of the object cluster. Then
the fitness function is given by

uclustering(t) = −
m−1∑
i=0

‖oi (t)− o‖22

where m is the number of objects. Using the clustering
fitness function we evolved the following controller

V = [0.72, 1.00, 0.40, 0.31, 0.53,−1.00]

which causes the robots to circle around the objects and
slowly nudge them into a central point as they pass.

The foraging behavior occurs when we place one or several
fixed targets in the environment. Figure 4 shows the classic
foraging problem where there is a “nest” location (shown in
green) where all of the items must be gathered. Figure 5
shows an alternative foraging scheme where multiple sta-
tionary targets are placed in the environment. The convex
hull of these targets defines the region into which the ob-
jects will be harvested. Similar to the previous behaviors,
the foraging behavior can be controlled simply by changing
the location of the targets. The robots will then move the
items to the new desired location, as shown in Figure 5.



(a) (b)

(c) (d)

Figure 4: Snapshots of foraging at several time in-
stances.

(a) (b)

(c) (d)

Figure 5: Snapshots of dynamic foraging into speci-
fied convex hull at several time instances.

5. CONCLUSIONS AND FUTURE WORK
A large amount of research has been dedicated to devel-

oping multi-agent systems that perform complex behaviors.
We show that swarms of robots that can’t compute can per-
form complex behaviors such as rendezvous to a desired lo-
cation, simple perimeter monitoring of a desired location,
and foraging in changing environments. Our results demon-
strate that complex behaviors can be evolved from simple
interactions between agents and that these behaviors can be
controlled during execution by simply changing the environ-
ment. We note that these controllers are so simple that they
could simply be hardwired, requiring no computational ca-
pabilities. We believe that this research is an important step
towards swarm behaviors that can be easily implemented in
hardware and produced at small, maybe even nano-scale. In
the future we plan to apply these behaviors to actual robots,
explore virtual targets and other forms of control uisng the
environment, and more rigorously explore the space of pos-
sible behaviors given our computation-free assumptions.

6. REFERENCES
[1] G. Baldassarre, S. Nolfi, and D. Parisi. Evolving

mobile robots able to display collective behaviours.
Artificial Life, 9(3):255–267, 2003.

[2] A. Becker, C. Ertel, and J. McLurkin. Crowdsourcing
swarm manipulation experiments: A massive online
user study with large swarms of simple robots. In
Robotics and Automation (ICRA), 2014 IEEE
International Conference on, pages 2825–2830. IEEE,
2014.

[3] M. Brambilla, E. Ferrante, M. Birattari, and
M. Dorigo. Swarm robotics: a review from the swarm
engineering perspective. Swarm Intelligence,
7(1):1–41, 2013.

[4] D. S. Brown, S. C. Kerman, and M. A. Goodrich.
Human-swarm interactions based on managing
attractors. In Proceedings of the 2014 ACM/IEEE
International Conference on Human-Robot
Interaction, pages 90–97. ACM, 2014.

[5] M. Gauci, J. Chen, T. J. Dodd, and R. Groß. Evolving
aggregation behaviors in multi-robot systems with
binary sensors. In Distributed Autonomous Robotic
Systems, pages 355–367. Springer, 2014.

[6] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß.
Clustering objects with robots that do not compute.
In Proceedings of the 2014 International Conference
on Autonomous Agents and Multi-Agent Systems,
pages 421–428. International Foundation for
Autonomous Agents and Multiagent Systems, 2014.

[7] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß.
Self-organized aggregation without computation. The
International Journal of Robotics Research, pages
1145–1161, 2014.

[8] N. Hansen and A. Ostermeier. Completely
derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

[9] N. Jakobi. Half-baked, ad-hoc and noisy: Minimal
simulations for evolutionary robotics. In Fourth
European Conference on Artificial Life, pages 348–357.
MIT press, 1997.

[10] S. Magnenat, M. Waibel, and A. Beyeler. Enki: The
fast 2d robot simulator, 2007.

[11] S. M. Moghimi, A. C. Hunter, and J. C. Murray.
Nanomedicine: current status and future prospects.
The FASEB Journal, 19(3):311–330, 2005.

[12] A. A. Requicha. Nanorobots, nems, and nanoassembly.
Proceedings of the IEEE, 91(11):1922–1933, 2003.

[13] M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi,
J. McLurkin, and R. Nagpal. Collective transport of
complex objects by simple robots: theory and
experiments. In Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-Agent
Systems, pages 47–54. International Foundation for
Autonomous Agents and Multiagent Systems, 2013.

[14] V. Trianni, R. Grob, T. Labella, E. Sahin, and
M. Dorigo. Evolving aggregation behaviors in a swarm
of robots. In Advances in Artificial Life, pages
865–874. Springer, 2003.

[15] J. Werfel, K. Petersen, and R. Nagpal. Designing
collective behavior in a termite-inspired robot
construction team. Science, 343(6172):754–758, 2014.


