
A Genetic Algorithm for Automated Refactoring of
Component-Based Software

Salim Kebir
Ecole Nationale Superieure

d’Informatique
BP 68 M Oued-Smar

Algiers, Algeria
s_kebir@esi.dz

Isabelle Borne
IRISA

Université de Bretagne-Sud
Vannes, France

isabelle.borne@irisa.fr

Djamel Meslati
Laboratoire d’Ingénierie des

Systèmes Complexes (LISCO)
Université Badji Mokhtar

Annaba, Algeria
djamel_meslati@yahoo.fr

ABSTRACT
Nowadays a software undergoes modifications done by dif-
ferent people to quickly fulfill new requirements, but its
underlying design is not adjusted properly after each up-
date. This leads to the emergence of bad smells. Refactor-
ing provides a de facto behavior-preserving means to elim-
inate these anomalies. However, manually determining and
performing useful refactorings is known as an NP-Complete
problem as stated by Harman et al. [9] because seemingly
useful refactorings can improve some aspect of a software
while making another aspect worse. Therefore it has been
proposed to view object-oriented automated refactoring as
a search based technique. However the review of the lit-
terature shows that automated refactoring of component-
based software has not been investigated yet. Recently a
catalogue of component-relevant bad smells has been pro-
posed in the literature but there is a lack of component-
relevant refactorings. In this paper we propose a catalogue of
component-relevant refactoring as well as detections rules for
component-relevant bad smells. Then we rely on these two
ingredients to propose a genetic algorithm for automated
refactoring of component-based software systems.

Keywords
Genetic Algorithm, Refactoring, Component-Based Software
Engineering, Bad Smells

1. INTRODUCTION
Lehman’s first and second laws on software evolution state

that a software system written to reflect some real-world ac-
tivity needs to be adapted or else it becomes less useful and
as it evolves, its complexity increases unless effort is per-
formed to reduce it [15]. This translates into the emergence
of bad smells [7], also called design defects or code anomalies.
As a consequence, software becomes hard and too costly to
maintain.

.

Due to organizational and market pressures it is not con-
ceivable to develop a software by keeping permanently in
mind the idea that it should be easily maintained or changed
to fulfill new requirements, as it forces programmers to fo-
cus on an extra time-consuming task. In order to overcome
this problem in object-oriented software systems, refactoring
provides behavior-preserving means to eliminate bad smells
and improve the design of a software [7]. However, manually
determining and performing useful refactorings is a tough
challenge [23]. Furthermore, the questions are: which useful
refactorings should be performed ? where should they be
performed ? in what order ? how to perform them properly
? and how to assess their positive impact on the software
design in the long term ?

In order to tackle these questions, it has been proposed to
view automated refactoring of object-oriented as a search-
problem where an automated system can discover useful
refactorings [9][19]. This can be achieved by searching for
a sequence of usefull refactorings that improve the overall
quality of the system.

The review of the litterature shows that automated refac-
toring of component-based software has not been investi-
gated yet. This is because when considering component-
based software systems, and especially those developed on
top of component models most of whom rely on object tech-
nology [14][4], object-oriented refactorings seem to be inad-
equate since object-oriented bad smells are insufficient to
express bad situations at component level due to the ad-
ditional level of abstraction introduced by components and
interfaces. Recently a catalogue of component-relevant bad
smells has been proposed by Garcia et. al. [8] and extended
by Macia et. al. [16] but there is a lack of component-
relevant refactoring operations to overcome these bad smells.
Thus refactoring has to be rethought to take into account
the different structural aspects that components and inter-
faces exhibit.

Our contribution in this paper is twofold : first, we pro-
pose a catalogue of component-relevant refactoring as well
as detections rules for component-relevant bad smells. Sec-
ond, we rely on these two elements to propose a search-based
approach for automated refactoring of component-based sys-
tems.

This paper is organized as follows : Section 2 gives back-
ground of related works. In Section 3, we present a detailed
description of the problem. Section 4 describes our approach
in detail, with focus on the bad smells detection rules, the
proposed refactorings and the genetic algorithm we use. Sec-

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262353

tion 5 contains a discussion of the experimental study that
we performed. Finally, Section 6 concludes the paper and
presents future perspectives.

2. RELATED WORKS

2.1 Bad Smells Detection
Fowler [7] was the first to introduce bad smells and to

associate them with refactorings, although he defines bad
smells informally, maintaining that only human intuition
may guide a decision on whether some refactorings are nec-
essary or not [6]. However many bad smell detection tech-
niques have been proposed in the literature. To the best of
our knowledge, all of them rely on rules based on properties
captured through software metrics to detect bad smells [13],
and the only difference between them lies in the process of
formulation of these rules. Furthermore, these techniques
can be categorized according to their level of automation
and the number of detected bad smells.

2.2 Search-Based Refactoring
According to [10], there is two kinds of search-based refac-

toring approaches : direct and indirect approaches. In the
direct approaches, the design of the source code itself is im-
proved. That is to say, the search space contains differ-
ent variants of the source code, and the exploration of this
latter consists of performing fine refactoring operations to
move from one individual to another. Examples of such ap-
proaches include [20][18]. In the indirect approaches, the
design of the source code is indirectly improved through the
search of a sequence of refactoring. In such approaches, the
final result is the sequence of refactorings that best enhances
the source code. Such indirect approaches has been proposed
in [23][21][5]. Although many works have been proposed
for search-based refactoring, none of them has considered
component-based systems.

3. PROBLEM DESCRIPTION
According to two recent surveys, the first one conducted

by Crnkovic et al. [4] and the second one by Lau et. al. [14],
almost all major component models are based on object-
oriented programming languages and use their underlying
mechanisms (e.g. packages, classes, interfaces, methods) and
additional resources (e.g. OSGi Bundles, EJB XML Config-
uration) to reify components and interfaces. Also, many of
identifying software components from object-oriented source
code approaches are based on clustering algorithms that act
on an object-oriented system to produce high intra-cohesive
and low inter-coupling set of classes [3]. In other words, com-
ponents are considered as sets of classes and interfaces are
those classes which have a link with some classes from the
outside of the component (e.g. a method call or attribute
use from the outside).

We address the automated refactoring of component-based
software. The considered problem is about searching for the
best sequence of refactorings which improves the source code
of a component-based software written on top of a known
component model. In concrete, the solution to this prob-
lem consists in the detection and elimination of bad smells
by operating refactoring operations at the component level,
such that to improve the overall quality of the source code.

The entries of this problem are :

• The source code : The source code of a software
is the most reliable and accurate source of informa-
tions describing this latter. However in the context
of automated refactoring, the source code in its tex-
tual form can not be considered as such because it
requires highly expensive parsing operations which de-
grades the overall process performances. In order to
avoid theses costs, source code must be first reified in
an intermediate structure called the source code model.
Such a structure must be designed to allow to mea-
sure some properties that we need later during the ex-
traction of bad smells detection rules. It must also
be suitable to simulate actual refactoring and check if
they do not lead to incoherent situations. We have de-
fined in a previous work [12] a mapping model between
object-oriented concepts (i.e. classes, interfaces, pack-
ages, methods, method calls) and component based
software engineering ones (i.e. components, interfaces,
services). In figure 1 we propose an adaptation of this
model that acts as a source code model.

Figure 1: Mapping model

• A set of component-relevant bad smells : Re-
cently, Garcia et. al. [8] identified four representative
component-relevant bad smells that they encountered
in the context of reverse-engineering and refactoring of
large industrial systems. In order to detect such smells,
they provide architects with UML diagrams and con-
crete textual definitions of each bad smell. More re-
cently, in the same perspective, Macia et. al. [16]
extended this catalogue. Although the two authors
define bad smells informally, maintaining that only hu-
man intuition may guide a decision on whether some
refactorings are necessary or not [6]. Many bad smell
detection techniques have been proposed in the litera-
ture. To the best of our knowledge, all of them rely on
formulating detection rules based on properties cap-
tured through software metrics to detect bad smells
[13], and the only difference between them lies in the
process of formulation of these rules.

• A set of component-relevant refactorings : In
general, refactorings are often associated with a set
of bad smells [7] by analogy to medical diagnostic-
treatments. Nevertheless, in the context of component-
based softwares, object-oriented refactoring seem not

to be adequate to refactor component-based software
because of the two following reasons :

– Subject of transformation is not the same : Object-
oriented refactoring focuses on classes, methods,
attributes and hierarchies where components con-
sists of one or more classes and interfaces consists
of classes interacting with the outside of the com-
ponent.

– Object-oriented bad smells are inadequate : The
main reason to refactor is to get rid of bad smells.
Currently, object-oriented refactorings are asso-
ciated with a set of object-oriented bad smells.
Therefore, considering such bad smells is not ad-
equate on component-based softwares since they
are insufficient to reflect bad situations at com-
ponent and interface level.

4. SOLUTION APPROACH
In our approach, automated refactoring is implemented

using a genetic algorithm. For this, we decompose our ap-
proach in three steps : (i) extraction of relevant informations
from source code and artifacts to construct the source code
model, (ii) formulation of a detection rule for each bad smell
by studying its textual definition, and (iii) explore the solu-
tion space using a genetic algorithm. Figure 2 depicts these
three steps. Next, we will see in detail each step.

Figure 2: Overall view of our approach

4.1 Facts Extraction
During this step, we construct from source code and ad-

ditional artifacts (e.g. XML Configuration files) the source
code model in accordance with the mapping model estab-
lished in section 3. In order to perform the extraction of
these informations , we have designed and implemented an
extraction engine that rely on the API provided by Eclipse
JDT1.

The extraction engine depends on the component model,
the underlying programming language and additional component-
model specific resources like XML and Manifest configura-
tion files. At this moment, we have successfully defined
and implemented an extraction engine for OSGi component-
based applications.

1Eclipse JDT. http://eclipse.org/jdt/

4.2 Formulation of Component-Relevant Bad
Smells Detection Rules

In this section we will revisit component-relevant bad smells.
Moreover, we propose to detect each bad smells by refining
its description into an informal rule, and then extract from
these rules measurable properties whose range ∈ [0, 1] and
pertain to internal attributes and metrics of the constituents
of our mapping model.

4.2.1 Ambiguous Interface
Components suffering from this bad smell offer only a sin-

gle, general entry-point. Such interface are referred to as
ambiguous [8]. Moreover it dispatches requests to internal
services not belonging to any interface [8]. An ambiguous
interface reduces analyzability and understandability since
a user must look into the implementation of the component
to know about the services it offers.

According to the previous definition, to judge whether
a component suffer from ambiguous interface, we need to
know the number of its interfaces and the number of their
services. The more these two numbers are low, the more
the component has ambiguous interfaces. Therefore these
informations alone are not sufficient to assess how much the
interface is ambiguous. Indeed, we also need to know about
how much the interface dispatch requests to other internal
services not belonging to any interface. Thus, we define the
following rule to assess how much a component suffer from
this bad smell :

AI(C) =
1

3
·(1

|C.p|+
1∑

i∈C.p

|SOS(i)|+
j∈C\C.p∑

i∈C.p,k∈C

|SOC(i, j)|
|SOC(i, k)|)

where :

• C.p denotes the set of provided interfaces of the com-
ponent C.

• SOS(i) denotes the set of services belonging to the
interface i.

• SOC(i, c) denotes the set of outgoing calls from the
services belonging to an interface i to public methods
belonging to the class c.

4.2.2 Connector Envy
Components with Connector Envy encompass extensive

interaction-related functionality between two or more other
components [8]. This bad smell reduces reusability insofar
the component can not be reused elsewhere.

According to the previous definition, a component suffer-
ing from this bad smell delegates the majority of its requests
to other components. Thereby, the number of its incoming
and outgoing calls should be high. Furthermore its overall
cohesion should be low since it does not have a proper re-
sponsibility. Consequently we define the following rule to
assess how much a component suffer from connector envy :

CE(C) =
1

2
·(

j /∈C∑
i∈C

(|SOC(i, j) ∪ SOC(j, i)|)

∀k∑
i∈C

(|SOC(i, k) ∪ SOC(k, i)|)
+(1−LCC(C)))

where :

• LCC(c) denotes the cohesion of the classes belonging
to the component c according to the Loose Class Co-
hesion metric proposed in [2].

4.2.3 Scattered Parasitic Functionality
This bad smell occurs in a system where multiple compo-

nents are responsible for realizing the same high-level con-
cern and, additionally, some of these components are indi-
vidually responsible for an additional unrelated concern [8].
A system suffering of this bad smell violates the separation
of concerns principle in two ways : firstly, a concern is scat-
tered among a set of elements, secondly, a component is
responsible of realizing more than one concern at the same
time.

Given a set of components, in order to detect this bad
smell, we need to measure the overall cohesion of this set of
components and the individual cohesion of each component.
In one hand, the more the overall cohesion is high, the more
a functionality is scattered among this set of components.
In the other hand, the more the cohesion of each component
is high, the less this set of components suffer from scattered
parasitic functionality. So in order to detect this bad smell,
we propose the following rule to assess if a set of compo-
nents S = {C1, C2, ..., Cn} suffer from scattered parasitic
functionality :

SPF (S) =
1

2
· (LCC(S) +

∑
Ci∈S

1− LCC(Ci)

|S|)

4.2.4 Component Concern Overload
Components with concern overload are responsible for

realizing two or more unrelated architectural concerns [8].
This runs counter the separation of concerns principle since
an element of a system is responsible of two or more con-
cerns.

This bad smell can be easily detected by measuring the
cohesion of the component. The more this measure is low,
the more the component is suffering from concern overload.
So, we propose this rule to assess how much a component is
overloaded with many concerns :

CCO(C) = 1− LCC(C)

4.2.5 Overused Interface
Also called Fat Interfaces [22], these are interfaces whose

clients invoke different subsets of their services [16]. This
violates the interface segregation principle [17] since clients
depend on services that they do never invoke.

This bad smell can be detected by measuring for each
client of a given interface, the number of services invoked
together. The more this number is high, the less the inter-
face is overused. Thus we propose in a similar manner to
[22] to detect this bad smell by measuring the average of
the ratio of services invoked from all the clients of a given
interface using the following rule :

OI(i) =
1

|CLIENTS(i)| ·
∑

Ck∈CLIENTS(i)

|SOC(Ck, i)|
|SOS(i)|

where :

• CLIENTS(i) denotes the set of clients using the in-
terface i.

4.3 Component-Relevant Refactoring
In this section, we propose a set of component-relevant

refactorings to get rid of the previously described bad smells.
Similarly to Fowler’s approach [7], for each refactoring, we
describe its significant properties using the following tem-
plate.

Table 1: Refactoring template
The name and summary of the refactoring must reflect in
a concise manner what action is performed by the refactoring
and where it have to be performed.
The context summarizes the situation in which the refac-
toring is needed. That is, it explain when performing the
refactoring.
The motivation explains why the refactoring should be
done by assessing the benefits brought to quality attributes.
The mechanics describes how to perform the refactoring.

4.3.1 Pull Interface

• Summary: Create a new provided interface for a com-
ponent.

• Context: In a component suffering from ambiguous
interface, there may be classes that offer services but
are not defined as provided interfaces.

• Motivation: By applying these refactoring, analyz-
ability and understandability of the component are in-
creased since a user is no longer required to look into
the implementation of the component to know about
the services it offers.

• Mechanics: Use the underlying component model
mechanisms to turn a class into a provided interface.

4.3.2 Push Component

• Summary: Integrate a component into another.

• Context: In a system suffering from Scattered Par-
asitic Functionality, several components may be in-
dividually responsible for implementing a wide scope
concern. The latter should be encompassed in a single
component. Further more a component with connector
envy only delegates calls from a component to another
and should be integrated to one or the other.

• Motivation: By applying this refactoring, a concern
is no longer scattered among a set of elements. Thus,
separation of concerns principle is met.

• Mechanics: Move all the classes present in a compo-
nent into another one. And delete the old component.

4.3.3 Extract Component

• Summary: Extract a new component from an exist-
ing one.

• Context: In a single component suffering from Com-
ponent Concern Overload, the separation of concerns
principle is violated since an element is responsible of
two or more concerns.

• Motivation: By applying this refactoring, reusability
is increased as well as cohesion.

• Mechanics: Determine a subset of classes from the
set of classes belonging to a given component to obtain
a new component.

4.3.4 Extract Interface

• Summary: Extract a new interface from an existing
one.

• Context: An interface suffering from Interface Over-
load may be caused by a God Class [7].

• Motivation: After extracting a sub-interface from an
overused interface, clients do not longer depend on ser-
vices that they do never invoke. This fulfill the inter-
face segregation principle [17].

• Mechanics: Determine a subset of the set of methods
belonging to a given interface to obtain a new inteface.

4.4 Genetic Algorithm
Genetic Algorithms (GAs) [11] are evolutionary algorithms

inspired from the Darwinian theory of natural evolution.
They simulate the evolution of species emphasizing the law
of survival of the nearly-best to solve optimization prob-
lems. Thus, these algorithms start from a set of initial indi-
viduals (i.e. solutions), and to use naturally inspired evolu-
tion mechanisms to derive new and possibly better solutions
which gives the best approximation of the optimum for the
problem under investigation. To this end, GAs rely on three
key ingredients [1] : (i) an individual representation used
to encode a solution to the problem; (ii) a fitness function
which is a mean to assess the quality of a given individual;
and (iii) change operators which are used to produce new
neighborhood solutions starting from existing ones.

Basically, GA proceeds using the previous elements, as fol-
lows (Figure 3): first it randomly generates an initial pop-
ulation, then it performs crossovers and mutations on the
fittest elements of this population until the chosen number
of generation is reached.

GA(nbOfGenerations : Integer) : Population
Begin
i← 0;
p = initialPopulation();
while i < nbOfGenerations do

p′ = SELECT (p);
CROSSOV ER(p′);
MUTATE(p′);
p← p′;
i← i + 1;

end while
return p;
End

Figure 3: Genetic Algorithm

In order to implement GA for automated refactoring of
component-based software, we describe in the following each
of the three above-mentioned elements and how they are
articulated within the genetic algorithm.

4.4.1 Individuals
In our approach, individuals are composed of two ele-

ments:

• the genotype which is an ordered variable-length se-
quence of refactorings including necessary parameters.
When the sequence of refactorings is executed, it per-
forms these changes and produces a modified version
of the source code model.

• the phenotype which is the current source code model
in accordance to the one described in section 3. The
phenotype is obtained by performing the sequence of
refactorings to the initial source code model in the or-
der that is given in the genotype.

Figure 4 depicts the individual representation. This rep-
resentation carries the following key benefits. First, our
use of a source code model as a phenotype to represent
the component-basd software design enables efficient com-
putation of bad smells detection rules. Second, we give the
possibility to the genotype to contain invalid refactorings.
By invalid refactoring, we mean that it is not able to be
performed on the initial source code model and lead to in-
coherent situations by breaking the necessary preconditions
for the following ones (e.g. push component refactoring can
prevent other refactorings concerning the same component
since the component does not exist anymore). When it is
the case, we simply consider the following ones as invalid.
However, we do not exclude them from the genotype since
they may be valid in the next generation. This allows to
explore the solution space more efficiently.

Figure 4: Individual Representation

4.4.2 Fitness function
In our approach, the fitness function is the sum of the five

above-defined rules used to detect bad smells in all compo-
nents and interfaces of the application. The fitness function
is evaluated on an individual by (i) running the sequence
of refactoring operations contained in its genotype and (ii)
evaluating the detection rules on the resulting source code
model contained in its phenotype.

The motivation behind using bad smells detection rules as
part of our fitness function is that they are conjectured in
the literature to impact the overall quality of systems. Also
since refactorings are associated with a set of bad smells
[7], this gives us the opportunity to see how much our ones
are effective to get rid of component-relevant bad smells by
analysing the resulting source code model at a given step of
our genetic algorithm.

4.4.3 Change operators
In each iteration, the GA starts by selecting chromosomes.

This selection is based on the fitness value of individuals.
Then the offspring is generated by applying crossover on
each pair to generate two new chromosomes. After that,
the mutation is applied to each chromosome in the current
population with a givn probability. We give in the following
how we have implemented each of these three operators.

• Selection : We adopt the roulette wheel selection. All
of the population selected chromosomes will form a
mating pool for the crossover and mutation.

• Crossover : In our approach, we adopt the one-point
crossover operator which conceptually operates on two
genotype (sequence of refactoring in our case) at a time
and generates offspring by cutting each of the two par-
ent chromosomes into two subsets of genes. Then two
new chromosomes are created by interleaving the two
subsets.

• Mutation : Our mutation operator either replaces a
randomly chosen refactoring operation by a new one
or randomly inserts/deletes a new refactoring opera-
tion to the genotype. The probability of performing a
mutation is chosen by the user as a parameter of the
GA.

5. CASE STUDY
In this section we present our first evaluation of the GA.

Currently only the OSGi 2 component model is considered.
In OSGi, a component is known as a bundle [4]. Each bun-
dle is defined by a JAR file containing named packages and
a manifest file containing the description of the bundle inter-
action with the other bundles, mainly the exported packages
that are meant to reify provided interfaces and in dual man-
ner the imported packages that are meant to reify required
interfaces. In this section, we present the system that we
used for our experiments, and we examine and discuss the
obtained results.

5.1 System under investigation
To perform our experiments, we use the open source Eclipse

MAT (Memory Analyzed Tool)3 which is an OSGi stan-
dalone application that supports programmers to detect mem-
ory leaks.

We choose Eclipse MAT because it is a medium-sized
project which source code is freely available. Figure 5 de-
picts the dependencies between the system components ac-
cording to the documentation that we have found by in-
specting each JAR File composing the system. The core of
the system is a component called api. It provides a set of
routines, protocols, and tools for analyzing memory usage
of a Java application. All of the remaining components ei-
ther depends directly or indirectly on the api component
except the report component which acts like a bridge be-
tween Eclipse MAT and Eclipse Business Intelligence and
Reporting Tools. The components ui, ui rcp and ui help are
responsible for providing the user interface and interactive
help for the tool. The component jruby resolver provides
support for the JRuby JVM-based language. The parser

2OSGi Alliance : www.osgi.org
3Eclipse Memory Analyzer Tool : www.eclipse.org/mat

component provides heap parsing utilities which are used by
two components: dtfj and hprof. The first one accesses the
heap dump and provides diagnostic tools for analyzing Java
classes and objects and their classloaders that were present
in the heap. The second one relies on the heap dump to
present CPU usage, heap allocation statistics, and moni-
tor contention profiles. The ibmdumps component provides
support for IBM Java virtual machines. The two remaining
components namely chart and chartui provide feature-rich
charting functionalities.

Figure 5: Dependency diagram of Eclipse MAT

Table 2 gives a more explanatory overview of system’s
components and interfaces. For each component, we give the
number of provided and required interfaces. Due to space
limitations we have omitted the prefix org.eclipse.mat from
all components and interfaces name.

Table 2: Eclipse MAT components and interfaces
Components # Provided itfs. # Required itfs.
api 12 12 from report
chart.ui 1 1 from chart
chart 1 12 from api
dtfj 1 5 from parser
hprof 1 5 from parser
ibmdumps 1 12 from api
jruby.resolver 1 12 from api
parser 5 12 from api
report 12
ui.help 1

ui.rcp 1
8 from ui
1 from ui.help

ui 8 12 from api

5.2 Settings
First we investigated how much the system is affected by

bad smells. To achieve this, for each bad smell we calculate
the value of the associated detection rule on each system
components and interfaces. For AI and OI bad smells, we
calculated the average of detection rules of all provided inter-
face of a given component. Regarding SPF bad smell, since

we can not measure it on a single component, we calculated
the average of its detection rule for all possible partitions of
the system components containing two or more connected
componenets (i.e. we consider only partitions where there
exists an indirected path that connects all the components of
the partition. For example the partition {api, ui.help} has
been ommited insofar as there is no path that connects these
two components). The measurement results are compiled in
table 3.

Table 3: Bad Smells in Eclipse MAT
Component AI CE SPF CCO OI
api 0.02 0.09 - 0.59 0.87
chart.ui 0.00 0.00 - 0.00 0.00
chart 0.76 0.42 - 0.01 0.02
dtfj 0.00 0.00 - 0.00 0.00
hprof 0.00 0.00 - 0.00 0.00
ibmdumps 0.00 0.00 - 0.00 0.00
jruby.resolver 0.00 0.00 - 0.00 0.00
parser 0.04 0.05 - 0.26 0.08
report 0.06 0.00 0.02 0.12
ui.help 0.65 0.00 - 0.00 0.01
ui.rcp 0.00 0.00 - 0.01 0.00
ui 0.04 0.47 - 0.31 0.01
Total 1.56 1.03 3.37 1.20 1.11
Overall Fitness 8.27

By examining these results, we note that the system suf-
fers from approximately eight bad smells. For instance:

• api suffers from CCO and OI respectively because, it
is the core of the application and its provided interfaces
are used by many clients with different purposes.

• chart and ui.help suffer from AI because they have
only a single interface providing few services.

• chart and ui suffer from CE because they delegates
the majority of their requests respectively to chart.ui
and ui.rcp.

In order to validate our approach, we propose to answer
the two following research questions:

• RQ1: How much the proposed approach is effi-
cient to correct component-relevant bad smells
? To answer this question, we calculate the number
of corrected bad smells over the total number of bad
smells before applying the proposed refactorings. The
more this value is high, the more the approach is effi-
cient.

• RQ2: How much the proposed approach is ac-
curate in correcting detected component-relevant
bad smells ? To answer this question, we calculate
the number of false positives and false negatives. On
the one hand, false positives just means the ratio of
component that have been refactored but are not af-
fected by bad smells. On the other hand, false nega-
tives means the ratio of components that have not been
refactored but are seriously affected by bad smells.
The less these two values are small, the more the ap-
proach is accurate.

5.3 Results and discussion
Figure 6 shows the results obtained by applying the ge-

netic algorithm on Eclipse MAT. The line represents the
minimum fitness value, for each generation.

Figure 6: Optimization results (Lower values are
better)

We used 1000 generations for a population size of 20. As
expected, We notice that our approach is able to improve
pretty good the value of the fitness function. Indeed we
have found that the value of the fitness function of the best
proposed solution was 3.86. This indicates that 4.41(8.27−
3.86) of bad smells have been fixed which gives an acceptable
efficiency value of 53%(4.41/8.27).

We investigated the proposed solution to judge if the pro-
posed refactoring are accurate and we have found that the
best solution produced by the GA contains 9 components.
We have proposed significant names for the newly obtained
components (colored in grey in Figure 7). In order to achieve
this, we manually inspected their internal source code. This
task is not easy, even if it is about a medium-sized system,
it was accomplished by providing a lot of effort.

Figure 7: Evolved System Structure

Eight components from the original design have been refac-
tored into 5 new components. We note that among these
eight components only two ones (ui.rcp and chart.ui) are
not affected by bad smells according to table 3. This gives
us a false positives value of 16.66%(2/12).

The four remaning components from the original design
have stayed untouched, namely: dtfj, hprof, ibmdumps and
jrubyresolver. This gives us a false negatives value of 0%(0/12).

This can be explained by the following reasons: First, Figure
5 shows that these four components are very loosely coupled
with the rest of the system. Second, according to their de-
scription in the documentation (c.f. subsection 5.1), these
components focus on a single purpose and each of them pro-
vide a highly cohesive feature. Finally, according to Table
3, these components do not suffer from bad smells.

The obtained false positives and false negatives indicate
that our approach is very accurate on correcting detected
bad smells.

6. CONCLUSION
In this paper, we proposed an approach based on genetic

algorithms for automated refactoring of component-based
software systems. To tackle this problem, we proposed a
set of detection rules for the recently proposed component-
relevant bad smells and a catalogue of component-relevant
refactorings. Then, we propose a genetic algorithm to find
the best sequence of refactorings to perform. We validated
our approach in terms of efficiency and accuracy by applying
it on a medium-sized system.

To the best of our knowledge, our approach is the first
attempt to automated refactoring of component-based ap-
plications. We believe that we can further improve it in the
future. In the short term, we plan to extend our extrac-
tion engine to support more component models. In the long
term, we plan to use component-relevant metrics to improve
the exploration of the solution space.

7. REFERENCES
[1] G. Bavota, M. Di Penta, and R. Oliveto. Search based

software maintenance: Methods and tools. In Evolving
Software Systems, pages 103–137. Springer, 2014.

[2] J. M. Bieman and B.-K. Kang. Cohesion and reuse in
an object-oriented system. In ACM SIGSOFT
Software Engineering Notes, volume 20, pages
259–262. ACM, 1995.

[3] D. Birkmeier and S. Overhage. On component
identification approaches–classification, state of the
art, and comparison. In Component-Based Software
Engineering, pages 1–18. Springer, 2009.

[4] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R.
Chaudron. A classification framework for software
component models. Software Engineering, IEEE
Transactions on, 37(5):593–615, 2011.

[5] D. Fatiregun, M. Harman, and R. M. Hierons.
Evolving transformation sequences using genetic
algorithms. In Source Code Analysis and
Manipulation, 2004. Fourth IEEE International
Workshop on, pages 65–74. IEEE, 2004.

[6] F. A. Fontana, P. Braione, and M. Zanoni. Automatic
detection of bad smells in code: An experimental
assessment. Journal of Object Technology, 11(2):5–1,
2012.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the design of
existing programs, 1999.

[8] J. Garcia, D. Popescu, G. Edwards, and
N. Medvidovic. Toward a catalogue of architectural
bad smells. In Architectures for adaptive software
systems, pages 146–162. Springer, 2009.

[9] M. Harman. The current state and future of search
based software engineering. In 2007 Future of Software
Engineering, pages 342–357. IEEE Computer Society,
2007.

[10] M. Harman and L. Tratt. Pareto optimal search based
refactoring at the design level. In Proceedings of the
9th annual conference on Genetic and evolutionary
computation, pages 1106–1113. ACM, 2007.

[11] J. H. Holland. Adaptation in natural and artificial
systems: An introductory analysis with applications to
biology, control, and artificial intelligence. 1975.

[12] S. Kebir, A.-D. Seriai, S. Chardigny, and A. Chaoui.
Quality-centric approach for software component
identification from object-oriented code. In Software
Architecture (WICSA) and European Conference on
Software Architecture (ECSA), 2012 Joint Working
IEEE/IFIP Conference on, pages 181–190. IEEE,
2012.

[13] W. Kessentini, M. Kessentini, H. Sahraoui,
S. Bechikh, and A. Ouni. A cooperative parallel
search-based software engineering approach for
code-smells detection. 2014.

[14] K.-K. Lau and Z. Wang. Software component models.
Software Engineering, IEEE Transactions on,
33(10):709–724, 2007.

[15] M. M. Lehman and L. A. Belady. Program evolution:
processes of software change. Academic Press
Professional, Inc., 1985.

[16] I. Macia, A. Garcia, C. Chavez, and A. von Staa.
Enhancing the detection of code anomalies with
architecture-sensitive strategies. In Software
Maintenance and Reengineering (CSMR), 2013 17th
European Conference on, pages 177–186. IEEE, 2013.

[17] R. C. Martin. Agile software development: principles,
patterns, and practices. Prentice Hall PTR, 2003.

[18] I. H. Moghadam. Multi-level automated refactoring
using design exploration. In Search Based Software
Engineering, pages 70–75. Springer, 2011.

[19] M. O’Keeffe and M. O. Cinnéide. Search-based
software maintenance. In Software Maintenance and
Reengineering, 2006. CSMR 2006. Proceedings of the
10th European Conference on, pages 10–pp. IEEE,
2006.

[20] M. O’Keeffe and M. Ó. Cinnéide. Search-based
refactoring: an empirical study. Journal of Software
Maintenance and Evolution: Research and Practice,
20(5):345–364, 2008.

[21] F. Qayum and R. Heckel. Local search-based
refactoring as graph transformation. In Search Based
Software Engineering, 2009 1st International
Symposium on, pages 43–46. IEEE, 2009.

[22] D. Romano, S. Raemaekers, and M. Pinzger.
Refactoring fat interfaces using a genetic algorithm. In
Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on, pages 351–360.
IEEE, 2014.

[23] O. Seng, J. Stammel, and D. Burkhart. Search-based
determination of refactorings for improving the class
structure of object-oriented systems. In Proceedings of
the 8th annual conference on Genetic and evolutionary
computation, pages 1909–1916. ACM, 2006.

