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ABSTRACT

Gait analysis is the study of human locomotion and is able
to provide useful information in various areas such as health
care, therapy, sports training, and characteristic recognition.
This paper presents a smartphone based system to collect
and calculate gait parameters. These parameters consisted
of step length, velocity, cadence, motion intensity, and walk-
ing regularity are calculated from the sensor data collected
by the inertial sensor of a smart-phone. A prototype of
gait parameter collection and visualization system was de-
veloped on a laptop and cell phone. The proposed system
collects accelerometer data from a smart-phone and calcu-
lates the gait parameters related to walking activity. All the
parameters are displayed on a customized Matlab graphic
user interface on the laptop. The fall detection function is
also integrated into the system. Once the user fall down,
an alarm message will be sent to preset contact. The ex-
periments are carried out on 4 subjects to test the stability
and accuracy of the system. The system shows high ac-
curacy and reliability on counting steps (error<5.47%) and
walking duration (error<4.55%). Based on the gait moni-
tor system, an anomaly data detection method is presented.
Four independent gait parameters include cadence, and tri-
axel motion intensity parameters are chosen from previous
results during normal activity. If the latest data deviates
from the normal activity model too far, the data will be set
as an abnormal event.
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1. INTRODUCTION

Gait analysis studies human locomotion in terms of gait pa-
rameters, like walking cadence, velocity and step length,
augmented by measuring body movements, body mechan-
ics, and the activity of the muscles. Gait analysis is used
to assess, plan, and treats individuals with diseases that af-
fect their ability to walk. It is also commonly used in sports
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biomechanics to improve athletes run in more efficiently way
or to identify posture or movement related problems for in-
jured people. Walking activities are described as gait event
in the studies. The gait event or cycle begins when one heel
hits the ground and ends when another heel hitting the same
ground. The events consist of the stance phase (the heel-to-
toe contact sequence of the foot) and the Swing phase (the
foot suspending and proceeding in the air).
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Figure 1: Gait cycle [1]

Some commonly used gait parameters are defined based on
the detection of gait event. The velocity is the relation be-
tween the walking distance and duration. Step length is the
tip-to-tip or heel-to-heel distance between two subsequent
feet. Cadence is the number of steps the person walking
per second. A search on the web for scientific articles that
include ”gait” in the title returned more than 3,400 publica-
tions between 2012 and 2013 [16]. All these researches are
acquired quantitative measurements that characterized gait
in order to apply them to various fields. Therefore, vari-
ous sensors have been developed to measure data related to
walking activities. These user carried sensors can be divided
into three categories: imaging, floor, and body-worn sensors.

The statistical data shows that 40% of the reviewed articles
published in late 2012 and 2013 are related to non-wearable
systems, and 37.5% of them are proposed inertial sensor-
based systems. The remaining 22.5% are from other wear-
able systems. An increasing number of researches indicated
the fact that the body-wear based portable sensors systems
are the most promising method for gait analysis |16].

Our work is focused on designing a smart-phone based gait
monitor system which is easier to spread than other inde-
pendent gait monitor systems. Most smart-phone has an
inertial measurement unit built inside. An inertial measure-
ment unit worked by detecting current rate of acceleration
using multi-axes accelerometer and rotational attributes like
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pitch, roll and yaw using multi-axis gyroscope. Some also
include magnetometer mostly to assist calibration against
orientation drift. For the purpose of gait analysis, these data
are converted into commonly used gait parameters such as
velocity, step length, and cadence.

Falling detection is an important application for inertial sen-
sor. Falling can happen in anytime and anywhere, and may
cause serious consequence especially for the older popula-
tion. It is estimated that more than one third of the adults
aged over 65 years fell each year [2],[17], and therefore makes
it the leading cause of nonfatal injury for the age group. Re-
cent researches on injuries in general public have shown that
the fall is an increasing cause of injury, especially fractures,
in elderly individuals |11].

Among older people, 55 percent of fall injuries occurred in-
side the home. An additional 23 percent occurred outside
but near their home [19],[3]. Traditionally, placing seniors in
nursing homes or care centers reduces the risk of fall. How-
ever, with wireless networks and low-power mote technology,
we can now approach the problem from a different perspec-
tive [3],[4],[9]. With highly reliable fall detection system,
person suffered from fall especially the aged population can
be found immediately, and a real time alarm system can be
build based on the architectures.

In addition to fall, similar accidents happening during daily
life include slip and trip. Slip has been a research topic for
a long time. Some researches focus on the relation between
fall or trip accidents and build features like stairs, ladders,
windows and roofs. They find fall accounted for more than
80% slip, trip and fall (STF) related fatalities, and 61.4%
of these accidents are related to fall on stairs [5]. There
are also some researches studied the STF accidents in work
groups with reference to age. The group with age of 45
or higher has an increased rate of STF accidents in recent
years |12]. Aside from occupational accidents, STF is also
the second-leading reason for intentional death. It cause
more than 25,000 fatalities in 2009. Elderly individuals have
the highest risk, more than 3.3 million nonfatal STFs happen
on elderly individuals in 2012.

2. RELATED WORKS

The following researches provide statistic references for oth-
ers. Herran et al. [16] reviewed gait analysis researches, in-
cluding image processing, floor sensors, and sensors placed
on the body. The statistic result shows a trend that the
wearable sensor are becoming more and more popular in
both research field and application field. Kunze et al. [13]
compared the differences among the body sensors place-
ments such as on the head, wrist, torso, and pocket. They
implanted series of experiments and the result suggested
that the waist could be the most reliable choice for mea-
suring human activity.

In order to obtain accurate gait parameters, various algo-
rithms for converting raw sensor data to gait parameters
have been developed. Trojaniello et al. [20|reviewed five
methods of estimating gait event and temporal parameter
from the acceleration signals of single inertial measurement
unit were compared through tests. Their result indicates
that their sensitivity values varies from 81% to 100% across

methods. Their positive predictive values are ranged from
94% to 100%. In the estimation of step and stride durations,
all methods are acceptable while in estimating swing, stance
and double support time some differences were found due to
the error of final contact detection. It shows the position
of the IMU on the lower trunk does not affect the accuracy
too much except for one method. Depending on the statis-
tical analysis result in the previous paper. M method has a
good performance in the estimation of gait parameters. In
the paper of M method [15|, the author presents their es-
timating method which is relatively better than other two
methods in previous researches. They take advantages from
the continuous wavelet transform which can remove extrane-
ous signal fluctuation but preserve the underlying frequency.
When combining with differentiation analysis, it shows good
performance in suppressing noise, correcting baseline drift,
resolving overlapping peaks. Thus, it can detect the initial
contact (IC) and final contact (FC) exactly which indicates
the beginning and the ending of a gait event. They also
present a method to determine if the contact came from the
right foot or the left foot. Except accelerometer, inertial
measurement unit (IMU) also provided with gyroscope, so
they can use angular velocity signal within the gyroscope to
distinguish each side of contacts. In their experiment, all ICs
and FCs are detected by their method and the time error
was approximately 2% and 3% in each side, respectively.

Accelerometer or inertial sensor based fall detection meth-
ods have been raised in recent years. Gupta et al. [10] per-
formed falling detection using tri-axial accelerometer. They
put the accelerometer on subjects’ waist combining with
pressure sensor in the insole. They applied threshold based
algorithm for fall detection which was similar to the algo-
rithms from others. They also present new algorithm based
on frequency analysis which used wavelet transform. It has
good performance for gait classification and fall detection.
Chen et al. [7]presented a fall detection method using non-
invasive wearable sensor in conjunction with wireless net-
work. They used low-power and low-cost MEMS technol-
ogy based accelerometer and built a wearable circuit board
for that. Then it was put on the waist for measuring the
acceleration of a subject. Once the norm of the accelera-
tion exceeds a threshold, an impact was found. If there was
no impact within next several seconds, the system started
to look for orientation change. If there was no orientation
change from the subject, which indicated the subject was
injured or even unconscious, the alarm system would send
warning message to the nurse. Selvabalab et al. [18] imple-
mented the human fall detection system using two wireless
network architectures, named cross bow wireless sensor node
system and PIC18LF4620 wireless module. The fall detec-
tion mechanism was conceived with two sensors including
three-axes accelerometer and Passive Infrared (PIR) sensor
to monitor the activities for elderly people. The resultant
voltage changed because of the human activities are the tar-
geted interest and are detected through both sensors. The
real time output is compared with stored templates and the
computational analysis is done within microcontroller in real
time. The system informs the caretaker through the wire-
less architecture once any abnormal data different from the
stored templates detected.

More complex activity monitor systems can identify differ-



ent activities or recognize stumble rather than general fall.
Lee et al. [14] implemented wireless accelerometer sensor
module and algorithms to recognize wearer’s posture, activ-
ities and fall. In their algorithm, activity is determined by
the AC component of accelerometer signal and the posture
is determined by the DC component of accelerometer sig-
nal. Those activity and posture included standing, sitting,
lying, walking, running and so on. The fall detection rate
of the system is 93.2% on 30 subjects. The whole system is
built and tested using wireless sensor network in experimen-
tal space. This system can be applied to elders for activity
monitoring, fall detection, exercise measurement, and pat-
tern analysis. Different from looking for a specific pattern,
Chehade et al. introduced a normal distribution walking
model based on one feature extracted from acceleration sig-
nal during walking @ They tried seven different places
for the tri-axes accelerometer on the human body. Finally
they found the sensor on the chest had the best performance
for separating stumble from normal activities. The stumble
data is considered as an abnormal deviation from the normal
activity model, so they trained their model through a long
period of history data. The best threshold of this model
was when the model reached the lowest false alarm rate.
Some researchers developed a gait parameter analysis tool
based on one accelerometer . Yang’s group designed a
software program for extracting gait parameters from ac-
celerometer signal and displaying these parameter through
a graphic user interface. Their work provided a convenient
tool for themselves and others. For general purpose, more
complicated body sensor networks (BSNs) contain inertial,
ECG, humidity, and light sensors, have been studied inten-
sively in recent years. In the perspective of system design
methodology, Fortino et al. summarized the common tasks
and requirements for BSNs applications in their paper .
This paper presented an open-source programming frame-
work, signal processing in node environment (SPINE), which
could fulfill these requirements. Therefore, an efficient man-
agement of body sensor networks could be achieved under
this architecture. In this project, several parameters like
cadence, velocity, motion intensity are collected.

3. SYSTEM

3.1 Gait parameter calculation

The system collects data from the sensors in the smart-
phone which is clipped on the waist. The mobile device
recorded acceleration data in a sampling frequency of 50Hz.
Then the data is transmitted to the laptop in the Matlab
where the raw sensor data is converted into gait parameters.
All results and a Flash playing the walking or running ca-
dence of the user are shown in a customized Matlab GUI.
Figure |2| and 3| show the system diagram and the system
flowchart.

Step counting algorithm is the core of the whole program.
This self-adaptive peak-detection algorithm has following
advantages comparing with other algorithms. First, it is
insensitive to the peak amplitude changing. The amplitude
of the peak usually changes and the main reasons can be
the location changing in response to our body or motion
intensity. The changes of the smart-phone placement may
severely affect the peak value because it changed the orien-
tation of the smart-phone and the distribution of the gravity
in three coordinates. That is the reason that caused the in-
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Figure 2: Gait monitor system diagram
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Figure 3: System flowchart

accuracy of the threshold based algorithm. Second, since
the window sizes change with fundamental frequency all the
time, no matter how fast or slow the user walks or runs, it
can be guaranteed that the window will not cover two true
peaks in anytime while it can exclude the false peak that
is closed to the true peak. Thus, this algorithm is superior
comparing to other peak detection algorithms using sliding
window for fixed size or using filter of fixed cut off frequency.

Cadence = steps/walkingduration (1)
Averagesteplength = walkingdistance/steps (2)

Velocity = walkingdistance /walkingduration  (3)

RMS = /3" (Ai — Ap)2/N @)
regularity = A?“f/ Z A?‘i (5)

The starting and ending times for each walking activity are
detected automatically through the real-time step counting
algorithm so that the walking duration can be acquired in
this way. Based on these information, variety of gait param-
eters can be calculated through these formulas above. Some
of them might require walking distance information input by
users. Root mean square (RMS) that related to the exercise
intensity is defined by the formula 4. A; represents i th ac-
celeration sample in the sequence, this sequence contains all
samples of a complete walking activity. A,, represents the
average value of this sequence and N represents the length
of this sequence. The RMS1-3 indicate the three axis of
the acceleration signal individually. Regularity is defined by
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Figure 4: Matlab GUI

Algorithm 1 The gait analysis algorithm

Input: Acceleration samples

Output: Gait parameters

Part a: Dynamic window size adjustment (The system
obtains a sliding window with the size equal or close to
the duration of one step)

Step 1: Collecting latest post-anterior acceleration data
from a fixed window with the size of 150.

Step 2: Performing FFT analysis on these 150 samples,
acquiring the fundamental frequency of this sequence.
Step 3: Based on the fundamental frequency, making a
new window with the size equal to one cycle of the fun-
damental component of the signal.

Step 4: If this window size is out of the range between 12
and 50, it is limited to the margin of this range. Which
means we suppose that the gait event frequency cannot
be higher than 4.16/sec or lower than 1/sec.

Part b: Window locating (In this part the system finds
a peak then moves the window to the peak)

Step 5: Applying the new window on the signal sequence,
finding the negative peak within the window.

Step 6: Putting the window around the negative peak, so
the peak is located in the center of the window.

Part c: Peak verification (In the last the system makes
sure that the peak found in last part does correspond to
one step)

Step 7: Determining whether the negative peak is the
lowest value within the window. If not, go back to step 1.
Otherwise, go to next step.

Step 8: If it is different from the last peak value M and this
negative peak value is also lower than -2.5*g (gravitation),
the number of steps increases by one and the value of M
is replaced by this peak value. Otherwise, go back to step
1.

Step 9: Calculating gait parameters based on formulas
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formula 5. In the formula 5, Ays represents the amplitude
of the fundamental frequency and Ay, represents the ampli-
tude of the i th frequency in the spectrum. The better the
subject keeps in a fixed walking cadence, the higher regular-
ity and amplitude of the fundamental frequency. All these
parameters are shown in the Figure EI

3.2 Fall detection

Fall detection and alarming functions are integrated into the
system. According to the observation from related experi-
ment [7] falling has distinct feature. The average peak of
acceleration changes during siting and walking only reaches
2.5%*G and 1.9*G, respectively, while falling are from 6.9*G
to 12.7*G. In another experiment [10|, the minimal peak
value of acceleration changed during falling down is 8.4*G
while the maxima values during walking, sitting and shuffle
walk are 5.3*G,4.0*G and 4.9*G. These results ensured a
robust methodology for threshold based fall detection. In
our system, we defined the acceleration changing through
the following formula.

A. = \/Z (Gimaz — Gimin)? (6)

In this formula, A, is the indicator of amplitude changing,
Gimaz ANd Gimin is the maximum and minimum values for
the latest input acceleration signal sequence with length of
100 in 4 th direction.

People suffered from fall do not always need help, in most
cases they can help themselves. Thus, a double check is
implemented after a falling has been found. If there is no
distinct acceleration changing after fall for a time period
longer than 20 seconds, which means that the person cannot
move himself/herself, the system will send an alarm message
to another person. We use the formula below to determine
if there is any movement on the subject.

Aam) =P am) = /Y a1 (@)

ai(n) represented the n th acceleration data in ¢ th direction.
If A4 is larger than 2, the system will take the subject as
being able to help himself/herself.

3.3 Abnormal activity detection

An abnormal activity detection algorithm is presented in
this work. A normal activity model is built based on several
independent real-time gait parameters acquired from previ-
ous work (cadence, RMS1-3). When people suffered from
accidents like fall, slip or trip, their motion intensity and
walking cadence are changing rapidly. Therefore, these pa-
rameters are capable of reflecting effectively whether some
accidents are happened on the user. First of all, the system
collects past 2 minutes data and separates these data into 24
short segments (L,1)7(L,24). Each segment L has a length
for 5 seconds without overlapping. Second, these gait pa-
rameters are calculated for each segment. Four sequences of

different parameters, (C,1)7(C,24), (R1,1)"(R1,24), (R2,1)"(R2,24)

and (R3,1)7(R3,24) are extracted from (L,1)7(L,24). These



sequences correspond to cadence, RMS1-3. Third, the mean
1 and standard deviation o are calculated in each parameter
sequence (C, R1, R2, R3). A normal distribution model is
built as Eq.(8).
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Fourth, a dynamic threshold 7 is set based on the nor-
mal distribution model, the initial value of the threshold is
plus/minus 30 away from the mean value. Once any of these
gait parameters of latest segment is out of the thresholds, an
alarm message is shown on the GUI and the user can deter-
mine if the reported anomaly is true or false. The threshold
in each model is modified based on the false positive and
negative. If a sequence of normal walking is reported as an
accident, the threshold will be modified by 0.50 to reduce
the sensitivity of alarm system. Vice versa, if an accident
is missing, the sensitivity will increase by the same amount.
Different from other specific pattern recognition model, the
proposed model is built based on a normal walking or run-
ning activity. Four different features from the previous gait
parameter calculation system are selected to build the nor-
mal activity model. This anomaly detection algorithm can
find distinct abnormal gait parameters that come from an
occasional accident.

4. EXPERIMENT

4.1 Experiment setup

Gait parameters acquired from our system are tested through
the following experiments on 4 people. The experiment
tools include experiment and control groups. Experiment
group includes a smart-phone (Google Nexus6) with clip on
a phone case, and a laptop. Control group contains a video
recording device and a tape measure. The experiment envi-
ronment is on an outdoor field with 40 meters straight line
drown on the ground.

4.2 Description

During the experiment, each subject went through the cal-
ibrated line three times by slow speed walking, fast speed
walking, and jogging. The whole process was recorded by
video recording device. Following the experiment results,
steps, cadence, average velocity, average step length were
compared with the real data derived from the video record.
Other results like RMS1-3 and regularity were listed indi-
vidually. In the fall detection test, each subject was asked
to fall down on the mattress 3 times in each direction (for-
ward, backward, and sideward), and the number of correct
detection times were recorded.

4.3 Results

Subject 1:
slow speed walking
experimental data | real data
step 60 61

duration(s) 40.6 42.72

cadences(s™ 1) 1.4778 1.4280
velocity(m/s) 0.98522 0.93633

step length(m) 0.66667 0.65574

Fast speed walking

step
duration(s)
cadences(s ')
velocity(m/s)
step length(m)

experimental data
55
30.8
1.7857
1.2987
0.72727

real data
54
28.24
1.9121
1.4164
0.74074

experimental data | real data
step 44 47
Jogging duration(s) 17.6 18.15
cadences(s™!) 2.5 2.59
velocity(m/s) 2.2727 2.2039
step length(m) 0.90909 0.85106
Subject 2:
Slow speed walking
experimental data | real data
step 54 54
duration(s) 32.4 33.31
cadences(s ™) 1.6667 1.6211
velocity (m/s) 1.2346 1.2008
step length(m) 0.74074 0.74074
Fast speed walking
experimental data | real data
step 46 46
duration(s) 22.4 22.39
cadences(s™") 2.0536 2.0545
velocity(m/s) 1.7857 1.7865
step length(m) 0.86957 0.86957
Jogging
experimental data | real data
step 39 38
duration(s) 15.6 14.92
cadences(s ') 2.5 2.5469
velocity(m/s) 2.5641 2.6810
step length(m) 1.0256 1.0526
Subject 3:
slow speed walking
experimental data | real data
step 58 52
duration(s) 33.2 29.59
cadences(s™ 1) 1.747 1.757
velocity(m/s) 1.2048 1.3518
step length(m) 0.68966 0.76923
Fast speed walking
experimental data | real data
step 48 45
duration(s) 22.6 2.0911
cadences(s™") 2.1239 2.0545
velocity (m/s) 1.7699 1.8587
step length(m) 0.83333 0.88889

Jogging




experimental data | real data
step 29 37
duration(s) 18.4 17.09
cadences(s ™) 1.5761 2.165
velocity(m/s) 2.1739 2.3406
step length(m) 1.3793 1.0811
Subject 4:
slow speed walking
experimental data | real data
step 49 48
duration(s) 26 26.46
cadences(s ™) 1.8846 1.8141
velocity(m/s) 1.5385 1.5117
step length(m) 0.81633 0.83333

Fast speed walking

experimental data | real data
step 44 43
duration(s) 19.8 19.69
cadences(s ™) 2.2222 2.0315
velocity (m/s) 2.0202 2.0315
step length(m) 0.90909 0.9302
Jogging
experimental data | real data
step 41 45
duration(s) 18.2 18.76
cadences(s™*) 2.2527 2.3987
velocity(m/s) 2.1978 2.1322
step length(m) 0.97561 0.88889
Subject 1:
RMS1 | RMS2 | RMS3 | regularity
slow walking | 1.9142 | 1.9892 | 2.376 0.041143
fast walking | 2.492 | 2.8603 | 3.6882 | 0.071887
jogging 6.4425 | 5.0591 | 4.0318 | 0.049401
Subject 2:
RMS1 | RMS2 | RMS3 | regularity

slow walking | 2.5243 | 1.7616 | 2.2281 | 0.037587
fast walking | 5.1626 | 3.1166 | 3.5248 | 0.07455
jogging | 8.2043 | 3.5137 | 4.4467 | 0.044224
Subject 3:
RMS1 | RMS2 | RMS3 | regularity
slow walking | 3.3612 | 2.9098 | 2.6414 | 0.051346
fast walking | 5.6903 | 4.344 | 4.2622 0.07823
jogging 7.1424 | 4.5847 | 5.5862 | 0.019551
Subject 4:
RMS1 | RMS2 | RMS3 | regularity
slow walking | 3.8638 | 2.4607 | 2.4824 | 0.061895
fast walking | 5.5494 | 3.983 | 4.1272 | 0.091909
jogging 7.026 | 3.0014 | 5.1557 | 0.035737

During fall detection test, falling sideward has the highest
detection rate, 100%, and the detection rate of forward and
backward falling are 91.7% and 83.3%, respectively.

S. DISCUSSION

The experiment results show acceptable accuracy for calcu-
lating steps, duration, cadence, average step length, and ve-
locity. The average error for steps and duration are 5.4692%
and 4.5465%, respectively. The main error comes from the
jogging test of subject 3. Unlike other subjects, subject 3 did
not wear leather belt on the trouser, and the smart-phone
could not be placed securely on the user. It caused irregu-
lar movement of the smart-phone while jogging. The results
indicate that most people have better ability to keep their
gait cadence in walking than running. In addition, the com-
parison of the results from all subjects shows that keeping
cadence during running is a challenge task. So the regular-
ity can be used to determine how well people can control
their body movement in a regular pattern. The motion in-
tensity indicator RMS shows that in most cases people have
more intense movement in vertical direction during walk-
ing and running. The limitation of the system is that the
gait parameter calculation method requires manually input
the walking distance. Currently, many popular commercial-
ized sports bands from Fitbit, Jawbone, and Nike have the
function of step counting while none of them has achieve
the accurate calculation of walking distance. The related
studies have been done in some areas like the inertial sensor
based navigation system. This limitation hopefully could be
addressed based on these researches. Comparing with these
commercialized products, our system is more suitable for
people with some abnormal walking posture. In our early
research [22][21], these commercialized products were tested
on old people, and found perform huge errors on cane or
walker users. However, our smart-phone based system does
not affected by the abnormal posture from user’s arm.

The accuracy of fall detection is closely related to how people
fall. Falling sideward has the heaviest impact while the im-
pact of falling forward and backward has mitigated by arm
or hip. The threshold based fall detection method could be
failed in case of affecting by people’s subconscious protec-
tion actions. After falling, if the subject stand up within 20
seconds, the alarm will not be triggered. The experiment
has one limitation which frequently appears in similar ex-
periments. In order to verify such kind of system, the test
should be carried out on people in realistic situations. Since
the falling is a rarely happened event, it is hard to collect
enough data from realistic situation. Therefore, all falling
events are simulated in the laboratory environment. A delib-
erate falling is slower and slighter than an accidental falling.
Moreover, all subjects are falling on a mattress instead of
the ground, and it mitigates the impact in some degree and
reduces the amplitude of the signal peak during falling. The
falling in the realistic situation could be more intense and
the amplitude of acceleration signal will be higher as well.

The accuracy of the system has been verified by the exper-
iments, and these gait parameters can be used to describe
human activity. The normal distribution model of walking
can be used to detect accidents caused by either internal
or external factors. The observation and experience indi-
cates that people tend to keep a fixed pace during normal
activity. Therefore, the acceleration signal has a repeated
pattern and gait parameters should be in a limited range
within a short period of time. Any parameter far from this
range can be caused by accidents. However, the limitation



of this method is it cannot distinguish what accident it is. It
requires different sensor in different places like pressure sen-
sor in the insole or inertial sensor on the ankle to recognize
some specific patterns.

6. CONCLUSION

This paper presents a convenient tool for collecting data
from smart-phons, plotting real-time acceleration data and
playing corresponding flash of the user’s cadence in GUI,
and calculating 9 different key parameters closely related to
walking activity. The integrated accident detection function
also protects people from injury. The smart-phone platform
can be extended to other mobile devices with accelerometer
and data transmission functions, and the sampling frequency
can also be adjusted from 20 to 250Hz. Currently, the algo-
rithm is designed for putting smart-phone on the waist, the
future work will include improving the feasibility of the mo-
bile device on different positions of human body. Moreover,
the system performs well in different walking speeds with-
out information from the source of the acceleration peak,
and the peak caused by other activities like jumping or sit-
ting can also be taken as a step. Thus, activity classification
function can be added to the system.
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