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ABSTRACT
Walking ability can be degraded by a number of pathologies,
including movement disorders, stroke, and injury. Personal
activity tracking devices gather inertial data needed to mea-
sure walking quality, but the required algorithmic methods
are an active area of study. To detect changes in walking
ability, the similarity between a person’s current gait cycles
and their known baseline gait cycles may be measured on
an ongoing basis. This strategy requires a similarity mea-
sure robust to variability encountered in an outpatient sce-
nario, including changes in walking surface, walking speed,
and sensor orientation. Here we propose rotation, scale, and
offset invariant dynamic time warping (RSOI-DTW), a vari-
ant of the well-known dynamic time warping (DTW) algo-
rithm, as a generalization of DTW appropriate for three-
dimensional inertial data. RSOI-DTW is invariant under
rotation, scaling, and offset, yet it preserves the salient fea-
tures of gait cycles required for gait monitoring. To support
this claim, gait cycles from 21 subjects walking with four
different styles were compared using both DTW and RSOI-
DTW. The data show that RSOI-DTW converges quickly
and achieves rotation, scale, and offset invariance. Both al-
gorithms distinguish persons and detect abnormal walking,
but only RSOI-DTW does so in the presence of sensor rota-
tion. Variations in walking speed pose a challenge for both
algorithms, but performance is improved by collecting base-
line information at a variety of speeds.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—similarity mea-
sures

General Terms
Algorithms, Experimentation, Human Factors, Measurement

Keywords
Inertial body sensors, Gait assessment, Gait recognition,
Dynamic time warping

1. INTRODUCTION
Movement disorders, stroke, traumatic injury, and other

pathologies can degrade walking ability. A patient’s walking
quality can be monitored by a care provider to guide treat-
ment decisions, measure the effectiveness of interventions, or
provide prognostic information to the patient. While per-
sonal activity tracking devices make it easy to measure the
quantity of a person’s walking, they are not yet equipped to
measure and monitor its quality over time.

The pathology detection and monitoring problem is chal-
lenging because of heterogeneity among persons, patholo-
gies, and devices. What is abnormal in one person might be
typical in another, and two different pathologies – say, hemi-
paresis and Parkinsonian gait – may have little in common.
Further, each personal tracking device has its own unique
combination of sensors, placement location(s) on the body,
and attachment method(s). If inertial signal features are
used to monitor walking quality, this heterogeneity must be
considered carefully: the features important in one scenario
may not be important in others.

To overcome these difficulties, monitoring can be based on
a similarity measure, not extracted features. In a similar-
ity measure based strategy, rather than learning the unique
set of features important for each combination of persons,
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pathologies, and devices, a monitoring algorithm can in-
stead observe a person’s walking at baseline, then monitor
its similarity to current walking patterns as time goes on. No
prior information about pathology is needed, and a person’s
unique walking characteristics are not a hindrance.

In rehabilitation following stroke or trauma, similarity to
baseline should return as walking ability is recovered. In
chronic, progressive disease – including multiple sclerosis,
the focus of our clinical research – the similarity to baseline
can be quantified on an ongoing basis, and new baselines
can be established to detect further degradation. Current
walking is compared only to baseline measurements from the
same person using the same device, so observed differences
may be attributed primarily to changing walking patterns.

Patients would routinely complete a self-initiated walking
test at home, wearing a personal activity tracking device or
smartphone able to record inertial data. Gait cycles would
be compared to baseline cycles using an appropriate simi-
larity measure. For this purpose, we propose rotation, scale,
and offset invariant dynamic time warping (RSOI-DTW),
a variant of the well-known dynamic time warping (DTW)
algorithm. We first establish the theoretical properties of
RSOI-DTW, then explore the suitability of DTW and RSOI-
DTW for pathology detection and monitoring using data
gathered from a walking test with 21 healthy participants.

After a brief literature review, Section 3 describes the
walking test and DTW algorithm, then introduces the RSOI-
DTW algorithm. Section 4 gives results from the walk-
ing test, including evidence that RSOI-DTW (1) converges
quickly; (2) achieves RSO invariance in practice; (3) retains
the ability to distinguish persons despite its flexibility in
matching sequences; and (4) identifies simulated pathology,
warranting a trial with true pathology. The last portion of
Section 4 revisits these results in the presence of fast walk-
ing, highlighting the challenge posed by varying gait speed.

2. RELATED WORK

2.1 Inertial Data Processing
DTW has been used successfully for activity recognition

[10] and biometric gait recognition [4][9][11][13], and sev-
eral variants have been proposed. Scale and offset invariant
DTW, in which one sequence can be scaled or shifted to
improve similarity, has been developed by several authors,
notably Chen et al., who evaluated an iterative algorithm
similar to ours on a number of time series data sets [2].
When analyzing gait, scale and offset invariance may mit-
igate variability due to walking surface, shoe type, attach-
ment method, and moderate changes in speed.

In addition to scale and offset invariance, RSOI-DTW
incorporates rotation invariance, allowing it to match gait
cycles regardless of device orientation. This is a neces-
sity in a real world, self-testing scenario, because a partic-
ular orientation cannot be assumed. A rotation invariant
DTW algorithm was used by Qiao and Yasuhara to ana-
lyze two-dimensional handwriting samples [12], and Bours
et al. devised a rotation invariant algorithm based upon
principal component analysis [1]. To our knowledge, no iter-
ative, rotation invariant DTW variant appropriate for three-
dimensional inertial data had been developed and tested
prior to the current work.

However, a number of methods for inertial data processing
not based on DTW have incorporated rotation invariance.

Chien et al. corrected sensor orientation as part of model-
based classification of upper limb movements and walking
activities [3]. Recently, Gong et al. created a linear dynam-
ical model based method for activity classification that is
robust to sensor mounting errors, including rotation [6].

2.2 Device Based Disability Monitoring
Inertial devices have been used for disability monitoring

in many different contexts. The ISway test developed by
Mancini et al. uses an accelerometer to measure postural
sway resulting from neurological impairment [8]. Salarian
et al. created the iTug system, which uses inertial sensors
to partly automate the Timed Up and Go test, a clinical
measure of balance and mobility [15]. Spain et al. captured
differences between multiple sclerosis subjects grouped by
disability level using features derived from inertial sensors,
but could not detect changes in those features over time
[16]. Many studies have used daily step counts derived from
inertial sensors as an outcome measure, but comparatively
few have assessed features intrinsic to individual gait cycles.

3. METHODS

3.1 Data Collection and Segmentation
21 subjects participated in the walking trial. Subjects

wore a single ActiGraph accelerometer on their left hip, se-
cured using an elastic belt with a pouch for the device. All
subjects wore the same device. Each subject was asked to
walk down a long corridor four times to demonstrate four
different styles of gait: casual walking, fast walking, ataxic
walking, and right leg circumduction. Ataxic walking is seen
in persons with balance difficulties, characterized by a wide
base and lateral swaying. Circumduction is the outward,
circular swinging of one leg in swing phase; it occurs when
the leg is rigid or spastic at the knee and/or ankle joint.

Subjects walked with each style in one direction for 40
steps, then turned, paused five seconds, and walked back
with the next style. Each style was demonstrated before the
trial by a clinically trained research assistant, and subjects
were given an opportunity to practice until comfortable.

To experimentally verify the rotation invariance of RSOI-
DTW, three subjects completed a second trial where they
walked casually each time, but sensor orientation was changed.

The data was manually divided by person and walking
style and segmented into gait cycles, defined as the data
between consecutive left heel strikes. There are prominent
peaks in the acclerometer signal at the point of heel strike
in all walking styles, making the heel strikes easy to identify.
Subsequent processing using DTW and RSOI-DTW exploits
these gait cycles.

3.2 Dynamic Time Warping
Individual gait cycles were compared using DTW and

RSOI-DTW, the variant of DTW described in the next sec-
tion. Here we offer a brief, formal description of DTW. A
more comprehensive treatment may be found in [7].

The DTW algorithm takes two sequences X = (x1, ..., xm)
and Y = (y1, ..., yn) as inputs and returns a measure of simi-
larity dDTW , often called the DTW distance, between them.
In this work, the xi and yi are three dimensional acceleration
vectors. Our implementation of DTW also returns warped
sequences XW and YW derived from X and Y by (possi-
bly) repeating terms to improve alignment. More precisely,



XW = ((x1)a1 , ..., (xm)am) and YW = ((y1)b1 , ..., (yn)bn),
where (·)k denotes k repetitions of a term, and the aj and
bj are positive integers found by the algorithm. Using this
notation, the DTW distance dDTW is the squared Euclidean
distance between XW and YW , defined as follows:

Definition 1. Given sequences A = (a1, ..., aN ) and B =
(b1, ..., bN ), the squared Euclidean distance between A and B
is:

d(A,B) =

N∑
i=1

‖ai − bi‖2 (1)

where ‖ · ‖ is the usual Euclidean norm.

To compute dDTW , XW , and YW , we first construct an
(m × n) matrix D, where D(i,j) = ‖xi − yj‖2. Intuitively,
we then find the minimum cost path through D from D(1,1)

to D(m,n) subject to a path constraint. Letting wk be the

kth element of a warping path W – a possible path through
D – we constrain W to allow only three moves: repeat the
current point in X, repeat the current point in Y , or move
to the next point in both. Formally, if wk = (ik, jk), then
wk+1 ∈ {(ik+1, jk), (ik+1, jk+1), (ik, jk+1)}. The optimal
path from (i, j) to (m,n) and its cost C(i,j) are computed
using dynamic programming, where C(m,n) = D(m,n), and
the remaining C(i,j) are given by the following recursion:

C(i,j) = D(i,j) +min{C(i+1,j), C(i+1,j+1), C(i,j+1)} (2)

This recursion may be carried out row-wise or column-wise,
with C(i,j) = ∞ for i > m or j > n. The final DTW
distance is C(1,1), and the warping path W along with the
warped sequences XW and YW may be recovered from C.

In this work, we have resampled Y to be the same length
as X and limited the warping path to the Sakoe-Chiba band
[14] to reduce computation, so that C(i,j) = ∞ whenever
|j − i| is greater than one fourth the length of X.

3.3 Rotation, Scale, and Offset Invariant DTW
RSOI-DTW is an iterative algorithm that alternates be-

tween optimizing the rotation, scaling, and offset of the se-
quence Y , and optimizing the warping path using DTW.
The former is an instance of the Procrustes problem, which
may be solved in closed form using singular value decompo-
sition. The details of this problem are beyond the current
scope, but may be found in [5].

In this application, the rotation matrices must be limited
to SO(3), the (3 × 3) orthogonal matrices of determinant
1. SO(3) are the rigid rotations in R3, excluding reflec-
tion; they correspond with the rotations possible for a rigid
physical object. These matrices form a group under multi-
plication: in particular, they are invertible, and the inverses
and products of rigid rotations are also rigid rotations.

This section first defines the transformations allowed in
RSOI-DTW – the RSO transformations – then provides the
RSOI-DTW algorithm. Finally, it proves that RSOI-DTW
is rotation, scale, and offset invariant under typical circum-
stances, and the algorithm is guaranteed to terminate.

Definition 2. An RSO transformation is an affine trans-
formation f : R3 → R3 of the form f(x) = sRx + b, where
s ∈ R+, R ∈ SO(3), and b ∈ R3.

Proposition 1. The RSO transformations are closed un-
der composition and inverse, thus forming a subgroup of the
affine group.

Proof. Let fα(x) = sαRαx + bα, and fβ(x) = sβRβx +
bβ . The inverse of fα is given by (fα)−1(x) = 1

sα
(Rα)−1x−

1
sα

(Rα)−1bα. By inspection, 1
sα
∈ R+ and − 1

sα
(Rα)−1bα ∈

R3, and (Rα)−1 ∈ SO(3) because SO(3) is closed under in-
verse. So, the RSO transformations are closed under inverse.

The composition of fα and fβ is given by (fα ◦ fβ)(x) =
(sαsβ)(RαRβ)x + (sαRαbβ + bα). As before, we note that
sαsβ ∈ R+ and (sαRαbβ+bα) ∈ R3; and the closure of SO(3)
under composition guarantees that RαRβ ∈ SO(3). Thus
the RSO transformations are closed under composition.

Definition 3. Given an RSO transformation f and a se-
quence X = (x1, ..., xn), where xi ∈ R3 ∀i, the sequence
f(X) is defined to be (f(x1), ..., f(xn)).

With this background in place, we now present the RSOI-
DTW algorithm:

Algorithm 1. Rotation, Scale, and Offset Invariant DTW

1: procedure RSOI-DTW(X,Y )
2: XW ← X
3: YW ← Y
4: d←∞
5: repeat
6: dold ← d
7: f∗ ← argmin d(XW , f(YW ))
8: . where f is an RSO transformation
9: (d,XW , YW )← DTW (X, f∗(Y ))

10: until (dold − d) < ε
11: return d,XW , f(YW )
12: end procedure

This algorithm can be restricted for a particular use case
by limiting f to a subset of the RSO transformations. If
rotation is not a concern, R may be held to I, the identity
matrix, reducing RSOI-DTW to scale and offset invariant
DTW, as developed in [2]. Similarly, if scaling is not a con-
cern, s may be held to 1.

Proposition 2. RSOI-DTW is rotation, scale, and off-
set invariant. More precisely, let X, Y , and Z be sequences
in R3 of equal length, where Z = fz(Y ) for some RSO trans-
formation fz. If d(XW , f(ZW )) has a unique minimizer f∗

at each iteration of the RSOI-DTW algorithm, then RSOI-
DTW(X,Y ) = RSOI-DTW(X,Z).

Proof. Let fz be the RSO transformation taking Y to
Z, so that fz(Y ) = Z, and suppose fz(YW ) = ZW at the be-
ginning of the ith iteration of RSOI-DTW(X,Y ) and RSOI-
DTW(X,Z). We proceed by induction; note that the i = 1
case holds, since we initialize YW ← Y and ZW ← Z.

Given a unique RSO transformation f∗ that minimizes
d(XW , f(ZW )) in iteration i, the RSO transformation (f∗ ◦
fz) must be the unique minimizer of d(XW , f(YW )). To see
this, suppose there were some other RSO transformation g
such that d(XW , g(YW )) ≤ d(XW , (f

∗ ◦ fz)(YW )). Since
YW = f−1

z (ZW ), where f−1
z is the inverse of fz, we have:

d(XW , (g ◦ f−1
z )(ZW )) = d(XW , (g(f−1

z (ZW )))

= d(XW , g(YW ))

≤ d(XW , (f
∗ ◦ fz)(YW ))

= d(XW , (f
∗(fz(YW )))

= d(XW , f
∗(ZW )),



violating our assumption that f∗ is the unique minimizer.
Knowing that f∗ and (f∗ ◦ fz) are the unique minimizers

found in line 7 of the ith iteration of RSOI-DTW(X,Z) and
RSOI-DTW(X,Y ), respectively, we conclude that the input
to the DTW subroutine is f∗(ZW ) in either case. Because of
this, DTW returns the same distance d and warping path W
in both cases, guaranteeing fz(YW ) = ZW at the beginning
of the (i+1)th iteration, completing our inductive proof.

Intuitively, since the first step in RSOI-DTW is to opti-
mally rotate, scale, and shift the input, the sequences YW
and ZW are both transformed to f∗(ZW ) in the first itera-
tion of the algorithm, and subsequent processing is identical.

Proposition 3. RSOI-DTW terminates.

Proof. First, notice that f(XW ) = f(X)W , because ap-
plying the warping path W is a repetition of terms, and the
transformation f is applied once to each term in either case.

Let di, Wi, and fi be the distance, warping path, and
optimal RSO transformation found in iteration i, so that
di = d(XWi , fi(Y )Wi). In iteration (i + 1), fi+1 is cho-
sen to minimize d(XWi , f(Y )Wi), thus d(XWi , fi+1(Y )Wi) ≤
di. And DTW finds the warping path Wi+1 minimizing
d(X, fi+1(Y )). Together, we have:

di+1 = d(XWi+1 , fi+1(Y )Wi+1) ≤ d(XWi , fi+1(Y )Wi) ≤ di.

Since this holds for all i, the sequence {di}i∈N is monotoni-
cally decreasing. Further, since the di are squared Euclidean
distances, they are bounded below by zero. Therefore this
sequence converges by the monotone convergence theorem,
guaranteeing termination of the RSOI-DTW algorithm.

4. RESULTS

4.1 Convergence and RSO Invariance of RSOI-
DTW in Practice

Having established the theoretical properties of RSOI-
DTW, we now show it performs as expected on our walking
data. Figure 1 illustrates the use of RSOI-DTW to com-
pare two gait cycles. Both cycles were taken from a sin-
gle subject’s casual walking segment. The raw cycles C1

and C2 are shown in the top and middle left plots, respec-
tively. The bottom left plot shows C2 after a randomly
chosen RSO transformation f is applied. The right panel
shows how RSOI-DTW alters the cycles. When running
RSOI-DTW(C1, C2), a warped version of C1 (top right) and
a warped, transformed version of C2 (middle right) are re-
turned. Here the rotation, scale, and offset are small, be-
cause sensor alignment was consistent and no rotation was
applied. When running RSOI-DTW(C1, f(C2)), the same
two plots are returned. The warped version of C1 (not
shown) is identical to the top right plot, and the warped,
rotated version of f(C2) (bottom right) is identical to the
plot above it, because RSOI-DTW is invariant under f .

To verify that RSOI-DTW is invariant under a real rota-
tion – that is, a misorientation of the sensor – three of our
participants completed a second trial with the sensor in four
different orientations: no rotation, a 90◦ rotation about the
medial-lateral axis, a 180◦ rotation about the medial-lateral
axis, and a 180◦ rotation about the vertical axis. The 125
rotated signals were compared to the non-rotated signals us-
ing DTW and RSOI-DTW, and the resulting distances were
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Figure 1: RSOI-DTW is rotation, scale, and offset invariant:
when an RSO transformation is applied to cycle 2 (bottom
left), the RSOI-DTW algorithm corrects it (bottom right).

Table 1: RSOI-DTW achieves perfect 1NN recognition of
cycles collected with the sensor incorrectly oriented. The
table shows the number of cycles correctly classified under
DTW and RSOI-DTW distances out of the 125 cycles col-
lected from three subjects.

DTW RSOI

# Correct 24 125
(%) 19.2 100.0

used to recognize subjects. 1-nearest neighbor (1NN) recog-
nition is perfect under RSOI-DTW but worse than random
under DTW (Table 1), and RSOI-DTW distances were sim-
ilar for all four orientations (Figure 2).

As additional support, randomly chosen RSO transforma-
tions were applied to each of our 21 participants’ 12 casual
gait cycles. RSOI-DTW was used to compare the trans-
formed cycles to the original, non-transformed cycles, for a
total of

(
252
2

)
, or 31,626, comparisons. These distances were

compared to the corresponding distances obtained without
first applying a transformation. In all 31,626 cases, the
RSOI-DTW distances were identical up to rounding error,
never differing by more than 10−13. Together with the ex-
perimental result, this suggests that RSOI-DTW is RSO
invariant in practice when used on inertial time series data.

Figure 3 shows histograms of the RSOI-DTW convergence
rate when comparing (a) pairs of casual walking cycles, and
(b) fast walking cycles to casual walking cycles. In over
60,000 runs per plot, the algorithm most often required 7
iterations, rarely over 20, and never over 30. To ensure
local optimality, we insisted that d = dold for convergence,
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Figure 2: RSOI-DTW distances are similar regardless of
sensor orientation. The figure shows DTW (left) and RSOI-
DTW (right) distances between incorrectly oriented cycles
and the correctly oriented cycles from the same subject.

meaning the warping path was stable. In our data, using a
less strict (e.g. 10−5) convergence criterion typically reduces
the number of iterations by one, and never more than two.

As shown in Algorithm 1, each iteration calls DTW once
and the Procrustes algorithm once. DTW involves O(N2)
computations, where N is the length of the inputs: com-
putation is proportional to the number of pairings between
points in X and points in Y . However, RSOI-DTW must
recover the warping path W in addition to the distance d,
requiring a second trip through the cost matrix and adding
a multiple of N2 computations. Run time is increased, but
not by more than a factor of two. The Procrustes problem
requires only O(N) computations [5], and in our data set,
DTW occupies the vast majority of run time. A conserva-
tive run time estimate may be obtained by multiplying the
DTW run time by 2I, where I is the number of iterations
required.
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Figure 3: RSOI-DTW converges after 8 iterations on aver-
age. The figure shows histograms of the number of iterations
required to compare pairs of cycles.

4.2 Distinguishing Between Persons Using DTW
and RSOI-DTW

For the gait recognition problem, 1NN classification was
used to match gait cycles from all 21 participants to the ca-
sual walking template cycles under DTW and RSOI-DTW
distances. A test cycle Y was classified as belonging to
the owner of X, where X is the template cycle minimizing
DTW(X,Y ) or RSOI-DTW(X,Y ).

Table 2 shows that gait recognition succeeds in our data
set under both DTW and RSOI-DTW distances. Out of

Table 2: 1NN classification of casual gait is almost perfect
under both DTW and RSOI-DTW. However, when rota-
tions are applied to individual cycles beforehand, only RSOI-
DTW succeeds. The table shows the number of cycles cor-
rectly recognized out of the 252 tested.

Without Rotation With Rotation

DTW RSOI DTW RSOI

# Correct 252 251 68 251
(%) 100.0 99.6 27.0 99.6

252 tested cycles, DTW correctly classified all of them, and
RSOI-DTW misclassified only one. When distinct, ran-
domly chosen rotations were applied to test cycles before-
hand, DTW failed in most cases, but the RSOI-DTW results
were unchanged due to RSO invariance.

Gait recognition may also be treated as a decision prob-
lem: the algorithm must decide (YES/NO) whether a gait
cycle of unknown origin belongs to a given person. As seen
in Figure 4, a threshold is set on the best match between
the tested cycle and the known subject’s template cycles.
If best match distance is below the threshold, the cycle is
accepted, otherwise it is rejected. Table 3 summarizes the
decision problem results in all subjects by the equal error
rate (EER), calculated by finding the threshold minimizing
the difference between the false negative and false positive
rates, then taking their average.

Table 3: Threshold-based gait recognition achieves an equal
error rate (EER) of zero in all subjects under DTW, and all
but four subjects under RSOI-DTW. The table summarizes
the EER for the decision problem in all subjects.

DTW EER (%) RSOI EER (%)

Mean 0.0 0.5
Median 0.0 0.0

Min 0.0 0.0
Max 0.0 7.1

Figure 4 shows decision problem results for subject 8, who
had the worst EER (7.1%) under RSOI-DTW among all
subjects because of two unusual, poorly matching cycles.
The error rates are zero in all subjects under DTW and in
17 of 21 subjects under RSOI-DTW.

4.3 Detecting Simulated Pathology
The pathology detection problem is similar to the gait

recognition decision problem: the algorithm must decide
(YES/NO) whether an unknown cycle represents normal
gait or possible pathology. As before, a threshold is placed
on the best match between the tested cycle and the known
subject’s template cycles. Table 4 shows that the two sim-
ulated pathologies were easily recognized in all subjects un-
der both DTW and RSOI-DTW distances. The EER was
nonzero in only one subject under RSOI-DTW. As before,
only RSOI-DTW is capable of this accuracy despite the vari-
ability possible in a real-world use case.

4.4 Fast Walking
An algorithm monitoring walking ability should separate

possible pathology from normal walking at any speed. Simi-
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Figure 4: Threshold-based gait recognition is imperfect in
subject 8 under RSOI-DTW due to two poorly matching
gait cycles, but perfect in all but three of the other subjects.

Table 4: Simulated pathology can easily be distinguished
from casual gait. The table summarizes the equal error rate
(EER) for the decision problem with DTW and RSOI-DTW.

DTW EER (%) RSOI EER (%)

Mean 0.0 0.4
Median 0.0 0.0

Min 0.0 0.0
Max 0.0 8.3

larly, a gait recognition algorithm should accept cycles from
a known person walking at any speed, but reject cycles from
other persons. Amplitude and offset invariant DTW may
mitigate variability due to gait speed by warping and scal-
ing cycles. Unfortunately, Table 5 shows that fast walking
confuses the decision algorithm even using the RSOI-DTW
distance. This table summarizes the EER when distinguish-
ing normal walking, fast or slow, from simulated pathology.
Again, casual walking cycles were used as templates. RSOI-
DTW tended to improve performance because it can scale
fast gait cycles to match the casual cycles. Still, overall
peformance is poor with both measures.

Table 5: Fast gait is hard to distinguish from pathology us-
ing the casual gait cycles as templates. The table shows the
equal error rate (EER) in all subjects when distinguishing
normal gait (casual or fast) from simulated pathology.

DTW EER (%) RSOI EER (%)

Mean 43.8 31.3
Median 50.0 39.6

Min 0.0 0.0
Max 52.3 50.0

Figure 5 illustrates this difficulty in subject 10: while
RSOI-DTW dramatically lowered the distances between fast
cycles and the template cycles compared to DTW, it is not
enough for reliable pathology detection or gait recognition.

In light of this difficulty, either (1) walking speed must be
consistent between cycles, or (2) the template set must in-
clude cycles at many speeds. To test the latter, fast walking
cycles were added to the template set in each subject, with
results shown in Table 6. With this modification, simulated
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Figure 5: Fast gait confuses the pathology detection and
gait recognition algorithms in subject 10 under DTW, but
less so under RSOI-DTW. The figure shows distances to the
closest casual gait template cycle for several groups of cycles
using DTW (left) and RSOI-DTW (right).

pathology could again be distinguished from normal walk-
ing (casual or fast). Compared to the near perfect results
in the previous section, however, the EER is high in several
subjects. RSOI-DTW improves the EER in two subjects,
but worsens it in others.

Table 6: Including fast gait cycles in the template set dra-
matically improves performance when distinguishing normal
gait from simulated pathology. The table summarizes the
improved equal error rate (EER) in all subjects.

DTW EER (%) RSOI EER (%)

Mean 4.9 8.0
Median 0.0 1.1

Min 0.0 0.0
Max 31.3 33.3

5. DISCUSSION
Under the ideal conditions in our walking test, both DTW

and RSOI-DTW performed well. However, only RSOI-DTW
is equipped to compensate for the peculiarities of real-world
gait data. Section 4 illustrates the cost of this advantage.
First, in rare cases, the flexibility of RSOI-DTW allowed it
to closely match cycles from different subjects. This con-
fused the decision algorithm more than the classification al-
gorithm, because the latter had information about the match
distance to other subjects. Second, RSOI-DTW increases
run time by a factor of I to 2I, where I is the number of
iterations. In this data set, I had a median value of 8. We
recommend using DTW in a controlled, clinical scenario,
and RSOI-DTW in real-world remote monitoring. Indeed,
the RSOI-DTW algorithm can be constrained as much as
the use case allows, as mentioned in Section 3.3.

RSOI-DTW solves the orientation problem, but not the
gait speed problem: the distance between fast walking and
casual walking was reduced, but still significant. Section 3.4
shows that increasing the size and variety of the template
set improved performance substantially. We believe that
further template collection may solve the problem.

Matching inertial time series can be broken into many



subproblems. One could find the gravitational vector, using
it to partly correct the orientation, then adjust for sensor
bias, finally running DTW to optimize alignment, and so
on. RSOI-DTW is attractive partly because it solves all
of these problems at once. We have not compared RSOI-
DTW to another rotation invariant algorithm, because there
is no clear candidate: other rotation invariant approaches
use entirely different methodologies.

In our view, the RSO transformation is the most gen-
eral affine transformation reasonable for inertial data; yet
RSOI-DTW preserves the distinctive cycle features needed
to distinguish persons and walking styles.

6. CONCLUSIONS AND FUTURE WORK
These results confirm that RSOI-DTW is an appropriate

similarity measure for real-world inertial gait data, and sup-
port the proposed approach to the detection and monitoring
of gait pathology. RSOI-DTW matches gait cycles despite
incorrect sensor orientation, partly compensates for changes
in gait speed, distinguishes our 21 participants almost per-
fectly, and detects the changes in walking style in this trial.

Our subsequent work will focus on using DTW and RSOI-
DTW to monitor true pathology in both clinic and outpa-
tient settings. In particular, we intend to monitor persons
with multiple sclerosis while exercising to identify changes
in walking patterns induced by fatigue.

Long-term monitoring will require not just a similarity
measure, but also a method for clustering cycles, tracking
cluster progression, and summarizing it as an outcome mea-
sure. Clustering algorithms that accept arbitrary distance
metrics, such as k-medoids or affinity propagation, may be
an appropriate starting point.
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