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ABSTRACT
We investigated how regular eyeglasses could be extended
with multi-modal sensing and processing functions to sup-
port context-awareness applications. Our aim was to lever-
age eyeglasses as a platform for acquiring and processing
context information according to the wearer’s needs. The
WISEglass architecture consists of inertial motion, environ-
mental light, and pulse sensors, processing and wireless data
transmission functionality, besides a rechargeable battery.
We implemented prototypes of WISEglass and evaluated
them in three application scenarios: daily activity recog-
nition, screen-use detection, and heart rate estimation. We
conducted a daily activity study with nine participants, each
wearing WISEglass and recording for one day. When eval-
uating daily activity recognition, we obtained 77 % average
accuracy for continuous recognition using Gaussian Mixture
Models and classifier reject to ignore null class data. Using
the light sensor for detecting screen-use, yielded 80 % accu-
racy. Against a chest-worn ECG reference, our heart rate
estimation showed an difference below 10 beats for station-
ary activities across the full recording day. We concluded
that smart eyeglasses provide information from a single mea-
surement spot that is relevant in various context recognition
applications.

Keywords
context inference, mobile sensing, smart glasses, activity
recognition, eyewear

Categories and Subject Descriptors
I.5.m. [Pattern Recognition]: Miscellaneous

1. INTRODUCTION
Context awareness has opened a vast spectrum of appli-

cations that benefit from momentary information on user
activity, environment, physiology, and similar. Wearable de-
vices are often key to provide context information, as sensors
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Figure 1: WISEglass prototype. Baseboard, bat-
tery, accelerometer, gyroscope, and magnetometer
were mounted on the outside of a eyeglasses tem-
ple. The pulse sensor was mounted on the inside of
a temple. The light sensor was integrated onto the
bridge.

could be placed comfortably at body locations such as wrist,
leg, chest, or the ear. While hearing aids and Bluetooth
headsets got broadly accepted as daily accessories, head-
worn wearables were rarely proposed for context awareness
due to potential obtrusiveness of head-attached devices. Some
niche applications include ear-worn computers to manage
information [17], or the ear-worn e-AR device to monitor
activity and physiology [14]. There is nevertheless substan-
tial context information available around the head [?]. Eye-
glasses are regularly worn accessories that have a unique op-
portunity to carry sensors and process data at the head, thus
fill a gap for many context-awareness applications. More-
over, eyeglasses are being worn by millions of people, for
improved sight, but also as sunglasses, sports glasses, etc.

Substantial work has been dedicated to developing smart
eyewear already. However, functionality was often centred
around displaying information in front of the wearers eyes,
e.g. for augmented or virtual reality applications [3, 20].
GoogleGlass and others established microinteractions as key
feature of smart eyewear and focused on interaction and dis-
playing information using glass-attachable electronics. We
believe that instead of displays and direct interaction, smart
eyeglasses can be built for context-aware applications, where
the focus is on sensing and processing, rather than interac-
tion. Smart eyeglasses would hence focus on acquiring and
processing context information relevant to the wearer, but
minimise the risk of stigmatising or raising privacy concerns.

Besides the integration of sensing and processing func-
tions, the benefit of smart eyeglasses for different context
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recognition applications needs confirmation. Previous re-
search on head-attached devices and smart eyeglasses fo-
cused on detecting selected activities, such as walking and
reading behaviour using inertial sensors and the Electroocu-
logram (EOG) [14, 13]. A set of daily living activities was
not investigated (see related work for details). Moreover,
eyeglasses could be used to acquire environmental and phys-
iological information continuously, if a suitable smart eye-
glasses implementation is found.

In this paper, we propose smart eyeglasses as a platform
for a variety of context-aware applications. Our aim was
to confirm that smart eyeglasses could be built and used
instead of various sensors placed at different body positions.
We implemented WISEglass with various sensors, including
inertial motion, environmental light, and optical heart rate
and investigated three application scenarios: daily activity
recognition, screen-use detection, and heart rate estimation.
This paper provides the following contributions:

1. We present our WISEglass eyeglasses architecture, in-
tegrating multi-modal sensing functions corresponding
to frequent context types, including user activity, en-
vironmental state, and user physiology. We detail the
embedded design in regular eyeglasses and data pro-
cessing.

2. We evaluate WISEglass prototypes in a daily life study
with nine individuals that did not wear eyeglasses reg-
ularly, including a programme of 20 daily living activ-
ities. Based on the study data, we confirm that the
sensor placement and wearing across a day is suitable
to implement the context recognition tasks for each
application scenario.

Towards smart, regular eyeglasses there are many chal-
lenges to resolve. Our aim in this work is to establish that
context recognition - and thus assistance to wearers - bene-
fits from using smart eyeglasses due to their position at the
head. Earlier work on smart eyewear primarily considered
interaction and conveying visual information to the wearer.
Devices often clipped onto eyeglasses only. Our approach
is different, as we focus on single-point, multi-modal sens-
ing and processing, integrated into a typical accessory, and
serving different applications. We expect that in a subse-
quent step, continuous miniaturisation will allow us to even
further integrate functionality into unobtrusive eyeglasses.

2. RELATED WORK
Head mounted sensors were considered for context aware-

ness before. Aziz et al. [2] first used e-AR, an ear-worn
sensor, for monitoring patients after abdominal surgery. In
a study with 20 users they investigated motion patterns in
data obtained from two dual-axis accelerometers. They used
a pulse oximeter clipped to the users earlobe to monitor
heart rate and oxygen saturation. No performance analysis
was provided. Atallah et al. [1] compared seven different on-
body motion sensor locations while grouping the activities
by physical intensity level. At the head, they used e-AR and
found that the ear location delivers good results for 4 out
of 5 activity levels. In contrast to e-AR, our sensors are worn
as eyeglasses. WISEglass features a 3-axis accelerometer, 3-
axis gyroscope, 3-axis magnetometer, a RGB light sensor,
and a pulse sensor, used to detect a wide range of activities
of daily living.

Ishimaru et al. [12] used built-in proximity sensor and ac-
celerometer of Google Glass to classify 5 different activities
in a laboratory setting. For user dependent models they
achieved an average accuracy of 67 % using blink frequency
alone, and 82 % in combination with the accelerometer. Ishi-
maru et al. [13] used EOG and acceleration signals to classify
reading, typing, eating, and talking activities, recorded from
two users. They achieved an average of 70 % accuracy us-
ing user independent models. In our work, we investigate a
full set of 20 activities of daily living grouped into 9 clusters
in a field study rather than a laboratory setting. More-
over, our approach yielded comparable performance using
user-independent models. Hernandez et. al [10] used the
accelerometer, gyroscope, and camera to obtain heart and
respiration rate from Google Glass, while participants were
asked to remain still. They also attempted to detect emo-
tion of the wearer in combination with an arm-worn sen-
sor [11]. In contrast to Google Glass, which was focussed
on micro-interactions and displaying information, we aim at
integrating sensing and processing capabilities into regular
eyeglasses. We avoid the use of a camera in order to pre-
serve privacy. Furthermore, we gathered measurements in
the field instead of a controlled a environment, e.g. heart
rate is estimated during different activities.

Previous works often used multiple on-body sensing loca-
tions. Bao and Intille [4] used bi-axial accelerometers in five
different body locations. They detected a set of 20 different
daily living activities and achieved accuracies of up to 84 %
in 20 participants. Measuring in multiple sensing locations
complicates the setup process. In contrast, we propose a
sensor system integrated into an accessory, thus minimising
the required setup to putting on a pair of eyeglasses.

Exposure to light entrains our circadian clock, but re-
quires light measurements close to the eye. Figueiro et al.[8]
compared three different wearable sensor systems for light
exposure measurement. Besides a wrist-worn device and a
button worn at the collar, they found that a head-worn so-
lution performs best as the sensor is close to the eyes. For
WISEglass, we integrated a light sensor into the bridge of the
glasses, thus optimising placement for light exposure mea-
surement. As blue light is dominant in the entrainment of
the circadian clock, it is of interest to know the time and
duration of screen use that emits elevated blue light levels.

In the past, a variety of sensors have been placed around
the head for different applications. WISEglass integrates ex-
isting sensors into one wearable accessory that allows wear-
ers to benefit from smart eyeglasses in a wide range of appli-
cations, which previously required separate sensing systems.

3. WISEGLASS ARCHITECTURE
WISEglass is an approach to retrofit regular eyeglasses

with a multi-modal sensor system for different context-aware
applications. WISEglass could be used as a everyday acces-
sory, just as regular eyeglasses are used today, or as a special-
application device. For our design investigations, we specif-
ically chose standard of-the-shelf eyeglasses and avoided de-
signing the device from scratch, as to ensure that the typical
eyeglasses form factor was maintained.

Processor, flash memory, communications interfaces, power
controller, as well as inertial sensors were integrated onto a
baseboard, the central unit of WISEglass. In our first pro-
totypes, battery and baseboard were bound together using
shrink tubing, however we consider that the units could be



embedded in opposite ends of the eyeglasses frame in future
versions.

With the light sensor, we investigated the embedding of
components into the glasses’ bridge. The light sensor mag-
net wiring was routed through miniature holes in the bridge
into a milled channel along the top rim over the end pieces
ending at the baseboard. We picked the bridge location as
it is closest to the eyes and allows us to obtain most ac-
curate light exposure measurements. Environmental light
entrains our circadian clock and measuring light exposure is
relevant for circadian phase guidance [18]. Another use for
light sensor data could be in indoor/outdoor detection.

The pulse sensor was linked to a cable tie to enable users to
customise the wearing position. The end of the cable tie was
fixed to the temple tip using shrink tubing. A small block
of foam was placed between the pulse sensor and the temple
of the frame to ensure enough fixation to obtain a relevant
signal while maintaining wearing comfort. In further ver-
sions, the implementation could be embedded directly into
the temple, thus avoiding manual adjustments. Our proto-
type of WISEglass is depicted in Figure 1. Figure 2 depicts
the WISEglass hardware architecture.
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Figure 2: WISEglass hardware architecture. Sepa-
rate SPI busses are used for communication of the
main controller unit (MCU) with the flash memory
and the inertial measurement unit to optimise data
throughput.

The main controller unit (MCU) was a nRF51422 from
Nordic Semiconductor that provides a 32 bit ARM Cortex-
M0 core running at 16 MHz with a Bluetooth Low Energy
and ANT+ wireless module as a System on Chip. We added
a 512 MByte NAND flash to complement on-chip memory
when storing sensor data. WISEglass is powered by a 3.7 V,
330 mAh Lithium Polymer battery.

For motion and orientation estimates, a MPU-9250 from
InvenSense was used. The MPU-9250 provides accelerom-
eter, gyroscope, magnetometer, all 3-axis inertial sensors,
and a digital motion processor in a single package. The in-
ertial sensors were AD-converted into 16 bits. Sensitivity
can be configured to optimise accuracy depending on the
application. For the accelerometer the ranges ± 2 g, 4 g, 8 g,
and 16 g can be selected. The gyroscope offers ± 250 dps,
500 dps, 1000 dps, and 2000 dps. The magnetometer range
is fixed to ±4912µT.

For light intensity measurements, a TCS3472 from ams
was used. The TCS3472 senses light intensities for the red,

green, blue, and clear light spectra separately. The sensor
has an integrated IR filter and was connected to the MCU
through the I2C interface.

To obtain heart rate we added a PulseSensor [9] which is
based on the reflexive photoplethysmography (PPG) princi-
ple. We found the temple to be a good location for measur-
ing pulse as it eliminated the need for an ear clip.

4. DATA COLLECTION

4.1 Study methodology
To evaluate our approach, we conducted a study with nine

participants (3 female, 6 male, between 20 and 27 years).
Participants either did not require prescription glasses or
wore contact lenses. Each participant was given a pair of
smart glasses. For heart rate reference measurements, par-
ticipants were fitted with a CamNtech Actiwave Cardio ECG
device. Annotations were performed by an observer using
the ACTLog application for Android [16]. Figure 3 shows
the sensor setup for a sample of the activities considered.

Figure 3: WISEglass worn during a subset of the ac-
tivities considered in our full-day study protocol. In
the protocol a variety of daily activities were covered
and subsequently grouped into nine activity clusters
for the recognition analysis. During our study we
collected 66.08 hours of data from nine participants.

We recorded up to two participants per day. Participants
received three complimentary meals during the recording
day and a 25 Euro Amazon voucher as compensation.

During recordings we configured the accelerometer to a
range of ± 4 g and the gyroscope to a range of ± 500 dps.
Accelerometer, gyroscope, and magnetometer were sampled
at a a rate of 50 Hz. Light measurements were integrated
with a time constant of 154 msec yielding a sampling rate
of 6.5 Hz and were upsampled to 50 Hz using a latest value
strategy. The pulse sensor voltage was sampled at a rate of
50 Hz. The ECG reference was sampled at 200 Hz. From
the study, we acquired a total 66.08 hours of data.

4.2 Study protocol
Participants were first introduced to the study protocol

and signed an informed consent form. Participants then
performed a scripted study protocol as shown in Figure 4.
During the exit interview, participants evaluated their ex-
perience using the system usability scale (SUS) [6]. The
protocol was designed to cover typical daily activities. Ta-
ble 1 shows how activities were combined to activity clusters
for further evaluation.

5. EVALUATION METHODOLOGY

5.1 Data preprocessing
Data streams from the WISEglass, ECG device, and smart-

phone were aligned according to their time stamps, merged,



08:00 Introduction and informed consent

08:30 Breakfast

09:00 Brush teeth
09:10 Walking stairs
09:20 Change clothes for gym

09:40 Walking on threadmill 2km/h
09:45 Jogging on threadmill 5km/h
09:50 Cycling on home trainer
10:00 Shower, change clothes

10:40 Reading

11:10 Answer 20 Yes/No questions
11:15 Walk to cafeteria
11:30 Lunch

12:15 Walk back to lab
12:25 Brush teeth
12:35 Walk to computer room
12:45 Work on computer

13:15 Walk back to lab
13:25 Desk work

13:55 Wipe down tables
14:00 Vacuum floor
14:05 Prepare watch TV
14:10  Watch TV
14:30 Prepare game
14:45 Play game

15:25 Walk to restaurant
15:40 Dinner

16:40 Walk back to lab

16:55 Exit interview

Start of recordings

Introduction and informed consent

End of recordings

Figure 4: Protocol of the daily activity study.
Recordings started before breakfast and ended be-
fore the exit interview. Sensors were temporarily
removed while participants were in the gym locker
room.

resampled to 50 Hz, and cropped to a common time axis.
Subsequently, annotations were post-processed by visual in-
spection using the ACTLab MARKER toolbox for MAT-
LAB.

5.2 Feature extraction
Features were extracted using pandas [15] and numpy [19]

libraries of Python. For recognition of daily activities and
the detection of screen-use, a sliding window over data sam-
ples with a window size of n = 1500 sa (30 s) and a step
size of s = 50 sa (1 s) was used. Feature vectors were stan-
dardised and normalised before further processing. The slid-
ing windows were assigned to the class that was most rep-
resented in the window. Motion features were computed
over each of the three axis of the accelerometer (ax, ay, and
az) and the gyroscope (gx, gy, and gz). We computed the
L2 norm for the acceleration axis anorm for each sample.
Features listed in Table 2 were subsequently calculated for
anorm, ax, ay, az, gx, gy, and gz per window.

In order to detect screen-use based on light sensor data,
we derived features on the RGB and clear light intensity
values named r, g, b, and c respectively. We calculated the
median med() and number of median crossings mcr() for
each color channel per window. To express spectral com-

Table 1: Activity clusters and total duration.
No Cluster Activity & total duration [min:sec]

1 Eat Breakfast [84:43]

Lunch [156:49]

Dinner [181:53]

2 Walk Lab to Bathroom [17:37]

Lab to gym [36:27]

On treadmill 2km/h [47:06]

Gym to lab [35:56]

Lab to cafeteria [20:11]

Queuing for lunch [6:28]

Picking up lunch [13:20]

Cafeteria to lab [25:28]

Lab to restaurant [58:36]

Restaurant to lab [55:26]

3 Brush Teeth [39:17]

4 Stairs Walking [19:49]

5 Jog On treadmill 5km/h [45:27]

6 Cycle On gym trainer [91:14]

7 Read A book [276:31]

Desk work [273:34]

8 Screen Computer work [253:50]

Watching movie [187:56]

9 Cleaning Vacuuming [45:22]

Wiping tables [45:02]

Table 2: Motion features calculated for a vector of
data samples w with the window size n with elements
1 . . . N , where wi is the i-th sample in the window.
w′ and w′′ are the first and second derivative of w
determined between two neighbouring samples. zcr()
denotes the number of zero crossings.

1. w̄ 2.
∑n
i=1 wi, if wi > 0 3.

∑n
i=1 w

2
i

4. σ2(w) 5.
∑n
i=1 wi, if wi < 0 6.

∑n
i=1 wi

7. max(w) 8.
∑n
i=1 w

′
i, if w′

i > 0 9.
∑n
i=1 |wi|

10. min(w) 11.
∑n
i=1 w

′
i, if w′

i < 0 12. zcr(w)

13. w1 14.
∑n
i=1 w

′′
i , if w′′

i > 0 15.
∑n
i=1 |wi|

′

16. wN 17.
∑n
i=1 w

′′
i , if w′′

i < 0 18.
w̄

σ(w)

19. wN − w1 20. max(w)−min(w) 21.

√∑n
i=1 w

2
i

22.
∑n
i=1 w

′
i 23.

∑n
i=1 |w

′
i| 24.

∑n
i=1 |w

′′
i |

25.
∑n
i=1 w

′′
i

position of light, we computed the median of the ratio for
each combination of two color channels c1, c2 defined as
crm(c1, c2) = med( c1

c2
).

Heart rate estimation was performed by counting the num-
ber of positive peaks in the raw voltage signal of the pulse
sensor. For peak detection, we used an existing peak de-
tector [7]. We experimented with different minimum peak
distances, ranging from 0 to 25 sa in steps of 5 sa, but found
20 sa to be the best for our needs. As reference heart rate,
the estimate provided by the ECG sensor was used. We
computed the mean of the heart rate estimate from the ECG
sensor per window. The calculation of the heart rate error
was performed on windows with no overlap using window
size n = 1500 samples.

5.3 Feature selection
We applied principle component analysis (PCA) to reduce

the number of features. We configured the PCA algorithm
to select the minimal number of features, such that at least
99.9 % of the variance in the training data was explained



resulting in the selection of 78 out of 175 features for recog-
nising daily activities. For screen-use detection, 9 out of
14 features were selected.

5.4 Cross-validation
To ensure generality and stability of our statistical model,

we used Leave-One-Out (LOO) cross-validation on a per-
participant basis. In every cross-validation fold the classi-
fier was trained on all available feature instances from eight
participants. To evaluate model performance the data of the
remaining participant was used.

5.5 Classification with reject option
Classification of the motion-based activity and light-based

screen detection was performed using a Gaussian Mixture
Models (GMM) classifier as described in [5]. After training
one GMM for each class, we computed the probabilities for
each test sample. The classifier then selected the class for
which the highest probability occurred. To also predict unla-
belled data we implemented classifier reject to avoid making
assumptions on the data in the null class. First we obtained
the likelihoods for each test sample from the GMM model.
If the maximum likelihood for a test sample was below the
threshold, the classifier rejected it as a null class instance and
otherwise selected the class of the GMM yielding the maxi-
mum likelihood. A sweep search was performed to find the
optimal threshold. We used all maximum likelihoods, which
occurred during training in each LOO cross-validation fold
and picked the threshold yielding the best F1 score. Re-
sults per fold were averaged to show the performance for an
optimal F1 score.

5.6 Heart rate estimation performance
To validate heart rate estimation from the pulse sensor,

we computed the root-mean-square error (RMSe) between
the ECG reference and the pulse sensor. Both signals were
filtered using a bandpass filter before peak detection was
applied. RMSe computation was limited to data samples,
where the ECG heart rate was between 40 bpm and 150 bpm
according to the reference estimate. We calculated RMSe
for three data subsets to investigate the effect of motion
artefacts: (1) All available data. (2) Data from stationary
clusters eat, read, and screen. (3) Data from classes stairs,
walking, and jogging on treadmill where the participant is
assumed to be moving.

6. RESULTS
Here we show the results for recognising user activities us-

ing inertial sensor data, detecting screen-use using environ-
mental light, and estimating heart rate using the WISEglass
pulse sensor.

6.1 Daily activity recognition
We evaluated the recognition of the activity clusters (Tab. 1)

using the GMM classifier and LOO cross-validation. GMM
performance was analysed by varying the number of Gaus-
sian mixture components between c = {1, 3, 5, 7} per class,
as well as analysing the covariance matrix configuration (full
or diagonal). All configurations using diagonal covariance
matrix yielded similar accuracies, except for the configu-
ration with one mixture only. The full covariance matrices
generally perform marginally better (3 %) than diagonal, for
the same number of mixture components. For our further

analysis, we resided on using a diagonal covariance matrices
due to the increased modelling and computation complex-
ity that a full covariance matrix would introduce. Using
diagonal covariance matrices, highest accuracy was 77 % us-
ing 3 GMM mixture components. The lowest performance
was 70 % using 1 GMM mixture component. Based on the
results, we used 3 GMM mixture components per class for
all subsequent analyses.

Daily activity recognition varied in accuracy between 70 %
and 84 % depending on the participant considered for test-
ing. The confusion matrix shown in Figure 5 depicts the
class assignment averaged over all participants. For the con-
fusion analysis LOO cross-validation results were averaged
across folds. The confusion results indicate per-class per-
formances between 80 % and 90 %, except for “cycle”. The
performance of the cycle cluster was only 50 % due to con-
fusions with “eat”, “walk”, “brush”, and “clean” clusters. As
“cycle” took place at slow pace on a gym trainer (see Fig. 3),
only minor head motion occurred, thus resulting in motion
patterns similar to other classes. The activity clusters“read”
and “screen” show the largest confusions. Based on motion
data it seems plausible that“read”and“screen”clusters were
confused as they showed similar head motions.

At a first glance, the classifier reject yields a null class
accuracy of only 20 % and several confusions with other ac-
tivity clusters. We found that the performance is related
to our recording protocol and the diversity of motion in the
activity clusters. Our activity clusters were comprehensive
on the activities contained in it, thus there was simply not
much unlabelled data left with other motion patterns than
what was represented in the activity clusters. In the unla-
belled episodes, participants were, e.g., walking, sitting at
a desk, or remained in another state that often matched a
modelled activity cluster.
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Figure 5: Daily activity recognition: confusion ma-
trix across cross-validation folds. With the excep-
tion “cycle” cluster, all activity cluster perform at
an accuracy of at least 80 %. Null class performance
was low due to the nature of the study protocol,
where many modelled activities occurred also as un-
labelled data, thus resulting in confusions.

6.2 Screen-use detection
We detected screen-use from the light sensor data. Screen-

use and its timing are important factors in circadian rhythm



entrainment, as light emitted from screens and received through
eyes at night may hamper falling asleep later.

Figure 6 shows mean accuracies for the light-based screen
detection per participant using LOO cross-validation and a
GMM classifier with diagonal covariance matrices using 3
mixtures per class. An accuracy between 64 % and 93 %
was obtained here, with a mean of 80 %. While most folds
achieve performance around the mean score, evaluation for
participant 4 showed as an outlier.

P1 P2 P3 P4 P5 P6 P7 P8 P9 Mean
Participant

0.5
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1.0

Ac
cu

ra
cy

Figure 6: Screen-use detection: Normalised accu-
racy per participant (cross-validation fold). Mean
accuracy was 80 %. Results for participant 4 seems
to be an outlier.

6.3 Heart rate estimation
Heart activity was measured in WISEglass using a optical

pulse sensor worn at the temple. Similar to the daily ac-
tivity recognition, there are many context applications that
benefit from physiological estimates. Here we focus on heart
rate as one important indicator. Figure 7 shows the RMSe
for all recordings as well as activity subsets “motion” and
“stationary” per participant and averaged. For all activi-
ties combined, heart rate estimation RMSe varied between
10 bpm and 19 bpm with a mean of 13 bpm. Motion artefacts
contributed to an increased RMSe. For motion activities the
mean RMSe increases to 14 bpm while for stationary activ-
ities it is reduced by 40 % compared to motion activities, to
9 bpm. Motion artefacts were prominent in the heart data
from both WISEglass pulse sensor and the ECG reference.
During motion it could not be determined which of the sys-
tems (WISEglass or ECG reference) provides more accurate
data. Thus during motion, the error reported here must be
considered as a difference between the two systems only.

6.4 Usability evaluation
The SUS evaluation of all nine participants yielded a mean

score of 66.4 of 100. Participants found the system easy
to use with 4.1 of 5.0 points on average. The overall score
may be negatively biased due to the experiment process (e.g.
placing ECG electrodes) and hence consider the easy to use
question the most relevant result of the SUS evaluation.

7. DISCUSSION
The results of this work clearly confirm idea behind WISE-

glass: smart eyeglasses can provide multi-purpose sensing
functions for different context recognition applications. In-
stead of clip-on designs, as Google Glass and others, we
emphasise that eyeglasses could integrate sensing and pro-
cessing functions into typical eyeglasses frames. The per-
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Figure 7: Heart rate estimation: RMSe analysis per
participant, where the reference heart rate was be-
tween 40 and 150 bpm. RMSe was analysed for three
activity clusters: all, motion (“stairs”, “walk”, and
“jog”), and stationary (“eat”, “read”, and “screen”).

formance for activity recognition, screen-use detection, and
heart rate estimation in this work show that the head-worn
measurement positions and the used pattern processing meth-
ods are adequate. Compared to a phone, the smart eye-
glasses are always at the same body position and in addition
can measure HR continuously. Compared to a watch-like de-
vices, smart eyeglasses can measure the light shining into the
users eyes. Another advantage is that the activities a watch
can detect must somehow include the arm (e.g. watching
TV might be difficult to detect), so eyeglasses can cover a
broader spectrum of activities. Nevertheless, for daily ac-
tivity recognition improvements of the null class modelling
seem necessary. It is clear that our recordings, although
made over full days and including diverse activities do not
reflect all conditions under which smart eyeglasses could be
used. As a consequence, we had little data that was not
already modelled by the activity clusters and thus unknown
activities were under-represented in the dataset. This effect
shows that activity clusters are robust enough to generalise
onto unknown data. In a next step, WISEglass could be
used in free living conditions. Then however, less accurate
annotations must be expected.

The GMM classification approach demonstrated that user-
independent models with good average performance (ap-
prox. 80 %) can be obtained. Additional GMM parameter
selection could be performed on a per class basis to further
improve the model fit. Specifically, for the screen-use detec-
tion improvements could be realised by combining light and
motion data. While we intended to span a wide range of pos-
sible applications of smart eyeglasses, improvements to the
heart rate estimation method should be investigated, too.
Here, a more controlled setting may be helpful to provide
detailed RMSe for different movements. The ECG reference
data showed motion artefacts due to insufficient electrode
attachment. The present work presents a pilot study to con-
firm benefit of smart eyeglasses. In further investigations,
additional participants and additional scenarios and appli-
cations for smart eyeglasses shall be investigated to further
expand the use cases for smart eyeglasses.

We are aware that our current WISEglass prototype is yet
not fully resembling the vision of regular eyeglasses. While
we made important steps, e.g. by integrating the light sensor
and wiring into the eyeglasses frame, further miniaturisation
and integration work is necessary. Moreover, to improve un-



obtrusiveness, the baseboard and battery could be moved to
the temple hinges. The pulse sensor could be made smaller
and integrated in the temple such that the foam block dis-
appears. Given the reliable data from the pulse sensor, we
are confident that such improvements are feasible.

8. CONCLUSION
WISEglass is the first multi-modal sensor system retrofitted

to off-the-shelf eyeglasses. The platform offers motion, light,
and pulse sensors for use in a wide range of context-aware ap-
plications. All sensor modalities were successfully evaluated
in three application scenarios, demonstrating that the smart
eyeglasses serve as single-position context measurement de-
vice. For daily activity recognition, an average accuracy of
77 % for distinguishing 9 activity clusters using LOO cross-
validation was achieved. The recognition rate is comparable
to previous work [12, 13], while in our work more activ-
ities and user-independent models were considered. How-
ever, most importantly, WISEglass integrates all sensors into
one commonly used accessory, thus does not require to wear
head-mounted displays, cameras, etc. Screen-use detection
achieved a mean accuracy of 80 %. Heart rate estimation was
evaluated against a chest-worn ECG reference with an aver-
age RMSe of 13 bpm for all available data and 9 bpm RMSe
during stationary activities confirming that the temple-worn
sensor provides an adequate wearing position.
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