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ABSTRACT 

This paper presents a wearable sensors based foot motion 
measurement method for rehabilitation applications. Two 
commercial wearable sensors were adopted with three 
measurement units fixed on feet. Quaternions were employed to 
represent three-dimensional orientation and a proportional-
integral-filter (PIF) algorithm was used to calculate the quaternion 
derivative. Foot position and orientation were estimated and the 
effectiveness of the proposed method was validated on healthy 
subjects. Experimental results demonstrated that the proposed 
method is capable of providing consistent tracking of human foot 
without significant drift, with less than 0.5% position error, which 
matches that of Kalman based methods. The aim of this work is to 
allow therapists to make use of the biofeedback information to 
create biofeedback rehabilitation protocols, which can be used to 
monitor and evaluate rehabilitation progresses by the performance 
of patients doing prescribe corrective body movement and gesture. 
Moreover, this method could be applied to other cyclical activity 
monitoring.   
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1. INTRODUCTION 

Human gait is human behavior characteristics of lower foot 
coordination in the process of walking, involving personal 
exercise habits, health, gender, age, occupation and other factors, 
human gait detection is of great significance in many fields, for 
instance, in the domain of telemedicine, portable gait analysis 
equipment can reduce the need of long time monitoring by 
nursing staff. With regard to personal navigation, the pedestrian 
locomotion trajectory information can be achieved based on the 

calculation of wearable sensors in the absence of the position of 
the GPS system. The most important function of gait analysis tend 
to be medical rehabilitation application, gait analysis offers an 
easy manner to evaluate recovery process of human feet. In the 
past, the nurse in the hospital might collect the patient's vital signs 
data artificially three times per day, including body temperature, 
blood pressure and heart rate, etc. In the digital era of big data, we 
can collect much more physiological data per minute. More 
physiological data and details offer a better way to evaluate 
rehabilitation process, thereby to determine the following 
treatment priority accurately. According to the statistics of 
National Health Service (NHS), stroke occurs approximately 
152,000 times a year in the UK and it is the third single largest 
cause of death. The damage caused by a stroke can be widespread 
and long lasting. Most patients suffer from foot movement 
disorder and need to have a long period of rehabilitation before 
they can recover their former independence. Fortunately sequela 
can be significantly alleviated by formal rehabilitation training, 
and reducing the need for therapy at hospital might lead to an 
optimal solution for therapy efficiency and expense issues. In 
literature, great interest has been drawn toward the development 
of home based rehabilitation schemes [1][2]. Bamberg et al.[3] 
developed a smart shoe for gait analysis using force sensitive 
resistors and IMU sensors. Sabatini [4] and Wang et al. [5] 
adopted wearable inertial sensor in walking distance calculation 
and walking pattern classification. 

In this study, we use the inertial measurement unit in combination 
with wireless sensor networks (2.4GHz) and Ethernet network to 
set up a set of gait analysis system, the system directly measured 
the acceleration, angular velocity change and earth magnetic field 
in the process of walking. According to the characters of human 
movement, the raw sensor signals are filtered by both high pass 
and low pass filter to eliminate signal noise, filtered sensor data is 
then transmitted to a handheld device through the 2.4GHz 
wireless network and eventually delivered to PC by network cable. 
In the upper machine, the application software process the sensor 
data using the proposed gait analysis algorithm including digital 
filtering, threshold detection, sensor data fusion  so as to obtain 
gait parameters, i.e. walking velocity, stride length, stride 
frequency, walking cycle and foot angle. An improved zero 
velocity update (ZUPT) algorithm [6][7] is used to eliminate the 
integral error step by step, make it suitable for different 
experimental scenarios. 

The rest of this paper is organized as follows: Section 2 describes 
the components of the system and the algorithms used to estimate 
the gait parameters during walking; Experimental results are 
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given in Section 3; the potential applications of gait analysis are 
discussed in Section 4 and Section 5 concludes the paper. 

2. SYSTEM OVERVIEW AND 
ALGORITHMS 
2.1 Hardware Platform 

The hardware platform of the measurement system is composed 
of two inertial sensor measurement nodes and a handheld device 
as shown in Fig.1. The sensor chips in measurement nodes are 
ADIS16448 (Analog Devices), including a tri-axial accelerometer, 
tri-axial gyroscope, and tri-axial magnetometer each.  

 

 
Fig.1. The profile of foot motion measurement system 

 

The sensor performance specification is summarized in TABLE 1. 
The handheld device contains an ARM microprocessor and a 
16Mega bit flash. Each sensor node is powered by 2000mAh 
lithium polymer battery, which enables the sensor node work 
more than 10 hours. The function of the handheld controller is 
data collection control and data transmission. The handheld 
controller is connected to computer via network cable and the 
communication between the handheld controller and inertial 
measurement nodes is 2.4GHz wireless. We chose cable to 
transmit data at the final step because we wanted to minimize the 
data loss. The sampling rate of the data collection system is 
400Hz and the collected data are processed offline using 
MATLAB 2010a. The commercial (accurate, lightweight and 
non-invasive) sensor platforms like Shimmer, Xsens or X-IO IMU 
were not adopted by the authors because of the limited 
adjustability and the relatively lower sensitivity, which is not high 
enough to achieve high accuracy positioning. Meanwhile, the 
expandability of commercial sensor platforms is a challenge. 

 

Table 1  THE PERFORMANCE OF ADIS16448 

Parameter Full Scale Sensitivity Bandwidth 

Accelerometer ±18 g 0.833mg/L
SB 

330Hz 

Gyroscope ±1000゜/s 0.04゜/s 330Hz 

Magnetometer ±1.9gauss 142.9µgaus
s/LSB 

25Hz 

2.2 Algorithm Steps of Proportional-integral-
filter 

The specific algorithm steps of Proportional-integral-filter (PIF) 
proposed in this paper are as follows： 

Step one, updating attitude estimation equation R̂  

  
 


 Py kbRR ˆˆ̂

                             
(1) 

  0
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Step two: Calculated bias correction b̂    
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Step three: calculate the deviations between yR and R̂  
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Step four: let the error as the controller input, get the correction 
vector of rotating angular velocity 

   
 eTKK IP 

                                      (8) 

Step five:  Calculate the revised angular velocity vector 

̂                                                   
 
(9) 

Step six:  attitude updating based on quaternion 
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where y  represents the skew symmetric matrix, b̂  is constant 

bias, Pk and Ik  are proportionality coefficient and integral 

coefficient of PI filter parameters, respectively;  is measured 

value of gyroscope; Initial quaternion estimation 0q can be 

obtained according to the accelerometer, and then a correction can 
be built through comparison with the relatively accurate attitude 

estimate q̂  using the deviation between the two estimations. The 

correction is then used as an input variable of PI controller. 
Eventually, the output of PI controller is selected as a corrected 
value of gyroscope output angular velocity measurements , it is 

assumed that the sum of   and  is more close to the true 
value of rotating angular velocity.  



2.3 System Initialization and Alignment 

When the subject is standing still on the ground, the gravity 

vector[0,0,g]T is calculated as [ , , ]Tx y z in sensor frame with 

rotation matrix. In the same time, the measurement value by 

accelerometer is [ , , ]Ta b c , we can get error vector 

[ , , ]Tx y ze e e by doing the vector product of [ , , ]Tx y z and 

[ , , ]Ta b c . The rotation matrix can be corrected using this error 

vector. However, the correction can merely superpose the X-O-Y 
plane of sensor frame and ground frame. As for the rotating 
around the Z axis, i.e. the yaw angle, we can only rely on 
magnetometer to do further compensation. The measuring object 
of tri-axial magnetometer is the geomagnetic field with fixed 
magnitude in a relatively pure electromagnetic environment, the 
angle between the direction of the geomagnetic field and the 
horizontal plane is constant with regard to each location on the 
earth. The geomagnetic component in ground frame is denoted 

as [ , , ]Tu v w , the measurement value by magnetometer is 

[ , , ]Tl m n . Suppose the vector change to [ ', ', ']Tl m n with the 

accelerometer compensation (coordinate system rotation), then 

there must be 
2 2' 'u l m   and 'w n .  

Similarly, if we transform the treated vector [ ', ', ']Tl m n  to 

sensor frame, and do the vector product again to get error vector, 

then we can use the new error vector [ ', ', ']Tx y ze e e to correct 

the rotation matrix at the second time. In this way the yaw angle 
compensation is complete, and we have obtained a precise initial 
quaternion. Initial quaternion is used to describe the initial note 
orientation information, and the attitude change of an object can 
be gained by quaternions multiplication based on the initial 
quaternion. The theoretical value for the initial quaternion is 

[1,0,0,0]T . 

After the initial alignment, the proposed method calculate the 
corresponding gait parameter step by step, the flowchart is shown 
in Fig.2. ZUPT represents the wildly used zero velocity updates 
algorithm, which is based on the fact that the foot swings to 
stance phase periodically during human locomotion and the foot 
is stationary in stance phase. Zero-velocity updates are well suited 
for limiting the error growth of a foot-mounted motion tracking, 
because the foot returns to a stationary state on a regular ground 
during ordinary gait cycle [6]. In this case, the information of 
when the foot has zero velocity is used to calibrate the 
accumulated errors since the last zero-velocity update. Then we 
are able to calculate step lengths and orientation at each detected 
step based on the results of ZUPT algorithm, so as to compute the 
absolute position and orientation of a subject during walking 
process. In literature, some approaches assume smooth walking 
on horizontal surfaces, while others are still valid for uneven 
terrain with complicated gait patterns. In this study, we assume 
the ground as horizontal and even. 

 
Fig.2. The flowchart of gait parameters estimation 

 

3. EXPERIMENTAL RESULTS AND 
VALIDATION 

To evaluate the effectiveness and accuracy of the gait analysis 
algorithm proposed in this paper, several experiments were 
carried out. The inertial measurement nodes were attached to the 
ankles using special elastic straps, and the data acquisition unit 
was held in hand by the subjects, as shown in Fig.3. We have 
studied the impact of the position of the sensors on the body and 
found that the ankle is an ideal position for sensor data acquisition. 
Four subjects participated in the experiments. In each walking 
trial, subjects were requested to stand still for 2~3 seconds before 
walking, and then walk forward in a straight line and rectangular 
route respectively at comfortable speeds. Fig.4. shows the sensor 
data collected during a ten steps straight line walking trials. Each 
‘peak’ denotes a maximum value of angular velocity during 
walking, the total number of ‘peak’ equals the step number of the 
whole walking process. 

3.1 Orientation and Position Estimation 
It is always required to get motion information in ground frame 
(G) rather than sensor frame (S). However, the WEARABLE 
sensor merely output data in its own sensor frame. Hence the key 
is to transform the sensor frame acceleration into the ground 
frame and eliminate the gravitational acceleration g


: 
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Fig.3. Sensor attachment and sensor data acquisition 

 

3.2 Stance Detection 
In literature, gait cycle is divided to two phases [6][8], four phases 
[9] or even more. It does not matter when it comes to velocity and 
position estimation by numerical integration of inertial sensor 
data. Since we only care about when the foot is swing in the air or 
stand steady on the ground. We tend to integrate the forward 
acceleration to obtain travelled distance and correct the integral 
error when we detect the foot is at rest on the ground. The key is 
to divide the sensor data into observation windows based on the 
detected peaks, followed by detecting stance phase using the 
proposed threshold. In this case, false stance detection shown in 
Fig.4 can be avoided accordingly. 

 

 
Fig.4. False detection of stance phase 

 

The heel-strike movement is normally selected as the beginning 
of a stride. Under normal circumstances, accelerometer and 
gyroscope measurement can be used to detect stance phase. The 
stance phase lasts from Foot-flat to Heel-off and corresponds to 
about 25% ~35% of the gait cycle [9]. It was reported that the 
gyroscope readings are more reliable to detect the two main phase 
[6]. In our study, a phase detection algorithm based on peak-peak 
detection and an adaptive threshold is applied to gyroscope data 
to determine the stance phase [11]. Experimental results have 
shown that no false stance detection occurred throughout the trials.  

 

 
Fig.5. Sensor data during straight line walking 

 

3.3 Position Estimation Error analysis 
In level walking trials, the stride length L in horizon plane can be 
calculated as: 

   2 2
L(i) = x yp i p i

                                 
(17) 

where xp and yp  represent position values in x-axis and y-axis, 

respectively. Table 2 shows the experimental results of distance 
estimation of rectangular route walking using proposed method. 
The subject was asked to walk along the rectangular route from 
the origin for one lap, two laps and four laps, respectively. Note 
that all the steps are correctly detected, i.e. our system can be 
used as a reliable pedometer. The percentage error of total 
distance is not more than 0.5%, which matches or even exceeds 
Kalman Filter based method [12] [13] [14].  

 

Table 2. EXPERIMENTAL RESULTS OF TOTAL 
DISTANCE ESTIMATION  

Trials Total Step 
Num/Truth 

Distance True 
Distance 

Distance

% Error

One lap 

(CW) 

28/28 21.63 m 21.68 m 0.23% 

One lap 

(CCW) 

30/30 22.18 m 22.27 m 0.40% 

Two laps

 

47/47 40.67 m 40.73 m 0.15% 

Four laps 85/85 73.85 m 74.13 m 0.38% 

 



It should be note that the subjects were not walking exactly along 
the rectangle route, in this case, the actual walking distance for 
four laps is not expected to be 4 times the distance of one lap. As 
for the number of steps, even the same subject might perform 
diverse step numbers during several experiments.  

 

 
Fig.6. Error analysis of stride length estimation in compare with 
ground truth 

 

In literature, nearly all the researchers merely focus on the total 
travelled distance error; it is worth noting how the error changes 
during the trials. Fig.6 illustrates a specific analysis of step size 
error during the one lap clockwise walking trial. VICON, a 
commercial motion tracking system is used to provide ground 
truth and validate the accuracy of the proposed method. There are 
28 steps totally, the maximum error exists on 13rd step with 
0.0212m, the mean error is 0.0077m and the standard deviation is 
0.0087m. Fig.7 indicates the corresponding frequency histogram, 
kernel density estimation and normal distribution fitting. As we 
can see from the statistical analysis, the position estimation 
algorithm is feasible and effective, and the errors are well 
controlled. 

 

 
Fig.7. Error statistics of stride length estimation 

 

4. DISCUSSION 

In fact, most of individuals have some degree of bow-leg or 
knock-knee, which then lead to the outside of the heel contact 
with the ground first while walking or running. This assumption 
can be confirmed with excessive abrasion on the outside of our 
shoe's heel. It can be noted that at the beginning of each step, 
there is a negative abduction-adduction angle which means twist 
inward of knee as shown in Fig.8.  

The foot rolls in and the weight is applied to the foot when the 
corresponding foot contacts with the ground after heel-strike. In 
the case that the ankle acts as a connect joint, the foot rolling in 
causes inward twist of the ankle (ITA), which often results in 
ankle sprains and pain. This causes pain at the bottom of the foot 
such as plantar fasciitis.  

In the same way, the ITA causes the shank to twist inward, which 
causes damage to the ligaments and cartilage of the knee. This 
may leads to chronic knee pain and injuries. Up again, the inward 
twist of the knee (ITK) causes an inward twist of the thigh and hip, 
which causes a forward pelvis tilt which strains the lower back, 
this in turn leads to lower back injuries and chronic pain. Fig.8 
illustrates the above mentioned physiological explanations of 
lower limbs pain. Therapists may come to a better understanding 
of the pathogenesis and rehabilitation process from the joint 
information of the patients. In conclusion, an accurate estimation 
of foot angle can be useful for rehabilitation therapy. 

 

 
Fig.8. Physiological explanations of lower limbs pains. (a) foot 
angle during normal walking, (b) the relationship between lower 
limbs pains and foot angle. 

 

The rapid developing BSN technologies [15][16] have provided 
new solutions of foot motion analysis, which offers us another 
way to monitor our health conditions, it might one day become as 
relevant as blood pressure as an indicator of overall health, 
however, it still take time to see how useful it is to doctors and 
patients. Significant impact of wearable technology on medical 
services may be far-reaching, including improve the nursing 
standard, reduced healthcare costs, improved employee health and 
wellness, and better support for  networked society. 

5. CONCLUSION 

In this paper, foot motion data collected by wearable sensors were 
analyzed using the proposed method. The experimental results 
show that our method is effective, which is validated by the 
ground truth. And the results are comparable or even better than 
similar research work [4][9]. Furthermore, the proposed method 
has the potential to be applied in in clinic treatments and exercise 
rehabilitations. The barometric sensor will be integrated in the 
system to strengthen the estimation of vertical position 
component. Future work is underway to evaluate both healthy and 
pathological subjects at a wider movement range. We aim to set 
up a training database for the sake of facilitating related research 
of rehabilitation treatment. 
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