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ABSTRACT
There is a growing interest in developing energy harvest-
ing solutions for wearable devices so they can self-power
themselves without relying on batteries. Piezoelectric en-
ergy harvesters (PEHs) can convert kinetic energy released
from human activities into usable electrical energy for pow-
ering various electronic circuits inside the wearable device.
Intuitively, the kinetic energy is produced because the user
expends some calories during the physical activities. We
therefore postulate that the voltage output of a PEH in a
wearable device should contain information that can be used
to estimate the amount of calorie expended. If this is true,
then the PEH can be used as a new source for calorie estima-
tion. Unlike conventional sensors, such as accelerometers, a
PEH does not consume any power, which would make this
new source very attractive. In this paper, using real PEH
hardware and the data collected from ten real subjects, we
conduct an experimental study to assess the suitability of
PEH voltage in estimating calorie expenditure for two differ-
ent activities, walking and running. We find that, for most
subjects, the calorie estimations obtained from the output
voltage of PEH is very close to those obtained from a 3-axial
accelerometer.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and medical sciences

General Terms
Experimentation
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1. INTRODUCTION
Calorie expenditure estimation (CEE) is valuable in moni-
toring many health problems, such as obesity, an epidemic
which is predicted to be the most preventive health problem
in the future [25]. A large number of works in the literature
have been devoted to estimate the calorie expenditure based
on the output signals of accelerometers [3, 4, 5, 16] available
in wearable devices. By combining acceleration data with
anthropometric features, such as weight, height, age, etc.,
these algorithms can accurately estimate calorie expendi-
ture of a user. These advancements have resulted in many
popular wearable products in the market, such as Fitbit,
Apple Watch, and Jawbone, that can collect and analyse
human acceleration to estimate, display, or upload calorie
expenditure on a continuous basis.

Accelerometers consume power. At the moment, most wear-
able devices are powered by batteries. There is, however, a
growing interest in developing energy harvesting solutions
for wearable devices so they can self-power themselves with-
out relying on batteries [8, 17, 23, 24, 26]. Although there
are several choices for energy harvesting, such as solar [10],
wind [19], thermal [21], kinetic, etc., piezoelectric energy
harvester (PEH) is known to generate the most significant
power by converting human motion to electricity [17]. If
PEH is used, then it can be used to power the accelerome-
ters and other circuits in a wearable device.

In this paper we seek to find a new use of PEH for CEE.
Intuitively, the kinetic energy is produced because the user
expends some calories during the physical activities. We
therefore postulate that the voltage output of a PEH in a
wearable device should contain information that can be used
to estimate the amount of calorie expended. If this is true,
then the PEH can be used as a new source for calorie esti-
mation. Unlike conventional sensors used in CEE, such as
accelerometers, a PEH does not consume any power, which
would make this new source very attractive.

Using real PEH hardware and the data collected from ten
real subjects, we conduct an experimental study to assess
the suitability of PEH voltage in estimating calorie expen-
diture for two different activities, walking and running. We
find that, for most subjects, the calorie estimations obtained
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Figure 1: Architecture of the accelerometer based
calorie expenditure estimation.

from the output voltage of PEH is very close to those ob-
tained from a 3-axial accelerometer. The main contributions
of this paper can be summarized as follows:

• We propose the use of output voltage of PEH as a new
source of realising CEE for kinetic-powered devices,
which is the first of its kind in the CEE literature.

• We propose a linear regression model based on PEH
voltage data collected from ten subjects and show that,
for most subjects, the calorie estimations obtained from
the output voltage of PEH is very close to those ob-
tained from a 3-axial accelerometer.

The rest of the paper is organised as follows. In Section 2,
we explain the accelerometer-based CEE method we used
in this study for comparison. We present our experimental
hardware, our data collection and the proposed PEH-based
CEE method in Section 3, followed by the performance eval-
uation in Section 4. Related work is reviewed in Section 5.
We conclude our work in Section 6.

2. ACCELEROMETER-BASED CEE
Accelerometer based calorie expenditure estimation highly
relies on the accelerometers to frequently sample the human
activities. The architecture of the conventional accelerom-
eter based CEE is shown in Figure 1. In order to estimate
the calorie expenditure, accelerometer outputs are combined
with the anthropometric features of the subjects to perform
regression analysis [4, 5].

In this paper, we apply the popular method proposed in [4]
to estimate the calorie expenditure base on the signal from
a 3-axis accelerometer and the anthropometric features of
the subjects. The regression model is given as follows:

CEEacc = a×H(k) + b× V (k) (1)

where, CEEacc represents the estimated calorie expenditure
at the kth minute. H(k) was defined as the square root of
the sum of squared of the accelerometer signals on the x and
y-axes (H(k) =

√
Acc2x +Acc2y). V (k) was defined as the

accelerometer signal on the z -axe (V (k) =
√
Acc2z). Parame-

ters a and b represent the coefficients of the regression model
(1), and are generalized by stepwise multiple-linear regres-
sion based on the anthropometric features of 125 subjects in
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Figure 2: The hardware platform.

study [4]:

a =
5.78×Mass+ 11.95×Height+ 6.89×Age− 2001

1000
(2)

b =
5.96×Mass+ 349.5

1000
(3)

It has been reported that this regression model can achieve
60-95% correlation [4, 18] in estimating the calorie expendi-
ture for walking and running.

3. PEH-BASED CEE
Pizoelectric energy harvester, which harvests energy from
the vibration generated by the human motion, has been re-
garded as a promising energy source to power future wear-
able sensors. Unfortunately, a recent study [14] has shown
that the amount of power that can be harvested from the
energy harvester through the body motion can hardly be suf-
ficient to power the accelerometers at a high sampling rate,
thus, it results in poor accuracy for the upper layer appli-
cations, such as activity recognition and calorie expenditure
estimation.

Instead of using the signals from the accelerometers to esti-
mate the calorie expenditure, or using the energy harvested
by the energy harvester to power the accelerometer, the pri-
mary idea of our method is to develop an regression model
based on the output voltage signals from the pizoelectric
energy harvester directly. Prior to presenting the proposed
method, we introduce the hardware we designed for this
study and our data collection method.

3.1 Hardware setup
We designed and built a data logger for this study. The data
logger includes a vibration energy harvesting product from
the MIDÈ Technology called Volture, which implements the
transducer to provide AC voltage as its output. Our hard-
ware also includes a 3-axis accelerometer (MMA7361LC)
to record the acceleration signals, simultaneously with the
voltage signal. An Arduino Uno has been used as a micro-
controller device for sampling the data from both the Volture
and the accelerometer. A sampling rate of 1 KHz has been
used for data collection. The sampled data has been saved
on an 8GB microSD card which has been equipped to the
Arduino using microSD shield. A 9 volts battery has been
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used to power the Arduino. To control the data collection,
our data logger also includes two switches, one to switch
on/off the device and the other to control the start and stop
of data logging. The hardware platform and the internal
appearance of the data logger are shown in Figure 2 and
Figure 3, respectively.

3.2 Data collection
Ten healthy subjects (4 male, and 6 female) of different eth-
nic backgrounds from our lab volunteered to participate in
this research study. The participants were asked to hold the
data logger in either their left or right hand and perform two
different activities: walking and running. The details of the
anthropometric features of the subjects are as follows: Age
(26-35 years, µ = 29, and σ = 3.06), Weight (58-91 Kg, µ =
69.3, and σ = 10.21), Height (154-185 cm, µ = 168.5, and σ
= 9.98).

All subjects performed walking and running with their nat-
ural speed, i.e., there was no special speed control, thus, the
step frequencies of walking and running vary among differ-
ent subjects. To avoid mislabeling, the switch on the data
logger has been used to control the start and stop of data
collection at the beginning and end of each activity. Sub-
jects were asked to stop and wait a few seconds after an
activity and before starting the next activity. The data col-
lected between the start and stop times of an activity were
labeled with the name of that activity. Each subject pro-
vided between 25 and 35 seconds of data for both walking
and running.

3.3 Proposed Calorie Expenditure Estimation
using Harvested Voltage Signal

The architecture of the proposed pizoelectric energy har-
vester based method is shown in Figure 4. The system con-
tains a kinetic energy harvester which harvests energy di-
rectly from human activity. Instead of using the harvested
energy to power the accelerometer, the output voltage is
used as the input signal, together with the subject’s anthro-
pometric features, to generate a regression model for calorie
expenditure. No acceleration data is used in the proposed
architecture comparing with the accelerometer based archi-
tecture given in Figure 1.
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Figure 4: Architecture of the PEH based calorie ex-
penditure estimation.

3.4 Regression Model
We performed a regression analysis to generate the general-
ized regression model. The linear regression model can be
represented as follows:

CEEvolt = Xβ + ε (4)

where, CEEvolt indicates the estimated calorie expenditure
at the kth minute. X denotes the vector of input signals, in-
cluding the anthropometric features of the subjects (weight,
height, and age), and the output voltage signals from the
energy harvester. The β and ε are the vector of coefficients
and residual error, respectively.

Without the ground truth from the indirect calorimeter, we
applied the accelerometer based method proposed given in
Equation (1) to estimate the calorie expenditure of the col-
lected activity traces. The estimated results are used as the
ground truth to train and calibrate our regression model.
Note that, because Equation (1) is a generalized model, our
regression model will not specify the activity type.

For each subject, Si, in our subjects set, we have collected
two acceleration signal traces, one for walking, and one for
running. Using those two signal traces as inputs, we apply
Equation (1) to get the acceleration based calorie expendi-
ture estimations, CEEacc walk, and CEEacc run, for walking
and running activity of subject Si, respectively. These two
acceleration based CEE results are synchronized with the
recorded output voltage signal from the PEH during Si’s
walking and running.

As an example, Figure 5 exhibits the output signals of the
3-axis accelerometer for both walking and running of sub-
ject 2. Together with the anthropometric features of subject
2, the acceleration signals are used to estimate the calorie
expenditure (apply Equation (1), (2), and(3)). The results
CEEacc walk and CEEacc run of subject 2 are given in Fig-
ure 6(a), which clearly indicates that running can expend
more calories than walking. Correspondingly, Figure 6(b)
shows the synchronized output voltage signals of the PEH
recorded by our data logger for the same subject. Expect-
edly, PEH can harvest more energy from running than walk-
ing.

In order to generate the regression Equation (4), for each
subject, Si, we used the rest 9 subjects as the training set
to train the linear regression model, and applied the Leave-
one-out cross-validation to evaluate the performance of the
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(a) Accelerometer Output for walking
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(b) Accelerometer Output for running

Figure 5: The output signal of the 3-axis accelerom-
eter for both walking and running of subject 2.

generated regression model on Si. The Pearson’s correlation
coefficients of the linear correlation between the estimated
calorie expenditure, CEEvolt, and the input signal vector,
X, for all the ten subjects are given in Figure 7. In case
of walking, the Pearson’s r is 0.78 on average, and in case
of running, we achieved a value of 0.71 on average, which
indicates a strong positive correlation between the voltage
signals and calorie expenditure for both walking and run-
ning.

4. EXPERIMENTS RESULTS
The instantaneous estimations of the PEH-based CEE and
the ACC-based CEE, of walking and running, for all the ten
subjects are given in Figure 8. Every second includes 1000
estimations. The results show that although the instanta-
neous estimations of our proposed PEH-based method are
different from that of the ACC-based method, the averages
of the PEH-based CEE over a period of time (one second
or longer), are very close to that of the ACC-based meth-
ods. The average value over longer terms is more useful
in practical applications, comparing with the instantaneous
measurements for every second. In addition, Figure 9 plots
the mean of the estimated calorie expenditure over one sec-
ond of the PEH-based and ACC-based methods. Figure
9(a) compares the CEEvolt of the PEH-based method with
the CEEacc of the ACC-based methods for walking. The
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(a) Plot of the CEEacc walk and CEEacc run of subject 2, using
the regression model given in Equation (1)
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Figure 6: Plot of the output voltage and calorie ex-
penditure for subject 2.
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Figure 7: The Pearson’s correlation coefficients of
the linear correlation between the estimated results
CEEvolt and the input signal vector X for all ten
subjects.

Mean Absolute Percentage Error (MAPE) is 0.12 in case of
walking. Similarly, Figure 9(b) shows the results for run-
ning and the MAPE is 0.16. However, which is indicated
in Figure 8(o) and Figure 9(a), the PEH-based method will
overestimate the calorie expenditure for walking. In addi-
tion, Figure 8(f)(l)(t) expose that the PEH-based method
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Figure 8: The instantaneous estimation results of the PEH-based and ACC-based CEE for all the ten subjects,
for both walking and running.
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Figure 9: The average CEE per second of the ACC-
based and proposed PEH-based method.

will underestimate the calorie expenditure for running. We
investigated that this results from the uncontrolled intensity
and step frequency of the subjects’ activity during our data
collection. We will improve this by collecting more reliable
data in our future work.

5. RELATED WORK
In the laboratory environment, the most accurate way of
calorie expenditure estimation is to use the indirect calorime-
ters. Indirect calorimeter, such as the COSMED k4b2, esti-
mates the amount of energy expenditure by measuring the
consumption of oxygen and the production of carbon diox-
ide. Although it has been reported that using the indirect
calorimeter can achieve a very high correlation with the ac-
tual calorie expenditure [6, 20], it is impractical for everyday
calorie estimation, due to its inconvenience.

Outside the laboratory, wearable sensors are widely used as
the alternatives to capture the information of daily activ-
ities and estimate the energy expenditure [1, 3, 5, 16, 18].
Early studies [7, 22] used accelerometer signals to generate a
generalized regression model for the CEE of different activi-
ties. However, a study [1] has shown that, due to the variety
of the activity intensities, methods using a single regression
model will underestimate the expenditure of the high inten-
sity activities, but overestimate that of the low intensity ac-
tivities. To resolve this shortcoming, algorithms for human

activity recognition (HAR), which have been widely used in
the indoor positioning and smart living [9, 11, 12, 13], have
also been applied in CEE. Recent studies have proposed the
activity-specific CEE, which first recognizes the activity, and
then generates an activity specific regression model [5], or
assigns the Metabolic Equivalent of Task (MET, is a mea-
surement of the calorie expenditure of a physical activity) to
that activity [1, 2]. Their results [1, 3] shown that the activ-
ity specific CEE methods can greatly improve the accuracy
of CEE.

Unfortunately, the shortcoming of those methods is the power
consumption of the wearable sensors, especially the accelerom-
eters, used in the activity recognition is relatively high [14,
15]. To achieve continuous calorie estimation, we either need
to instrument the wearable devices with large batteries, or
frequently replace the batteries. Obviously, neither of these
choices is desirable for future body area wearable devices.
Compared to the literature, our work in this paper is unique
in the sense that we do not use accelerometer at all to es-
timate calorie expenditure. PEH-based CEE is a totally
new concept to the best of our knowledge. It opens the
door to a completely new direction for calorie estimation.
The fact that it can estimate calorie simply from the PEH
data makes this method more competitive than the conven-
tional accelerometer-based techniques for the realisation of
battery-less wearables.

6. CONCLUSION AND FUTURE WORK
We have conducted the first experimental study to estimate
calorie expenditure from the voltage output of PEH. We
have used real PEH hardware and collected voltage data
from 10 different subjects performing two different activi-
ties, walking and running. We have found that, for most
subjects, the calorie estimations obtained from the output
voltage of PEH is very close to those obtained from a 3-axial
accelerometer. The result of this study shows the feasibility
of estimation the calorie expenditure from the output signal
of PEH in kinetic-powered wearable devices, which provides
opportunities to develop new wearable devices for calorie
estimation.

Motivated by the results of this paper, we plan to extend the
current experimental study by collecting more data from a
larger subject set, and studying a variety of activities with
different intensities, including standing, walking, running,
and biking. Moreover, instead of applying the estimated re-
sults from the accelerometer based method as the ground
truth, we will use the indirect calorimeters, COSMED k4b2,
to measure the actual calorie expenditure and train our re-
gression model. Another direction of our future work would
be generating activity-specific regression model for PEH based
CEE. For activity recognition, we would like to apply the
method proposed in [15] to achieve accelerometer-free activ-
ity recognition.
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