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ABSTRACT
Opportunistic routing has recently appeared as a technique
aimed to increase the performance of wireless mesh net-
works, by taking advantage of the broadcast nature of the
wireless medium. Despite the remarkable attention the re-
search community has paid to it, there are still some issues
that need to be addressed; one of the most relevant ones is
the unnecessary forwarding of the same packet by a number
of nodes. Since Random Linear Coding (RLC) mechanisms
randomly mix packets before forwarding them, they can be
exploited to avoid (or at least to minimize) the aforemen-
tioned problem. In a previous work we introduced a flexible
Network Coding (NC) entity that we integrated within the
ns-3 framework. We extend herewith its functionalities, by
integrating an opportunistic routing module that enables it
to be used over random topologies. In addition, we assess the
performance of using different external algebraical libraries
to carry out the coding/recoding/decoding operations (i.e.
matrix inverse and rank calculation).

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Simulation, Network Coding, Mesh Networks, Opportunis-
tic Routing

Keywords
Network Coding; Reliable Communications; Lossy Wireless
Channels

1. INTRODUCTION
In recent years, a rekindled interest has come back for

the design and performance analysis of wireless mesh net-
works, since they might broaden the coverage area of more
traditional accesses, without incurring in a high cost. As
a consequence, they are undergoing a constant and quick
evolution, and they stand as one of the access alternatives
to be explored in forthcoming wireless networking architec-
tures. However, they need to deal with poor link quality,
scarce resources and multiple interferences. Furthermore,
while it goes without saying that future communications
will be strongly dominated by wireless networks, the per-
formance of the mainstream transport protocol at the time
of writing, TCP (used for countless applications), is severely
jeopardized when used over this type of networks.

Opportunistic routing [1] is a novel approach, recently
proposed to be used over wireless networks, which has re-
cently received remarkable attention from the research com-
munity. The corresponding techniques are able to offer high
throughputs, even when links are lossy and exhibit a low
quality. While traditional routing schemes select a single
path to send the data through the network, opportunistic
routing establishes that any node that overhears a trans-
mission could participate in the forwarding process, even if
it did not belong to an already established route. On the
other hand, opportunistic routing also leads to several chal-
lenges. In particular, when multiple forwarders overhear the
same packets, they might unnecessarily retransmit the same
information. In a nutshell, there is a trade-off between the
objectives of masking errors by means of redundant trans-
missions and maximizing the overall performance. One in-
teresting alternative to overcome such issue is the use of NC
techniques, which randomly mix the received packets before
forwarding them. In this sense, forwarders that overhear the
same packets do not necessarily retransmit the same infor-
mation.

In a previous work [2] we presented a fully fledged im-
plementation of a NC module that was integrated within
the ns-3 framework. It includes two complementary ap-
proaches: a solution based on the combination (coding) of
segments belonging to different TCP connections (Inter-flow
NC) as well as an Intra-flow scheme that mixes packets be-
longing to the same flow. Both of these two solutions offer
a reliable transport service. In such work we identified a
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Figure 1: Simple Network Example

number of aspects that we wanted to tackle in our future
research and in this paper we introduce some of the new
features that have been integrated within the module. First,
we have reduced the computation time of the matrix rank
and inverse calculations, by using a new external library
(M4RI-M4RIE) for all the coding, recoding and decoding
tasks, which are based on Galois-Field (GF (2q)) algebra.
In addition, we have implemented the opportunistic routing
scheme originally proposed by Chachulsky et al. [3]; they in-
troduced MAC-independent Opportunistic Routing and En-
coding (MORE), a holistic solution that combines the NC
and the opportunistic routing paradigms. The main goal is
therefore to complement and extend these previous works,
by systematically assessing the performance of intra-flow
NC techniques over random topologies, exploiting the ad-
vantages offered by opportunistic routing, by means of ex-
tensive simulation campaigns.

This document is structured as follows: Section 2 discusses
some of the approaches that have been made in order to en-
hance the performance of traditional transport protocols (in
particular, TCP) when used over wireless mesh networks,
focusing on the use of NC or opportunistic routing solu-
tions. Section 3 briefly describes the NC functionality that
is included in our module, while Section 4 presents the po-
tential benefits that the use of opportunistic routing might
bring about. Section 5 depicts the changes that have been
made in the NC module within the ns-3 framework, dis-
cussing the additional functions that we developed so as to
integrate MORE. Section 6 introduces the simulation set-
up that was used to assess the performance of the proposed
scheme, discussing the most interesting results. Finally, Sec-
tion 7 concludes the paper and advocates some aspects that
will be tackled in our future work.

2. RELATED WORK
Although the research on routing protocols for Wireless

Mesh Network (WMN) started twenty years ago, the rele-
vance of such topologies has recently increased. During the
latest years, WMN are proposed as a means to extend the
coverage of more traditional access topologies and also ap-
pear with Device-to-Device (D2D) communications. How-
ever, there exist several issues that need to be overcome.
For instance, the most relevant transport protocol, TCP,
exhibits a poor performance over wireless networks [4], [5],
mainly due to its misinterpretation of random packet losses.

There have been many proposals to enhance the perfor-
mance of communications over WMNs. Some of the most
relevant approaches are NC [6] and opportunistic routing [1,
3], which exploit the inherent broadcast nature of the wire-
less medium. This allows a packet transmission to be heard
by other neighbouring nodes, besides the one the packet was
originally addressed to.

In opportunistic routing, a set of intermediate nodes, the

so-called Candidate Set (CS), are selected as potential
forwarders. They will forward packets according to some es-
tablished criteria, as opposed to traditional uni-path routing
schemes, which select the next-hop (a single node) before ac-
tually transmitting the packet. A different priority value is
assigned to each forwarder belonging to the CS, according
to a certain cost. This could consider a number of different
aspects, such as the distance (number of hops) to the desti-
nation, the power consumption or the Expected Number of
Transmissions (ExNT), among others. Based on that prior-
ity, the node is able to establish a probability of transmitting
a packet (or likewise, an average number of transmissions);
the lower the cost, the higher the probability. All in all, this
mechanism allows a packet to dynamically decide the path
it flows through.

Figure 1 shows a simple network topology where the use
of opportunistic routing might increase the network perfor-
mance; the source S sends a flow to the destination node D.
As can be seen, each of the links is characterized by a cer-
tain loss probability. A traditional uni-path routing scheme
would select a single forwarder node, for instance R2, and
the communication path would therefore be S → R2 → D.
The overall loss probability of this traditional path would
be 0.5%, and it would be thus necessary transmitting two
packets to guarantee, on average, a single reception. On the
contrary, opportunistic routing might select the three nodes
as simultaneous potential forwarding entities, and, assum-
ing perfect coordination between nodes (i.e. there are no
collisions), the end-to-end loss probability would be reduced
to (0.5)3 = 0.125.

Opportunistic routing needs to deal with three main prob-
lems, as discussed in [7]: (1) choice of an appropriate oppor-
tunistic metric, (2) identification of an algorithm to select
the best candidates, and (3) selection of a method to enable
the required coordination between them. There are vari-
ous works that have addressed these questions from different
perspectives.

Biswas and Moris [1] proposed ExOR in 2004. It uses the
Expected Transmissions (ETX) metric [8] and requires strict
scheduling, since each forwarding node uses a reserved time
slot to send an acknowledgment upon a new packet is re-
ceived, sorted by the corresponding ETX metric. When the
forwarder with the highest priority does not correctly receive
the packet, an alternative relaying entity realizes (absence
of the ACK) that the packet was not forwarded and will
therefore retransmit the packet itself. It is worth highlight-
ing that this solution requires modifying the legacy MAC
level implementation.

Other proposals use different metrics; for example, Zorzi
et al. propose in [9] a local metric, the so-called Distance
Progress (DP), which considers just the local information
provided by each of the nodes, in particular, the distance
towards the destination. However, it does not take into ac-
count the quality of the links. More recently, a more ad-
vanced metric, Expected Distance Progress (EDP) [10], was
proposed as an enhanced version of the DP, overcoming such
limitation.

The aforementioned opportunistic routing techniques need
a strict scheduling. Network Coding, originally proposed by
Ahlswede et al. [11], offers an interesting solution to avoid
such constraint. If NC was integrated with opportunistic
routing it might help to avoid transmitting duplicated pack-
ets by mixing/coding them.
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Figure 2: Intra-flow NC cannonical scenario

Last, but not least, it is worth mentioning that, despite
the growing interest that opportunistic routing techniques
have recently gathered, there are not many works that have
used simulation frameworks to systematically analyze their
performance. For instance, Yunfeng et al. [12] use a propri-
etary simulator to study the behavior of an enhanced MORE
scheme. Furthermore, some other works [13] use ns-2 to as-
sess the performance of COPE [6]. To our best knowledge,
there is not any study using the ns-3 simulator.

3. INTRA-FLOW NETWORK CODING
The functionality of the intra-flow NC was presented in

our previous work [2]. We introduced a intermediate new
layer which lies between the network and transport levels.
By means of the combination of a Random Linear Cod-
ing (RLC) scheme and UDP, we provide a reliable (TCP-
like) service, providing an additional resilience to packet
erasures over hostile network conditions. For a better un-
derstanding of the combined scheme, we describe below its
main functionalities.

The NC entity at a source node receives the information
from the upper layers and stores the datagrams at its trans-
mission buffer. This container is different for each active
flow, identified by the source and destination IP address /
port tuples. Upon receiving K native packets of the same
flow, the transmitter builds a random linear combination of
them, p′ =

∑K−1
i=0 ci · pi. The corresponding random coeffi-

cients, ci, are generated from a finite field GF (2q), and pi
are the native packets. These random coefficients are repre-
sented as a coded vector, ~c = (c0, c1, · · · , cK−1). If this entity
does not receive the required K packets before a transmis-
sion buffer timeout expires, the combination would be built
anyway, using all the stored datagrams (< K). The source
periodically sends coded packets, until the destination node
confirms the successful reception and decoding of the corre-
sponding block, i.e the K native packets.

When the receiver entity receives an “innovative” packet,
the corresponding coefficient vector will be kept within a
matrix, C, while the corresponding coded packets are stored
in another buffer. After receiving K linearly independent
vectors, the coefficient matrix rank equals K and then we
can calculate its inverse, C−1. This is used, together with
the stored coded packets, to decode the native information,
P = C−1 ∗P−1, recovering the K original packets, which are
afterwards delivered upwards. Finally, an ACK message is
sent to the source node, confirming the successful decoding
of the whole block.

The intermediate nodes can play two different roles: in a
(Random Linear Source Coding (RLSC)) solution, they use
the traditional store-and-forward scheme, and all the coding
tasks are carried out just within the source nodes, and the
intermediate entities only forward the coded packets. In the
enhanced Random Linear Network Coding (RLNC) solu-
tion, the intermediate nodes participate in the coding tasks

by re-coding the previously stored packets before transmit-
ting them; in this sense, the information is modified as it
traverses the network. In addition, the intermediate node
checks (as was done by the receiver) whether the coded
packet is linearly independent from those already stored to
silently discard it otherwise. When the intermediate node
gets a transmission opportunity, a new coded packet, p′′, is
built, before delivering it to the lower layers. It can be seen
that p′′ is actually a linear combination of the original native
packets. In addition, when a relaying node receives an ACK,
or a coded packet with a greater block (sequence) number,
it discards all the stored packets belonging to an already
received block, starting the process again for the new block.

As was mentioned earlier, when either the source or a re-
laying node receives an ACK, the NC entity sends a signal
(cross layer scheme) to the MAC layer, instructing it to re-
move all the frames belonging to such flow that are waiting
to be transmitted from its transmission buffer. In this way,
we avoid transmitting useless frames.

Figure 2 shows an illustrative example of both operations.
The source S sends packets to the destination node D. If the
RLSC scheme was used, then the relay node, R1, would only
forward the coded packets. In any case, we lower the con-
straints that would be imposed to a traditional end-to-end
transport protocol, since the destination does not need to ac-
knowledge every single reception, but just the whole block,
provided that all the linearly independent packets carry the
same amount of information. We can therefore conclude
that there is a approximate gain of K − 1 transmissions.

On the other hand, using the RLNC scheme, the forwarder
node will build new linear combinations of the already coded
packets it had previously stored. Although S is using R1 to
reach the destination, it might happen that, due to the in-
trinsic broadcast nature of the wireless medium, D could
actually overhear packets p′i directly transmitted from S.
Under these circumstances, when the link between R1 → D
is not error-free, the fact that R1 sends coded packets that
are different from those transmitted by the source, would ac-
tually increase the probability of receiving innovative pack-
ets at D, compared to the original RLSC approach.

4. OPPORTUNISTIC ROUTING
The main objective of this work is to broaden our previ-

ous research [2] to apply the proposed NC techniques over
random network deployments. In order to do so, we have
implemented a set of new functionalities, carrying out some
additional modifications on the existing code, following the
MORE scheme proposed by Chachulski et al. [3].

MORE is a routing protocol for stationary wireless mesh
networks, being particularly suitable for transmitting large
files. MORE addresses some of the most relevant challenges
of opportunistic routing techniques, since it establishes the
number of packets each forwarder needs to send and when
they should do it. The authors propose a heuristic approach
to route a packet from the source, S, to the destination, D,
being the main principle that, among those nodes that re-
ceive a new packet, the closest one to the destination should
forward it onwards.

The proposal is a distributed solution where each node
should know the loss probability for the links εi,j , towards
each of its neighbours. This information could be dissemi-
nated afterwards throughout the network by means of sig-
nalling messages (for instance, those used by link-state rout-



ing protocols). When a source wants to establish a route to-
wards a particular destination, it uses the underlying graph,
with all the loss probabilities, to calculate the ETX metric
for all the potential path candidates.

4.1 Candidate Selection
As was mentioned earlier, the opportunistic routing ap-

proach used in this work is based on the initial contribu-
tion of Chachulski et al. [3]. We provide some preliminary
concepts that are required to follow the description of the
proposed scheme. Let zi be the expected number of trans-
missions that node (forwarding entity) i should perform to
route one single packet from the source, S, to the destina-
tion, D. We assume that nodes are sorted according to their
distance towards the destination; i.e. if i < j then i is closer
to the destination than j and it thus has a lower ETX.

We can now calculate the average expected number of
packets that j receives from nodes with a higher ETX using
Eq. 1, where εi,j represents the frame loss probability over
the i → j link. Node j only retransmits a packet received
from a node with a higher ETX if it has not been received by
other node with a lower ETX. Hence, the number of packets
that j would eventually forward can be calculated as shown
in Eq. 2; note that Ls = 1, since the source node originally
generates all packets.

rj =
∑
i>j

zi(1− εi,j) (1)

Lj =
∑
i>j

(zi(1− εi,j)
∏
k<j

εi,k) (2)

We can as well calculate the expected number of trans-
missions that j would perform (Eq. 3), considering that it
continuously forwards each packet until a node with a lower
ETX receives it.

zj =
Lj

(1−
∏

k<j εj,k)
(3)

A forwarding node might not be aware of new packets
transmitted by the source, if it is not within its coverage
area. In order to deal with this, the TXcredit parameter was
proposed; it is defined as the number of transmissions that
a node should make for every packet it receives from a node
with a higher ETX (i.e. its distance towards the destination
is larger). Given that for each transmitted packet j receives∑

j>i(1 − εj,i)zj , the TXcredit of node i can be obtained
using Eq. 4.

TXcredit =
zi∑

j>i zj(1− εj,i)
(4)

To compute the TXcredit for every node, the source uses
Algorithm 1, originally proposed in [3], with a complexity of
O(N2).

4.2 Protocol
The source node divides the file into chunks of K pack-

ets and delivers information to the lower layers as was ex-
plained in Section 3. Afterwards, the sender executes Al-
gorithm 1 and attaches the corresponding MORE header,
which is shown in Figure 3, to every data packet. The header

for i = n ... 1 do
Li ← 0 ;

end
Ln ← 1 ;
for i = n ... 2 do

zi ← Li/(1−
∏

j<i εi,j);

P ← 1 ;
for j = 2 ... i-1 do

P ← P · εi,(j−1) ;
Lj ← Lj + zi · P · (1− εi,j) ;

end

end
Algorithm 1: Algorithm to compute the TXcredit
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Figure 3: Simple Network Example

starts with a number of compulsory fields, which are used in
every packet; the first elements are devoted to NC related
information: Type distinguishes data packets from ACKs, K
is the block size (number of packets), q indicates the size of
the current Galois Field GF (2q), while Portsrc and Portdst
fields facilitate the flow identification. The next field, For-
warders, indicates the number of nodes that could poten-
tially relay the packet. This fixed-length part is followed
by a number of optional fields (with variable length). The
code vector is only used for data packets and indicate the
coefficients that were used to build the coded packet; after-
wards, the list of forwarders includes all candidates, sorted
according to their distances to the source node. While the
header is initialized by the source, the coded vector can be
afterwards changed by each of the forwarding nodes.

Forwarding nodes keep a credit counter ; whenever a node
i receives a packet from a node with a higher ETX, it in-
creases such counter with the TXcredit of the corresponding
header. When a forwarder needs to decide whether to trans-
mit a packet, the node checks if the aforementioned counter
is positive. In that case, the node creates a coded packet,
broadcasts it and decreases the counter. We avoid infinite
loops by establishing that a node could only forward a packet
if it had received it from an upstream node. In addition, we
also prune those nodes with a negligible contribution within
the routing scheme, zi < 0.01 ·

∑
j∈N Zj

1.
When the destination node receives K linearly indepen-

dent packets, it follows the procedure that was described in
Section 3, sending an ACK to the source. This confirma-
tion will use the best path to reach the source, as it would
happen using a traditional routing scheme.

In the next section we discuss the changes that were re-
quired within the NC entity to integrate the opportunistic
routing scheme.

1In dense networks, the number of these nodes might be
actually rather large
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5. UPDATES ON NS3 MODULE
As previously mentioned, in [2] we described a flexible

NC module, which we integrated within the ns-3 frame-
work. We developed an abstract class, NetworkCoding-
Protocol, which holds all the methods belonging to the
two derived classes (IntraFlowNetworkCoding and In-
terFlowNetworkCoding). In order to integrate the op-
portunistic routing scheme, we modified the first one; in
addition, we developed a new class, the so-called Network-
Monitor, implementing all the methods required for the
opportunistic routing solution. In order to better under-
stand the overall scheme, Figure 4 shows both the trans-
mission and reception flows over the ns-3 simulator. The
diagram depicts the relationship between the protocol stack
and the NetworkMonitor class, and also reflects a number
of cross-layer connections that allow the system optimizing
the performance [2].

NetworkMonitor is a singleton object, and there is there-
fore a unique instance that is seen by the NC entities at every
node. When the scenario is initially generated, each node
(i) stores, within a ChannelMatrix container, the loss prob-
ability of the link to each of the remaining nodes (j 6= i).

The connections between the NC layer and the Network-
Monitor entity are described below.

1. InsertETX (IpAddress): when a transmitter node
receives the initial packet for a particular flow from the
upper layers, it uses this method to call the Network-
Monitor to create a vector with the ETX metric to
the corresponding destination, comprising all nodes.
This function uses the Dijkstra algorithm [14], using,
as the cost for all links, the corresponding ETX met-
rics.

2. GetETX (IpAddress): both the source and relay-
ing nodes can afterwards call the NetworkMonitor
instance to obtain the vector of ETX metrics to a spe-
cific destination address.
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Figure 5: Required time for the inverse matrix cal-
culation

Besides, we use a static routing configuration to ensure
that each node has a valid route towards the destination, by
means of randomly selected neighboring nodes. It is worth
highlighting that all these nodes overhearing the packet will
decide whether to forward it based on the information car-
ried in the header. On the other hand, the acknowledgment
uses the shortest path from the destination to the receiver,
which is calculated using the Dijkstra Algorithm and the
ETX as the corresponding metric. The NetworkMonitor
class collects all the information, as was mentioned before,
and establishes the appropriate routes.

The most relevant changes that were made to the Intra-
FlowNetworkCoding class are briefly described below.

1. Source operation: the transmitter needs to calcu-
late the number of forwarding nodes when a new data
flow is created. The source gets the ETX metric vec-
tor from the NetworkMonitor instance and, using
Algorithm 1, assigns a TXcredit to each forwarder.

2. TXcredit counter: each node has a new parameter.
Upon the reception of a coded packet, the node in-
creases the TXcredit counter, decreasing it each time
the node transmits. As can be inferred, the source
does not make use of this value.

3. Forwarders: in a traditional scheme [2], a packet
would not reach the transport layer unless its IP header
destination address matches that particular node’s. This
behavior is not appropriate for the NC operation, since
the intermediate nodes play a key role. We needed to
tamper the legacy Ipv4L3Protocol::IpForward() func-
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tion source code, to allow the NC layer to decide what
to do with every incoming packet. Furthermore, an
intermediate node can act as a forwarder, even when
it does not directly receive a packet (several nodes can
overhear the packet in one single hop, as was shown in
Figure 1). Hence, intermediate nodes shall enable their
promiscuous reception mode, allowing the NC layer to
get these packets from the WifiNetDevice entity.

In the previous version, when a forwarder entity over-
heard a packet, it would always retransmit a (coded
or recoded) packet. In the enhanced implementation,
and when the medium is idle, a forwarder transmits
a packet only if its TXcredit is positive. Afterwards,
the node correspondingly decreases its TXcredit (one
unit).

4. Coding and decoding tasks: in [2], all the GF-
related tasks, i.e. vector multiplication, matrix rank
and inverse calculation, were carried out by means
of two external libraries: FFLAS-FFPACK [15], used
when the calculations were over a generic Galois field,
GF (2q) (q > 1); and IT++ [16], which only works
over a binary Galois Field GF (2). Due to their high
computational cost of coding and decoding operations,
we have integrated a quicker external library. The two
aforementioned alternatives have been replaced with
M4RI-M4RIE [17]. It provides fast arithmetic with
dense matrices over GF (2q) for 1 ≤ q ≤ 10.

In order to assess the efficiency of the different li-
braries, we generated 1000 random matrices, study-
ing the average time consumed by both rank and in-

Table 1: Simulation parameters

Feature Value
Physical link IEEE 802.11b (11 Mbps)
Error model RateErrorModel (modified)
Coverage area 20m disk radius
FER values [0: 0.1 : 0.6]
RTS/CTS Disabled
IEEE 802.11 RTX 1
Transport level UDP / TCP “New Reno”
Application OnOffApplication (20 MB)
App. data rate CBR (11 Mbps)
Packet length Max size allowed (MTU 1500B)
Traffic Unicast
Simulations 1000 independent runs/point
Scenario 32 Nodes (Random)
K 64

verse operations. We have used different configura-
tions, K = {2, 4, 8, 16, 32, 64, 128, 256} and q ∈ [1, 8].
Figure 5a compares the time required for the matrix
inverse calculation by each external library. For the
GF (2) configuration, the three libraries can be used
and the corresponding times are shown in Figure 5a.
In addition, Figure 5b compares the results for generic
Galois Fields, with K = 32 and K = 64 for the sake of
clarity. In both cases, M4RI-M4RIE exhibits the best
performance, regardless of K and q values. The same
conclusion is yielded from Figure 6, which shows the
rank matrix calculation time.

The last update worth mentioning is the one that was
required in the NetworkCodingHeader, adding those el-
ements required by the opportunistic routing scheme: For-

warders, to indicate the number of forwarders; as well as
the list of nodes that could potentially take that role.

6. SIMULATION AND RESULTS
Once we have described the opportunistic routing scheme

and the changes that were required in the NC module, we
discuss in this section some results that shed light on the
performance enhancements that are brought about by the
combination of these two techniques, after carrying out an
extensive simulation campaign.

The most relevant parameters of the simulation setup are
summarized in Table 1. In a nutshell, the physical and
MAC layers are specified by the IEEE 802.11b specifica-
tion (using the ns3::YansWifiPhy model provided by the
simulator). We disable both the RTS/CTS exchange and
802.11 retransmission schemes. Besides, we use a modified
ns3::RateErrorModel to arbitrarily fix the Frame Error
Rate (FER) over the different links, randomly establishing a
value between 0.0 and 0.6. Regarding the application at the
source nodes, a Constant Bit Rate (CBR) flow is used, en-
suring that there is always at least one packet waiting to be
transmitted at the corresponding buffers, thus establishing
a saturated scenario, where the bottleneck is at the wireless
channel.

Network scenarios are generated by randomly deploying
32 nodes over a squared area, following a Poisson Point Pro-
cess. Furthermore, we discard all deployments whose subja-
cent graphs are not fully connected, thus ensuring that there
is at least one path between any pair of nodes. The coverage
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area of the nodes is modelled by a 20 meter disk radius, by
correspondingly setting the MaxRange parameter of the
RangePropagationLossModel.

Regarding the operational parameters of the Intra-flow
coding scheme, we have selected the following configuration:
K = 64, q = 1 and a buffer timeout of 100 ms. Although
this does not guarantee the optimum performance, it shows
an appropriate trade-off between throughput (it is only 3%
lower than the best one) and computational complexity [2].
It is worth noting that UDP is used as the transport protocol
layer, although the RLC scheme ensures a reliable commu-
nication, and all data packets reach their destination.

We will study the throughput measured at the receiver’s
application layer, defined as the total number of information
bytes that were correctly received, divided by the required
transmission time. The performances of three different al-
ternatives are compared: a traditional TCP implementation
(we are implementing a reliable service), an RLSC scheme
without the opportunistic routing extension (we refer to this
solution as Uni-path) and the opportunistic routing RLNC.
In the first two alternatives, the relaying nodes are selected
with the minimum-cost path between the source and the
destination, established by the Dijkstra Algorithm [18]. It
is worth mentioning that in the Uni-path solution the re-
laying nodes do not recode the information stored in their
transmission buffer, and they simply forward the received
packets.

First of all we assess the performance over a canonical
scenario, as the one presented in Figure 1. In this case, the
two links between the source and the two forwarding nodes
are configured to have the same FER, 0.1, while the links
between those and the destination exhibit a FER that is
increased from 0.0 to 0.6. Although the Uni-path scheme
provides a higher throughput when the links between the
relaying nodes and the destination are ideal, the opportunis-
tic routing scheme leads to a higher throughput than that
achieved by the two other solutions, when the conditions
of the links between the forwarding nodes and the destina-
tion get worse. The combination of opportunistic routing
and network coding leads to a gain of almost three times as
compared to the throughput offered by the traditional TCP.

In order to study the performance of the opportunistic
routing scheme over random scenarios, Figure 8 shows the
cumulative distribution function (cdf) of the throughput for
two different node densities: the first one (see Figure 8a),
which uses the parameters that were presented earlier, cor-
responds to a density of 3.2e − 3 nodes/m2, while the sec-
ond one (Figure 8b) was obtained over a network in which
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the density was twice as big as the previous one (6.4e − 3
nodes/m2), since we kept the same number of nodes, but we
reduced the area to 70.71×70.71 m2. We can see that the use
of opportunistic routing is favored by higher node densities,
since it increases the probability of finding advantageous for-
warding nodes, leading to situations similar to those shown
in Figures 1 and 2. The median of the throughput increases
from 0.76 Mbps to 1.2 Mbps, yielding a gain of ≈ 63%.

In both figures we compare the performance achieved by
opportunistic routing with the one that would have been
obtained by means of a more traditional Uni-path scheme.
The results show that opportunistic routing significantly in-
creases the throughput. In particular, this gain is ≈ 67%
for the lower density deployment (see Figure 8a) and ≈ 71%
for the second network deployment (Figure 8b). We can
see that, although the performance of the legacy approach
is higher for higher densities (shorter routes can be used)
the gain of the opportunistic routing scheme remains almost
constant.

This relevant improvement is a consequence of the com-
bination of intra-flow NC and the capability of taking ad-
vantage of the broadcast nature of wireless channels. As
can be seen in Figure 9, the combined use of opportunis-
tic routing and RLNC, where intermediate nodes recode the
packets, brings about a performance that surpasses the one
observed with both RLSC and RLNC over a single-path con-
figuration. The combination of the RLSC scheme and op-
portunistic routing does not seem to bring additional advan-
tages, since the forwarders would be transmitting the same
information. Compared to other opportunistic routing so-
lutions, the recombination at intermediate routers helps to
reduce the complexity of the corresponding scheduler, since
nodes are continuously generating new information from the
previously stored packets; on the other hand, traditional so-
lutions would need to handle the possibility of transmitting
redundant messages.

Finally, we study the impact of using a greater Galois
Field, GF (2q). Figure 10 shows the throughput as a func-
tion of the number of hops of the shortest path from the
source to the destination. Although there exists a small gain
when q = 2, it is almost negligible, and due to the higher
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computational cost (as was discussed in Section 5), the use
of larger q does not pay off.

7. CONCLUSIONS AND FUTURE WORK
In this work we have presented an updated version of a

NC module which we implemented within the ns-3 frame-
work. We have extended its original scope, so that it can
also deal with random network deployments. In order to
do so, we have integrated the opportunistic routing scheme
that was proposed by Chachulski et al.in [3], and we have
exploited the advantages of combining the two approaches.
Furthermore we have also enhanced the earlier implementa-
tion, by integrating a new library, M4RI −M4RIE, which
clearly outperforms (in computational time) the previous
alternatives regarding all the GF -related calculations (rank
and inverse).

By means of an extensive simulation campaign, we have
assessed the performance of the opportunistic routing scheme;
on a first stage, we focused on canonical topologies, evalu-
ating the throughput of these techniques, comparing it to
that offered by more traditional routing mechanisms. After-
wards, we have extended our analysis to random topologies,
where we have seen that the benefits of this alternative be-
come more relevant when node density gets higher.

There are still a number of aspects that we will tackle in
our future research. First of all, we will implement the sig-
nalling protocol (based on Hello messages or probes), which
is required to enable a distributed operation of the proposed
routing scheme. Another aspect that might be of interest
would be to increase the complexity of the studied scenar-
ios, for instance, starting more than one single flow at the
same time.

Finally, it is worth highlighting that all the NC proto-

col’s code, together with the opportunistic routing imple-
mentation, follow an open-source approach and can be found
in [19]. We strongly encourage other interested researchers
to download the code and use it, since this would certainly
help us to incorporate additional enhancements. The repos-
itory also contains the files that are required to mimic the
scenarios that were used, and thus allow studying the same
results. We would also welcome people interested in joining
this effort.
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