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ABSTRACT
Current wireless network simulators provide very detailed
and deterministic models of the network protocol layers,
whereas rather simple and stochastic models, based on the
signal-to-noise ratio, are used for the simulation of the phys-
ical layer. Although this approach can be sufficient to study
the behavior of different upper layer protocol variations, it
prevents an easy alteration of the physical layer because
a stochastic abstraction of the physical layer must be pro-
vided in advance. In particular, the simulation of distributed
systems with physical layers that are designed to have sev-
eral senders transmitting signals at the same time intention-
ally, is hardly possible with current approaches. A further
problem of stochastic physical layer simulations is the fact
that the radio channel’s influence must also be carried out
stochastically, which limits the advantage of accurate ray-
optical channel models. We present a novel approach for
the accurate simulation of the physical layer by utilizing ex-
isting software-defined radio implementations to create sig-
nals, to calculate interference and to decode signals. This
technique enables us to simulate wireless networks holisti-
cally and, furthermore, we can fully exploit the possibilities
of available ray-optical channel models.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Wireless
communication; I.6.5 [Simulation and Modeling]: Model
Development

General Terms
Algorithms, Experimentation, Measurement

Keywords
Wireless Networks, Simulation, Physical Layer, Signal Sim-
ulation, Software-defined Radio

1. INTRODUCTION
Current wireless network simulators provide very detailed
deterministic models of the network protocol layers. The
models simulate the flow of data packets from a transmitter
node to one or more receiver nodes. For example, effects
like queuing, retransmitting, acknowledging and routing of
packets according to the simulated protocol are considered.
However, the physical layer (PHY), which is the interface
between analog signals on the one hand and data packets on
the other hand, is simplified tremendously in state-of-the-art
network simulators.

While in fact being a rather complex subsystem of a net-
work communication system, the PHY layer is typically sim-
ulated stochastically by using a bit error rate (BER) based
model. The BER is derived from the signal-to-noise ratio
(SNR) or—in more advanced simulators—from the signal-
to-interference-plus-noise ratio (SINR). The models are put
down to the assumption that interference between different
signals caused by nodes, which transmit in a time-overlap-
ping way, is basically a condition which hinder the reception
of a signal.

While this rather simple approach might be acceptable for
collision avoiding medium access methods (MAC) like for ex-
ample CSMA/CA (Carrier Sense Multiple Access/Collision
Avoidance) as used in the IEEE 802.11 protocol family, it
shows the following drawbacks and makes various simulation
studies impossible:

1. The simulation of communication systems based on
MAC protocols like CDMA (Code Division Multiple
Access) is—by principle—infeasible. CDMA is a MAC
mechanism which explicitly allows different nodes to
transmit signals at the same time and at the same
frequency by using a spread spectrum approach and
a node-specific code. A simplified decision between
successful packet reception and collision based on the
SNR value is not sufficient because decoding the pack-
ets from the received superposition of signals is the
part of interest, especially under time-variant channel
conditions.

Using CDMA looks promising against the background
of real-time communication [8]. In contrast to sys-
tems based on CSMA/CA, real-time constraints can
be guaranteed by CDMA. Especially in asynchronous
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CDMA systems network nodes are allowed to transmit
without any channel listening and waiting.

2. A very similar problem occurs if network simulations
are used to study modern communication approaches
like multiple-input, multiple-output (MIMO) systems
or even multi-user MIMO (MU-MIMO). MIMO is, for
example, used in IEEE 802.11n, MU-MIMO in IEEE
802.11ac. To study MIMO or MU-MIMO communi-
cation systems in a realistic way, it is also necessary
to simulate the decoding of packets from a superpo-
sition of signals which overlap in time and frequency
domain. To the best of our knowledge, there is no sim-
ple and general stochastic approach which decides the
receptability of packets in a MU-MIMO system, espe-
cially in a complex scenario with a time-variant and
delay-spreading channel.

3. In network simulations, the SNR or SINR values are
calculated using a channel model. While the channel
models used in state-of-the-art simulations are often
rather simple combinations of stochastic fading mod-
els and distance-based path-loss models, which deter-
mine the SNR derived from Friis’ transmission equa-
tion [1], there are also more sophisticated models avail-
able. It has been shown that in highly dynamic net-
work topologies, like for example vehicular ad-hoc-
networks (VANET), simple distance-based path-loss
models do not offer the required accuracy [17]. For this
reason, ray-optical channel models have been devel-
oped which calculate a delay spread of a signal based
on the three-dimensional environment. For example,
in vehicular ad-hoc networks buildings, vehicles and
the terrain roughness are considered by ray-optical ap-
proaches. The resulting delay spread shows the tempo-
ral diversification and energy distribution of different
multi-path components of a signal. To link ray-optical
channel models to current wireless network simulators,
the delay spread needs to be reduced to a scalar SNR
value, effectively discarding most of its information.

4. Stochastic approaches as used in PHY models of state-
of-the-art network simulators are based on probabil-
ity distributions. They have been derived from large-
scale measurement campaigns. While all established
network simulators bring their stochastic models for
the common protocols like IEEE 802.11, this approach
makes it hard to exchange or modify the PHY layer
as the stochastic model would not be available in this
case. For this reason, optimizations at the PHY layer
are rarely part of the typical network simulation stud-
ies whereas, for example, in VANETs a lot of optimiza-
tions at the routing protocols are done. The simplified
approach used in network simulators prevents the PHY
layer to be a fully exchangeable and optimizable part
of a communication system’s design space.

These drawbacks can be summarized as follows: Extensive
simplifications of the PHY layer in state-of-the-art network
simulators prohibit a detailed studying and optimization of
the PHY layer itself in the context of the entire communica-
tion stack. In the last years there has been a lot of progress
in PHY layer development, e.g. communication systems like

IEEE 802.11ac, W-CDMA or LTE contain quite sophisti-
cated approaches compared to, for example, IEEE 802.11a
or IEEE 802.11p. The last-mentioned standard is proposed
for communication in VANETs, but especially in scenarios
with a fast-changing topology and with highly time-variant
channel conditions, a co-simulation of channel, PHY layer
and the network protocol’s upper layers would be very ben-
eficial. Although our approach addresses various kinds of
networks, we take VANETs as an exemplary application.
Due to the above mentioned properties, VANETs are quite
challenging. With IEEE 802.11p being in the process of
standardization for VANETs, it is important to be able to
investigate the outcome of different options and enhance-
ments in the PHY layer.

There have been some attempts to fix the disregard of the
physical layer in network simulators. However they are ei-
ther hardware-based and therefore tied to the existence of
hardware prototypes, or they consist of an implementation
of a specific protocol. To the best of our knowledge there is
no general, software-based simulator extension which satis-
fies all of the above stated needs.

In this paper, we present a new model for the simulation of
the physical layer. Our generic approach takes advantage of
the emerge of software-defined radios (SDR) and therefore of
the availability of ready-made and publicly available imple-
mentations of wireless communication protocols including
the PHY layer. We implemented a prototype implementa-
tion which uses GNU Radio building blocks for generation
and decoding of baseband IEEE 802.11p signals. The im-
plemented signal simulation was integrated into the Veins
VANET simulator to achieve a co-simulation of the network
protocol and the signal processing. We also compared our
approach with the standard PHY that comes with Veins.

We can show two important outcomes: Firstly, as expected,
stochastic modeling is a valid approximation for collision-
avoiding PHYs like CSMA/CA. Secondly, our complete PHY
implementation works well and delivers reasonable results.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces related work in the field of accurate PHY
layer simulation. In section 3 we firstly give an outline of
our work followed by an introduction of required techniques.
We present the challenges of our approach and how to han-
dle them and eventually present a detailed view how our
implemented prototype works. In section 4 we show the
results of a comparison of our deterministic physical layer
with a stochastic model and in section 5 we summarize our
contribution and the results.

2. RELATED WORK
In this section, we give a presentation of work which is re-
lated to this paper. As stated above, our approach to allow
the PHY layer to be an explicit aspect of study in a network
simulation is quite general. For reasons we have also given
in the last section, we focus on communication between ve-
hicles. While much progress in the performance of wired
and wireless communication systems has been able to be
observed for the last years, the related papers we are going
to present in this section will be mostly related to research
and development in the field of VANET simulations.



In VANET research, the use of more accurate radio channel
models and the explicit simulation of the PHY layer have
received noticeable attention, as the limitations of the too
simplistic models as introduced in the first section are obvi-
ous.

The properties of radio channels can be simulated most ac-
curately by solving Maxwell or Helmholtz equations given
the presumption that there is a environment model of the
simulation scenario. Solving these wave equations requires a
huge amount of computation power. Especially in highly dy-
namic channel conditions as they are common to VANETs,
the effort of computation is usually too high as the chan-
nel conditions have to be recalculated in each simulation
step. For this reason approaches based on geometrical op-
tics are used as an approximation: Radio propagation is con-
sidered as light which propagates along rays. Typical wave
effects like edge diffraction are added to the model. This ap-
proximation still delivers quite precise results as shown by
Maurer [6], Moser et al. [7] and Schmitz et al. [11, 12, 13].
Further approximative approaches published by Sommer et
al. [15] distinguish between signal transmission in a line-of-
sight (LOS) versus in a non-line-of-sight (NLOS) condition.
Based on this property, appropriate stochastic PHY models
are chosen by the simulator.

Both, the wave-based and the ray-optical models typically
calculate or approximate a radio channel’s impulse response,
i.e. a distribution of transmission power over time. Schu-
macher et al. [14] described a method to derive an SNR
value from real-world geometric data, but this discards im-
portant information, like multi-path propagation and time
variant changes in received power. To actually exploit this
information, an explicit and deterministic PHY simulation
is required. In the remainder of this section we present im-
portant contributions in the field of deterministic PHY sim-
ulation.

A hardware-based channel emulator has been developed by
Judd and Steenkiste [5] and has received a lot of attention.
By connecting a cable between the antenna ports of real
wireless hardware (e.g. laptops) and their FPGA-based sys-
tem, they can emulate the channel’s effects on the radio
propagation. The system supports dynamic movement of
the simulated nodes. Interfering signals are superimposed.
They use a simple path-loss model as a channel model, but
the authors point out that simulation of the 3D environment
is possible by implementing, for example, a ray-tracing based
model on the FPGA. While the built prototype consists of
only three nodes, the system can emulate up to 50 nodes us-
ing a single FPGA. This number can be further increased by
adding another FPGA. This is a very interesting and flexible
approach for accurate physical layer consideration in wire-
less network simulations: Real network interface hardware
is used for signal processing. At the same time this is one of
the major downsides of this concept: It obviously depends
on hardware implementations of the protocol which is about
to be studied. Wireless network interfaces must be already
available which does not only rise financial burdens—the au-
thors estimate a price of several hundred USD per node to
be simulated—, but is also hard to accomplish in an early
design phase.

Papanastasiou et al. have implemented the PHY of IEEE
802.11p using C++ [9]. Their contribution is a drop-in re-
placement for the previous PHY model which has been built-
in into the ns-3 network simulator. They have used IT++, a
signal processing and communications library, to create sig-
nals as they are transmitted by network nodes. Using chan-
nel models which are also provided by IT++, they added
the influence of the channel between sender and receiver.
They have mapped the reception of a signal to four events:
(1) begin of the preamble, (2) begin of the frame header, (3)
begin of the frame payload and (4) end of frame payload.
At event 1 the signal is added to the node’s list of current
signals. All following signal processing steps are performed
on the mix of overlapping signals and thermal noise: At
event 2 the receiver tries to detect and sync to the preamble.
Only if this succeeds, the subsequent steps are performed.
At event 3 the header is decoded. Finally at event 4, the
payload is decoded and a decision whether the reception of
the signal was successful is made. To verify the correct-
ness of their implementation, the authors compared signals
created by their software with examples taken from the an-
nex of the IEEE 802.11 standard. They have conducted
data about the performance of their PHY by comparing it
with the vanilla PHY provided by ns-3 and with the above-
mentioned hardware-based signal emulation that connects
wireless network interfaces to a wired channel model [5].

While there has been great preceding contributions in the
field of physical layer simulation, to our knowledge there
exists no generic approach for the accurate simulation of
the physical layer.

3. SIGNAL SIMULATION: A DETERMIN-
ISTIC MODEL OF THE PHYSICAL
LAYER

A deterministic model replicates the behavior of a system in
a non-random way by simulating the process in the system.

Setting up a deterministic simulation of a physical layer im-
plies that the following aspects are considered:

• The physical layer generates analog signals based on
given digital data packets. This process has to be sim-
ulated.

• The physical layer reconstructs digital data packets
from received analog signals. This process has also
to be simulated.

• The radio channel between transmitter and receiver
alters the signal. Multi-path propagation can cause
interference.

• Additional interference can occur due to transmitters
which are transmitting at the same time.

• Additional thermal noise can occur and alter the sig-
nal.

In the following we describe how the requirements where
addressed. We name our approach, the deterministic simu-
lation of the physical layer, signal simulation.



Figure 1: Structure of an OFDM frame.

In order to implement the signal simulation, we are going to
identify the required components by looking at real-world
examples of communication systems.

The process which is performed by a transmitter is relatively
simple. It has a to implement a set of rules to map given
digital bit patterns to sequences of signal values. It will be
discussed later.

The process which is performed by a receiver is more com-
plex. It might, for example, use direct conversion to im-
plement down-conversion and analog-to-digital conversion.
The output is a complex baseband signal which will be pro-
cessed further. Figure 1 shows the example of an Orthogonal
Frequency-Division Multiplexing (OFDM) frame. OFDM is
used by many modern communication systems. An in-depth
understanding about the internals of OFDM is not required
for this explanation. A receiver will firstly try to detect the
preamble and to synchronize itself to the signal. In the next
step, it will decode the signal field in the first OFDM symbol
which tells the receiver, how the rest of the frame will have
to be decoded. After the last data symbol has been received,
it verifies the checksum and can start parsing the payload.
Within a simulation, the model represents the relevant be-
havior of a process. The behavior of a receiver’s physical
layer depends on the received signals, therefore it is neces-
sary to map what is happening at the receiver’s antenna.
Signals received at the same time interfere with each other.
The interferences depend on involved signals and the posi-
tion of the receiver and hence the resulting mix of signals
cannot be estimated but has to be calculated.

In order to calculate the mix of signals, the involved individ-
ual signals have to be calculated in the first place. For this
step, a transmitter that can calculate a valid signal from the
bit stream is required as described above. Then the inter-
ferences can be calculated. Afterwards the reception of the
mix of signal can be simulated. For this step, a receiver that
can decode a signal and return the payload is necessary.

In summary, our approach consists of the following parts:

• A transmitter that creates signals that are sent.

• A channel model to delay and attenuate the signal.

• A mechanism that rebuilds the state at the receiver’s
antenna consisting of different delayed and attenuated
signals and thermal noise.

• A receiver which can decode signals and verify their
correct reception.

In the next section we outline how a network simulator works
in general and how the PHY model operates. Next, software-
defined radio is introduced. Followed by a brief summary
about signal superposition. Afterwards our implemented
signal simulation prototype is introduced in detail.

3.1 State-of-the-art Wireless Network Simu-
lators

Network simulators are typically implemented as discrete-
event simulation models (DES). DES models the system as
a chronologically sorted list of events. State changes of the
models can only be triggered by events. New events are
created by processed events.

For example the transmission of a packet can be modeled
using the following events: (1) The transmitter starts send-
ing the packet. (2) The receiver starts receiving the packet.
(3) The transmitter has sent the packet completely. (4) The
receiver has received the packet completely. The order of
events (2) and (3) depend on propagation time and length
of the packet.

Veins is a framework for vehicular network simulation [16]
that builds up onto OMNeT++, a discrete-event simulation
framework, MiXiM, a class of network simulation models,
and SUMO, a microscopic street traffic simulator. MiXiM
examines a received packet two times: (1) At the beginning
of the header a decision is made whether to synchronize to
the signal and the state of the channel is updated. (2) At
the end of the signal. At this point in simulation time all
occurring collisions are known. The power of the received
signals is calculated using a stochastic channel model that
relies on the distance between sender and receiver but uses
different attenuation if there is a line of sight connection or
not.

Using the minimum SNR of the signal and a BER model,
the outcome of the reception is calculated. The parame-
ters of the BER model are based on measured data. The
recently released version 4 alpha 1 of Veins provides model
parameters for all data rates of IEEE 802.11p while previ-
ous version only supported 6 MBit/s and 18 MBit/s. Here
we see a downside of stochastic models: Any change of the
involved models may require an update of the stochastic
model as the model parameters are based on measured data
which was conducted in a specific setup.

So the result of the transmission of a packet is based on the
SNR that is determined by the power of the signal, existence
of interference and thermal noise.

3.2 Software-Defined Radio
Software-defined radio (SDR) is a method of implement-
ing radio transmitters and receivers in which all or most of
the signal processing is realized using software on a general-
purpose computer while the number of special-purpose hard-
ware parts are kept preferably small. Benefits over tradi-
tional hardware-based designs are flexibility and reconfig-
urability: Software-based signal processing can be changed
on the fly and without a hardware redesign phase. A disad-
vantage is that the signal processing is usually quite demand-
ing in terms of computation power. However, technological



progress reduces this problem.

An ideal SDR is depicted in Figure 2. It shows a transceiver
that consists of an antenna connected to a combined analog-
to-digital/digital-to-analog converter and an universal com-
puter to handle all signal processing in software. Such an
ideal design is not realizable and also not advisable because
the digitized signal contain aliasing as the signal at the an-
tenna has no upper bounds. Even if a low-pass filter was
added, the sampling rate of the analog-to-digital and the
subsequent signal processing would have to be 2× the de-
sired carrier frequency. Therefore usually the direct conver-
sion receiver is implemented in hardware. With a SDR that
uses direct conversion the signal is, after bandpass filtering,
multiplied with a local oscillator and the digitized two times
with a 90° phase shift. This yields a complex baseband sig-
nal and all further signal processing is also complex.

Antenna

A/D Software

Figure 2: Ideal software-defined radio consisting of
an antenna, an analog-to-digital converter and dig-
ital signal processing (DSP) on a general purpose
computer.

If the hardware part is left out of an SDR transmitter, a
software remains which creates a baseband signal from the
payload. Analogously a SDR receiver is a software which can
decode a baseband signal and return the original payload.
This is exactly what we need for our approach of an accurate
simulation of the physical layer.

GNU Radio is a framework for building SDR and signal
processing applications [3]. It provides a library of signal
processing blocks. Applications are built using flow graphs
that are typically implemented using Python. The signal
processing blocks are implemented in C++. GNU Radio
provides a graphical editor and various GUI elements that
can be used to build applications. A flow graph consists of
a chain of blocks. The output of the first block, which the
source, is connected to the input of the next block. The last
block is connected to the data sink. A source can be for
example an SDR and a sink can be an audio interface to
output a decoded audible signal.

data
source

flow
graph

data
sink

Figure 3: Structure of our SDR interface.

The structure of our SDR interface is shown in Figure 3.
The data to be processed by the flow graph is first placed
into the data source block. Then the flow graph is started.
It processes all data and is monitored by the SDR inter-
face. Upon completion, the processed data can be retrieved
from the data sink. There are basically only two neces-
sary modifications for ready-made SDR protocol implemen-
tations: Adding data source and sink blocks for interfacing
the SDR process.

Bloessl et al. have published a complete transceiver for IEEE
802.11p that is implemented using GNU Radio [2]. The
transceiver was built using GNU Radio blocks only. This
makes it very clean and easy to use. It was verified by com-
parison against commercially available IEEE 802.11p hard-
ware. For our use case all hardware-dependent parts were
removed, data source and sink blocks were added and pos-
sibilities to set the data rate.

To sum up, SDR is a promising application to gain deter-
ministic models for the generation and decoding of signals.
Only small modifications to the SDR programs are neces-
sary. There is already a complete SDR transceiver for our
intended prototype available.

3.3 Superposition of Discrete Signals
When more than one signal is received by a node at the same
time, the involved signals interfere with each other. Interfer-
ence between two signals or between a signal and noise can
be described by the superposition principle that states that
the signal created by interfering signals is the sum of the
individual signals. The result of the overlapping signals are
typically time and location dependent because propagation
attenuates the signal and delays it. For simulation purposes
signals are typically dealt with in a discrete representation.
Superposition of discrete signals can be calculated as vector
addition. However this is only possible if the signals s1 and
s2 are sampled at the same absolute points tn. See Figure 4
for an illustration of the problem. It shows two signals that
are sampled at different points. To calculate the vector ad-
dition of the two signals, signal (b) has to be sampled at the
same time as signal (a).

t

(a)

t

(b)

Figure 4: Two discrete signals that are sampled at
different absolute points in time.

Different solutions are possible to overcome this problem.
One possibility is to choose the nearest sample. This ap-
proach introduces an error in resulting signals. To illustrate
the error, the time between two samples is defined by the
sampling rate. The sampling rate for a 10 MHz channel with
a complex baseband is fs = 10 Msps. The maximum time
error is then 1

2fs
= 1

2
·10−6s. In this amount of time an elec-

tromagnetic wave travels approximately 15 m. Physim-Wifi
uses this method [9]. While there might be no measurable
difference for CSMA/CA based networks, there can be a
difference in systems where superposition of signals coming
from different transmitters happens intentionally.

Another possibility is to use linear interpolation to calcu-
late the samples at the correct point in time. Linear in-
terpolation does not allow perfect reconstruction and thus
introduces an additional error. In our tests the rate of re-
ception with respect to signal-to-noise ratio was worse when



linear interpolation was used compared to using the nearest
sample, in which case there is no interpolation at all.

A superior solution is an ideal band limited sinc interpola-
tion [18]. The sinc function is the impulse response of an

ideal low-pass filter: sinc(x) = sin(πx)
πx

. By sampling the
sinc function shifted by a fraction of a sample d as depicted
in Equation 1 we get the impulse response h.

hdn = sinc(n− d) =
sin(π(n− d))

π(n− d)
(1)

Filtering a signal s with hdn creates a signal s′ which is de-
layed by d samples, with d < 1 being a fraction of a sample.

The sinc function is not bounded and therefore not imple-
mentable. This can be solved by windowing the sinc func-
tion. We extend Equation 1 and use a window w to limit
the impulse response and obtain Equation 2.

hdn = w(n− d)
sin(π(n− d))

π(n− d)
(2)

In a comparison of windowing functions for fractional-delay
filters the authors suggest to use the Hann window [4] as
thereby the maximum error is minimal. We followed this
recommendation in our fractional-delay filter implementa-
tion.

To summarize this section we can state that time-correct
superposition of interfering signals is necessary in order to
get accurate results. To calculate the required samples a
fractional-delay filter looks promising. Under which circum-
stances time-correct superposition affects the result is un-
clear and has yet to be investigated.

3.4 Signal Simulation
As introduced, SDR provides the building blocks for all
kinds of transceivers. Moreover, a complete implementation
of an IEEE 802.11p transceiver has been published. The
implemented signal simulation can create a baseband signal
from the payload and also detect and decode a signal.

protocol simulation channel model

signalbuffer

SDR

signal simulation

Figure 5: Structure of a network simulator con-
nected to the signal simulation.

The structure of a network simulator that is connected to the
signal simulation is shown in Figure 5. The signal simulation
is connected to the protocol simulation, which is a network
simulator without physical layer and channel model. The

protocol simulation notifies the signal simulation whenever
a packet is sent. The signal simulation creates a signal using
the SDR. Which nodes might be able to receive the signal is
calculated using a very simple model that is based on Friis’
transmission equation. The effects of the channel between
the sender and each receiving node is then calculated using
the channel model. The outcome of the reception can be
calculated using the receiver in the SDR.

After introducing the structure of the signal simulation the
chronologically steps of the signal simulation will be depicted
here:

1. The network simulator schedules an event for the be-
ginning of a signal reception. The time of the sig-
nal reception is determined by the time of sending the
signal plus the propagation delay, which is calculated
by the channel model. The signal simulation uses the
SDR sender to create a corresponding signal by passing
the following information: length of the signal, type of
modulation and the payload. For our purposes the
payload consists of a locally unique ID to be able to
identify the correct signal later.

2. The created signal that consists of a set of samples
is then correctly positioned in time. This means, as
described in section 3.3, that the signal is processed
using a fractional-delay filter. In advance the filter co-
efficients are calculated according to the required frac-
tional delay.

3. The resulting signal is attenuated according to the
receiving power that was calculated by the channel
model.

4. The delayed and attenuated signal is stored in the sig-
nal buffer. The signal buffer stores samples to replicate
the voltage at the receiver’s antenna. If the current sig-
nal is not overlapping with any other signals, the signal
buffer is initialized with thermal noise. Then the signal
is added to the signal buffer by using a vector addition.

5. Step 2 and 3 are repeated for every multi-path prop-
agation component. The signal is superimposed with
copies of itself.

6. An event is scheduled for the time the signal has been
received completely. When this event occurs the signal
buffer contains the original signal plus all interferences
that happened while receiving the signal. The part of
the signal buffer that contains the original signal and
the interferences is then processed using the SDR re-
ceiver. The decoder tries to detect and sync to the
signal and—if it succeeds—it decodes the signal. The
decoder also verifies the MAC packets checksum. Af-
terwards the unique ID in the payload of the packet is
verified. If two signals with the same length are being
received at the same time it is otherwise not possible to
verify which of the two interfering signals was decoded.
However, the chance for such an incidence should be
quite low.

7. The result of the decoding is then returned to the net-
work simulator.



Our prototype and a detailed description of its internal pro-
cesses was introduced in this section. In the next section we
describe the result of our data we conducted in a comparison
between a current PHY model and our signal simulation.

4. RESULTS
Table 1 shows the software and hardware that was used in
our study. We are aware of the existence of newer versions of
e.g. Veins. But as Veins 4 alpha 1 uses stochastic models of
the physical layer our claims are still valid. However, Veins
4 uses a new and more realistic BER model [10] the absolute
results and differences will probably vary.

Table 1: Environment of the simulation used to con-
duct data.

Software

OMNeT++ 4.4
Veins 2.1
SUMO 0.17.1
GNU Radio 3.7.4
Linux 3.16.0

Hardware

CPU Intel i3-3110M
Memory 8 GB

To conduct the simulation results two different systems where
setup which will be explained below. The first system con-
sists of Veins, which includes OMNeT++ and SUMO and
our signal simulation. The second system was put in place
for a more precise examination of the physical layer. It con-
sists of only the signal simulation and the BER model of
veins. The signal simulation is manually executed and gives
a better control of the occurring signal-to-noise ratio, inter-
fering of other signals and noise and the time timing of the
signal.

We have used IEEE 802.11p as an example for our proto-
type. The simulation parameters can be found in Table 2.

Table 2: Simulation parameters.

Channel bandwidth 10 MHz
Channel frequency 5.8 GHz
Symbol duration 8 µs
Data rate 18 Mbps

The data of the study was conducted using a modified Veins
demo scenario where cars drive along predefined routes. The
cars transmit beacons in a 200 ms interval. The routes in-
tersect each other to increase the probability of collisions of
the beacons. The simulation takes 5.6 minutes using Veins
and 284 minutes using the signal simulation. For this spe-
cific scenario the signal simulation introduces a 50× slower
calculation time. During the simulation around 120k signal
transmissions occur. Out of these about 49k signal trans-
missions have a SNR > 0.

Figure 6 shows a comparison of the probability of a success-
ful reception of a frame with respect to the signal to noise
ratio for the signal simulation and Veins. The stochastic
model of Veins is more pessimistic than our signal simula-
tion. To reach a frame reception rate of 50 % the signal
simulation needs a SNR of only 29 dB while Veins needs
32 dB to achieve the same rate. The gap becomes smaller
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Figure 6: The frame reception rate with respect
to the signal-to-noise ratio of the deterministic sig-
nal simulation (red) compared to Veins’ stochastic
model (blue).

as the SNR increases: For a packet reception rate of 90 %
the signal simulation needs a SNR of 34 dB and Veins needs
36 dB.
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Figure 7: The frame reception rate with respect to
the signal-to-noise ratio with noise only (green) or
with noise and interference (blue).

Stochastic PHY models treat noise and interfering signals
the same. Figure 7 shows a comparison of the probabil-
ity of a successful reception of a signal with respect to the
SNR for signals where only thermal noise was present (green)
and signals where thermal noise and interfering signals were
present. The probability of a successful reception is nearly
identical for both cases. This means that stochastic models
work quite well for CSMA/CA based IEEE 802.11 protocols.

4.1 Computation and Memory Costs
To be able to classify the costs of the deterministic PHY
model we conducted CPU time and memory measurements.
The numbers were measured on a laptop with Intel i3-3110M
CPU and 8 GB of memory running Linux 3.16.0.

The costs of computation depend on the number of trans-
missions and receptions. If a signal is received by five nodes
there are 1 transmission and 5 receptions. More precisely
the computationally costs of each reception also depend on
the number of paths in the multi-path propagation and the
length of the signal. The time to calculate a transmit-
receive-cycle cycle depends on the length of the signal. For a
signal consisting of 64 symbols the calculation time for trans-
mission is 42 ms, reception is 73 ms, summarized to 115 ms
for each transmit-receive-cycle. As GNU Radio uses Python



for connecting the flow graph of signal processing modules
and we currently restart the python interpreter each time a
signal is received there is great potential for optimization.

Memory usage depends only on the number of nodes and
the maximum expected packet length. For each network
node the signal simulation has to store two maximum length
packets overlapping in 1 sample. This results in a minimum
buffer length of 2 × maximum signal length − 1. The buffer
is an array of complex floating point numbers, each sized
8 bytes. For our tests which assumed a maximum packet
length of 64 symbols which results in a maximum packet
length of 512 bytes. This yields a memory usage of 1 kB per
node for the storage of the signals.

5. CONCLUSION
We presented a novel approach for the accurate simulation
of the physical layer. By using ready-made software-defined
radio libraries there are only small adaptations necessary–
compared to a complete implementation of a specific proto-
col. We have implemented a prototype for the simulation of
IEEE 802.11a/g/p and provided an integration in the Veins
VANET simulator. However our approach is not protocol-
or application specific. The prototype is a drop-in replace-
ment for the Veins PHY and supports a ray-optical channel
model, thus enabling the simulation of multi-path propaga-
tion. However the approach is not limited to GNU Radio,
IEEE 802.11a/g/p and Veins. Adaption for other network
simulators such as ns-3 are possible as well as other PHY
protocols and other SDR software. Future applications pos-
sibly include simulation of CDMA for real-time media access
and simulation of MIMO-based systems.
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