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ABSTRACT
A context-aware system uses context to provide relevant informa-
tion and services to the user, where relevancy depends on the user’s
situation. This relevant information could include a wide range of
heterogeneous content. Many existing context-aware systems de-
termine this information based on pre-defined ontologies or rules.
In addition, they rely on users’ context history to filter it. Moreover,
they often provide domain-specific information. Such systems are
not applicable to a large and varied set of user situations and infor-
mation needs, and may suffer from cold start for new users. In this
paper, we address these limitations and propose a novel, general
and flexible approach for bootstrapped discovery and ranking of
heterogeneous relevant services and information in context-aware
systems. We design and implement four variations of a base algo-
rithm that ranks candidate relevant services, and the information to
be retrieved from them, based on the semantic relatedness between
the information provided by the services and the user’s situation
description. We conduct a live deployment with 14 subjects to eval-
uate the efficacy of our algorithms. We demonstrate that they have
strong positive correlation with human supplied relevance rankings
and can be used as an effective means to discover and rank relevant
services and information. We also show that our approach is ap-
plicable to a wide set of users’ situations and to new users without
requiring any user interaction history.

Categories and Subject Descriptors
C.3.2 [Special-Purpose and Application-based Systems]: Real-
time and embedded systems, Ubiquitous computing

General Terms
Algorithms, Design, Experimentation, Human Factors, Performance

Keywords
Context-aware Computing and Systems; Ubiquitous Computing;
Discovery and Ranking of Relevant Services and Information

1. INTRODUCTION
A context-aware system uses context to provide relevant infor-

mation and services to the user, where relevancy depends on the

user’s task or situation [9]. This involves delivering “the right in-
formation at the right place and the right time" i.e. relevant, per-
sonalized and timely information to users. Thus, a context-aware
system should exhibit the following three capabilities:
• Determining relevant information - This capability is the cor-

nerstone of context-aware computing. In today’s world, with
the abundance of information available to us, information
overload can easily happen. Hence, it is imperative that the
system retrieves and displays only that information which is
relevant to the user’s task at hand.
• Personalization - This is achieved by acquiring a user’s con-

text (needs, preferences, etc.) through implicit or explicit
means and using it to filter the relevant information.
• Timeliness - The system can achieve timely information de-

livery by providing the personalized and relevant information
to the user at a time when he needs it and can act upon it.

However, what constitutes relevant information to an individual
user may vary widely according to his tasks or situations. For in-
stance, a user who intends to get a medical test done would benefit
from relevant information, such as recommendations for hospitals
and laboratories, retrieved from the appropriate sources. A user
who is about to leave for work may be interested in the weather
forecast and traffic enroute to her workplace. Furthermore, this in-
formation should be personalized according to the users’ context
such as location, preferences and needs. Finally, the context-aware
system should provide this information to the users in a timely
manner in order to help them make an informed decision regard-
ing where they should go, which routes they should take and when
they should leave so that they can reach their destination on time,
thus, saving their time and effort. Ultimately, this enhances their
efficiency and facilitates effective decision making.

As evident from this discussion, a user’s intended events, activ-
ities, tasks and situations (henceforth, collectively referred to as
Situations) are the most crucial factors in determining what infor-
mation is relevant to him. It is also evident that a user’s information
needs in the real world vary according to his situations and could
include a wide range of heterogeneous content, such as weather,
news, traffic information etc. This presents two challenges: rec-
ognizing a user’s situations and tasks, and determining information
relevant to them. In this paper, we focus on these two challenges.

In many existing context-aware systems and applications such as
Siri1, the user explicitly provides his situation or task information
and requests for relevant information. For instance, if he is going
for lunch, he will request information about restaurants or food op-
tions nearby. However, for widespread adoption, it is essential that
his situations be detected in an automated and unobtrusive manner.
An existing way to recognize a user’s current situation is via ac-
tivity recognition (as done in [19]) though it can recognize only a
limited number of diurnal situations (such as ‘Walking’, ‘Driving’
etc.). On the other hand, user generated content from scheduling

1 www.apple.com/ios/siri/
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resources (such as calendars, reminders or to-do lists), which users
employ prolifically nowadays, can provide a rich platform for im-
plicit recognition of everyday situations and tasks. This content can
be easily used to augment activity recognition.

Thus, to address the first challenge, we propose to glean as much
information, about the user’s tasks and situations, as we can by soft
sensing of these user generated sources on smartphones and desk-
tops through application access or content extraction. For instance,
consider a user who has a scheduled event, ‘Lunch’, marked in his
calendar. A context-aware system can now infer, from this event,
that the user’s situation would be ‘Having Lunch’ in the near future.

The second key challenge is to determine what information is
relevant to a user’s situation. As mentioned earlier, the relevant in-
formation varies widely with the user’s situations and could include
a range of heterogeneous content. Clearly, it would be infeasible to
build an individual system to provide each type of content - a single
generic and unified system that could integrate and retrieve a vari-
ety of such heterogeneous information from various sources, based
on its relevance to the user’s situation, would be the ideal solution.

Some of this relevant information can be extracted from inter-
nal sources such as user’s emails. However, most of it needs to be
obtained from external sources. There are several web-based ser-
vices and websites (henceforth, referred to as Information services
or just services) that complement web search results. They provide
domain-specific information (e.g. traffic, weather etc.) aggregated
from expert and user contributions and can serve as an excellent
source of such content. The question that can be posed now is -
how to determine the most relevant services, and the most relevant
information to be retrieved from them, for a given user situation?

Mostefaoui et al. [21] identify that predicting what information
would be relevant to a user is challenging. They state that it is
possible to determine it using techniques that are based on users’
feedback or the system developer’s observations. Thus, in order to
automate the process of discovery and retrieval of relevant informa-
tion in a context-aware system, the system designer could encode
or program rules by hand. Consider the example user situations
mentioned earlier - ‘Getting a medical test done’ and ‘Going for
lunch’. For these, a system designer could encode rules such as:
• If a user’s situation is ‘Get medical test done’ then retrieve

information about ‘Hospitals’ or ‘Medical laboratories’,
• If a user’s situation is ‘Lunch’ then retrieve information about

‘Restaurants’ or ‘Food’ near the user.
However, this approach suffers from several drawbacks:
1. These static rules are expensive to generate and maintain. In

addition, they cannot be dynamically adjusted in response to
changes in a user’s behavior.

2. A user may be involved in innumerable situations and, hence,
it is not possible to enumerate such rules for every situation.

3. Furthermore, these rules, and systems that employ them, can
only cover the set of possibilities that system designers antic-
ipated and will not scale to a large number of unanticipated
situations and information needs of different users.

Xu et al. [31] proposed an OLAP based approach for mining user
interaction logs in order to filter information based on its relevance
to the user’s context. For instance, if a user has accessed her shop-
ping list most frequently in a certain context (location, day of week
and time), then it implies that this is the most useful information to
her for that context. Even though user interaction logs are a valu-
able source for determining relevant information, a major limitation
of this approach is that for new users (for whom the system has lit-
tle or no context history), the system may suffer from a cold start
and may not be able to determine any relevant information. Thus,
new techniques need to be developed in order to augment this and
bootstrap the context-aware system so that it can retrieve informa-
tion for unanticipated user situations or for new users and avoid a
cold start. Yet, enough attention has not been given to this problem.

Thus, to address the second challenge and all these limitations,

we propose a novel, flexible and general approach based on Seman-
tic Relatedness [14] - a metric for determining similarity of two
documents or phrases based on their semantic meaning. It is nor-
malized to a value between 0 (no relatedness) and 1 (very high re-
latedness) and is significantly more powerful than simple keyword
based matching. This metric has been steadily gaining attention
among Natural Language Processing (NLP) researchers and has
been used in several applications such as targeted advertising [5]
and web search [12] with positive and beneficial results.

We propose to utilize this metric as a measure of relevance of the
information, provided by a service, to the user’s situation or task.
For instance, the semantic relatedness between ‘lunch’ and ‘food’
is 0.76. Clearly, services that provide information or recommenda-
tions for food are relevant to a user’s situation ‘Going for lunch’.
This demonstrates that this metric can be effectively used for dis-
covering and ranking information relevant to users’ situations. Ulti-
mately, this creates a context-aware system that is flexible, generic,
easier to maintain and can retrieve information beyond what could
be anticipated by a system designer. Moreover, such a system does
not rely on hand coded rules and will be able to provide relevant
information for new situations and to new users (for whom there is
no past interaction or usage history), thereby, avoiding a cold start.

We implement both our proposed ideas in a single generic system
which employs various algorithms to discover and rank candidate
services relevant to a user’s situation. It retrieves the relevant infor-
mation from the ranked services, aggregates it and presents it to the
user. Our contributions in this paper are:
• We propose and implement the idea of inferring a user’s situ-

ations via soft sensing of user generated content from sources
such as calendars etc.
• We address the problem of bootstrapped discovery and rank-

ing of heterogeneous services and information, relevant to a
user’s situations, in context-aware systems. We propose a
novel approach, based on Semantic Relatedness, to solve it.
• We design and implement four variations of a base algorithm

that ranks candidate relevant services, and the information to
be retrieved from them, based on the semantic relatedness be-
tween the information provided by the services and the user’s
situation description.
• We implement these algorithms as part of a system, called

TellMe, and conduct a live deployment and a web-based study
with 14 subjects to evaluate their efficacy. We demonstrate
that they show strong positive correlation with human sup-
plied relevance rankings and can be used as an effective means
to discover and rank relevant services and information.
• We also show that our approach is general, applicable to a

wide set of users situations and can provide relevant infor-
mation to new users without requiring any user interaction
history, thus, avoiding a cold start.

2. RELATED WORK
Since our work spans several ideas, we have organized the re-

lated work into several different subsections. We highlight their
shortcomings as well as differences with our approach.

2.1 Use of Software Sensors
Garlan et al. [11] propose utilizing location information from a

user’s calendar, in the Aura system, in order to predict future lo-
cations of a user and take appropriate actions on his behalf based
on this information. On the other hand, we propose a generalized
approach that utilizes user generated content from calendars, re-
minders and to-do lists to infer the tasks and situations of a user.

2.2 Service Discovery and Selection in Ubiq-
uitous Computing Systems

Service discovery refers to a mechanism that allows users to lo-



cate services on-demand and in reasonable time [20]. Existing
works [16, 27, 29] perform context-aware service discovery and
selection based on how closely a user’s request and the service
description matches. The matching is usually done using a pre-
defined ontology. Most of these works are constrained in their ap-
proach as they consider services to be either hardware or network
resources such as printers or projectors. In addition, a major draw-
back of using pre-defined ontologies is that they are usually domain
specific and limited to a finite number of concepts that the ontology
designer has taken into account. Even though our approach shares
similar goals with these works, it stands out in several ways:
• We incorporate a variety of services that offer heterogeneous

content instead of focusing on just hardware resources.
• We utilize state of the art NLP techniques to calculate rel-

evance using content from any of the services present in a
context-aware system.
• We do not limit ourselves to a pre-defined ontology. We em-

ploy powerful, domain-independent and exhaustive databases
and repositories such as Wikipedia, Wordnet and other cor-
pora. The use of these repositories ensures that a large amount
of world knowledge is exploited for determining relevance
instead of relying only on the system designers’ knowledge.

2.3 Smartphone application usage prediction
Predicting smartphone application (referred to as an ‘app’) us-

age has received significant attention recently. Several works such
as Huang et al. [15] and Shin et al. [25] focus on predicting the next
smartphone app that a user would use based on contextual informa-
tion such as time, location, or usage information such as most fre-
quently or recently used app. In contrast, we focus on determining
the information and its source, from among several heterogeneous
sources, that would prove most relevant to the user’s situation irre-
spective of the source type - whether its an app or a service. More-
over, we do not rely on usage information in our current system
as our main goal is to demonstrate the feasibility of our proposed
approach for bootstrapped discovery of relevant information.

2.4 Relevant information discovery in context-
aware systems

In most of the notable context-aware systems such as Context
Toolkit [24], Context Broker Architecture [6], and Gaia [23], de-
termining relevant services and information based on a user’s situa-
tion or task is either not addressed or is achieved using pre-defined
rules. As explained earlier, such static pre-defined rules are not
suitable for scaling and adapting to a dynamic environment. They
will need to be adjusted according to changes in the user’s behavior
or situation, or due to new unanticipated situations.

A number of existing systems [2, 18, 32] focus on determining
relevance of information based on the user’s interests and prefer-
ences or their context such as time and location. Furthermore, most
of these systems have narrow applicability and are specific to do-
mains such as meeting room environments [6], museums [8], air-
ports [18], tour guides [2, 3, 7, 17] and healthcare [32]. Although
these systems serve their intended purpose well, they are limited in
scope and can only handle information specific to their particular
domain rather than the heterogeneous content that users require and
that could help them in effective decision making. In contrast, we
do not focus on a specific application or domain. Instead, we de-
velop a generic infrastructure for aggregation of a variety of content
in order to satisfy a diverse set of user information needs.

2.5 Relevant information discovery in commer-
cial systems

Tempo2, a smart calendar iPhone app, uses calendar data to pro-
vide users with relevant internal information such as related emails
2 http://tempo.ai/
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Figure 1: Overview of the TellMe system

and documents, before an appointment is due to happen. It also de-
termines navigation directions to locations mentioned in the user’s
upcoming calendar entries. However, to the best of our knowledge,
it does not retrieve any other relevant information from external
sources that could prove helpful to the user’s situation.

Google Now3 is a smartphone app that provides users with in-
formation such as flight schedules, weather, and traffic in the form
of ‘Google Now Cards’. These cards are often displayed stati-
cally based on user’s context such as location (for instance, the
‘Weather’, ‘Photography Spots nearby’ or ‘Events nearby’ cards).
They can also be generated dynamically based on the user’s re-
cent search history and emails. Even though internal information
(such as that from email) can be valuable to a user, it has limited
benefits if he wants to discover new information serendipitously.
For instance, a user heading to the airport may benefit significantly
from external information (such as transport options to the airport)
in addition to internal information (such as flight schedules) from
his email. More importantly, displaying relevant information based
only on location can prove to be ineffective. As mentioned earlier, a
user who needs to get a medical test done would be better assisted
by recommendations for hospitals rather than spots for photogra-
phy nearby. In addition, even though email can be a rich source
of situations, we believe that it is constrained for recognizing ev-
eryday situations and tasks. Other user generated sources such as
calendars and reminders can serve as a more abundant source for
them and can be easily mined from a smartphone or a desktop.

To address all these limitations, we propose to discover and rank
a wide variety of external heterogeneous services and information
relevant to a user’s situation (sensed from user generated sources)
to enhance his efficiency and quality of life.

3. THE TELLME SYSTEM
In this section, we describe the TellMe system, its components

and its underlying algorithms in detail.

3.1 TellMe client side system
Figure 1 shows an overview of how the TellMe system functions.

A TellMe client application running on a smartphone or desktop ag-
gregates situations and tasks information from several user gener-
ated information sources such as calendars, reminders, and notes.
These situation and task items are sent to the TellMe server side
system. The client application receives the relevant information for
each item from the server side system and displays it to the user.

For prototyping, we have implemented a TellMe client applica-
tion as a Google Calendar Event Gadget [1]. Users have to import
this gadget in their existing Google calendars via a browser and au-
thorize it to access their calendar entries and current geolocation.
The gadget appears as an icon on top of each day in the calendar.
On clicking the icon, a user can see a list of heterogeneous services
and information relevant to each of his calendar entries for that day
embedded as a web page in the gadget (see Figure 4).

Please note that though the current client prototype focuses on
calendar entries, it can be easily extended to include situation in-
formation from other sources such as reminders and to-do lists that
may reside on a user’s phone. To this end, we are also currently
developing a smartphone based TellMe client application.

3 www.google.com/landing/now/
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Figure 2: Architecture of the TellMe server side system

Service Top level Information Categories (# of subcategories)
Yelp Active Life (74), Arts and Entertainment (20), . . .

Google News Sports (26), Entertainment (7), . . .
FourSquare Arts and Entertainment (52), College and University (38), . . .
Angie’s List Home, Auto, Wedding, Parties and Entertainment . . .
MapQuest Navigation, Maps, Route, Traffic, Incidents, . . .

LastFm Music, Music album, Music artist, Music chart, . . .
Weather Underground Weather, Environment, Outlook, Temperature, . . .

(a) Services registered in the Service Tier and their top level information categories

Buy Groceries
Drop clothes for dry cleaning

Clean apartment
Laundry

Pay utility bill
Go to Gym

Mow the lawn

(b) The most commonly recurring calendar
entries, to-do and reminder items

Table 1: Services and their categories, as well as the most common situation items collected as part of our evaluation

3.2 TellMe Server side system
Figure 2 shows the architecture of the TellMe server side system.

It is integrated with the Rover II context-aware middleware, intro-
duced in Bhargava et al. [4], which can store and retrieve relevant
contextual information and learn user behavior models. The server
side system has the following components:

3.2.1 Service Tier
This component registers several external web-based informa-

tion services, from which relevant information can be retrieved,
and consists of client stubs to them. It also provides an API to
add or register more services. For our initial prototype, we have
selected 8 services based on the wide spectrum of information con-
tent that they provide, their popularity and ease of API availability,
documentation and usage. These are:
• MapQuest4 - a navigation service used for obtaining direc-

tions to a destination, traffic information etc.
• WeatherUnderground5 - a service typically used for obtain-

ing information on current weather conditions.
• LastFm6 - a popular music discovery service.
• Google News7 - a news service that provides comprehensive

news coverage aggregated from sources all over the world.
• Yelp8 - a service for user reviews of local businesses.
• Google Feed9 - a service for subscribing to web feeds or

blogs such as RSS or media feeds from any website.
• Foursquare10 - a location-based social networking service to

search for places and venues around the user’s location.
• Angie’s list11 - a service that aggregates verified consumer

4 www.mapquestapi.com/traffic/
5 http://api.wunderground.com/ 6 www.last.fm/
7 www.news.google.com/ 8 http://www.yelp.com/
9 https://developers.google.com/feed/
10 www.foursquare.com/ 11 www.angieslist.com/

reviews of service companies in USA.

3.2.2 Service Tier Registry
This component contains a list of all the services, that are regis-

tered in the Service Tier, and the categories of information they pro-
vide. Since the information provided by a service can be described
succinctly and coherently in terms of its information categories, we
use them to compute the semantic relatedness metric.

In the current version of our system, all the 8 services mentioned
earlier are listed in this Registry. Some of these services and their
top level categories are shown in Table 1a. These categories have
been retrieved from the websites of these services or generated
manually based on their content. Many of these services such as
Yelp and Foursquare have a hierarchical category structure where
general categories subsume more specific ones. It is evident that
some of these services provide similar or overlapping information.

3.2.3 Service Tier Entry
This component functions as a gateway or an entry point to the

TellMe server side system. It receives the list of user’s situation
items from the Rover II middleware, parses it and sends each item
to the Relevant Services and Information Discovery and Ranking
Engine. It also receives the ranked list of candidate relevant ser-
vices and their most relevant categories, for each item, from the
engine and sends it to the Service Tier Interface.

3.2.4 Service Tier Interface
This component is responsible for interfacing with the services

registered in the Service Tier and aggregating the relevant informa-
tion retrieved from them. It accesses each ranked candidate service,
via its public API, in order to retrieve the information for its most
relevant categories and personalizes it based on the user’s context
(such as location or preferences) if available. It aggregates this in-

www.mapquestapi.com/traffic/
http://api.wunderground.com/
www.last.fm/
www.news.google.com/
http://www.yelp.com/
https://developers.google.com/feed/
www.foursquare.com/
www.angieslist.com/


Algorithm 1: Base Relevant Services and Information Discovery and Ranking algorithm (The algorithm can vary depending on the
method of calculating semantic relatedness and the mechanisms for ranking.)

Input: Situation or Task item description, List of Services and their categories from the Service Tier Registry
Output: Ranked list of candidate relevant services and three most relevant categories for each service
foreach Service listed in the Service Tier Registry do

foreach Category of the Service do
Calculate the Semantic Relatedness (SR) Score between the Category and the situation/task item description;
Store the Category with Highest Semantic Relatedness (HSR) Score;

end
Calculate the Average Semantic Relatedness (ASR) for the service over all categories;
Calculate the ServiceScore from the Category Scores using HSR or ASR;
If ServiceScore < Scorethreshold, replace ServiceScore with 0.0;

end
Rank the services in decreasing order of ServiceScore;
For all services that have ServiceScore = 0.0, set rank as ‘Not Applicable’;
For all ranked services, rank their categories in decreasing order of SR scores ;
return Ranked list of candidate services and the top three categories with the highest SR scores for each service;

Service 
Tier 

Registry

Relevant Services and Information 
Discovery and Ranking Algorithm

Semantic Relatedness 
Computation Module

Semantic 
Relatedness 
Scores Cache

Services and 
categories

Semantic Relatedness
Scores

<Situation/Task description, 
service category>

Semantic 
Relatedness Score

Wikipedia STS

Figure 3: Pipeline for the Relevant Services and Information
Discovery and Ranking Engine

formation and sends it back to the Service Tier Entry.

3.2.5 Relevant Services and Information Discovery
and Ranking Engine

This is the core component for determining information relevant
to a user’s situation or task item. Figure 3 shows the pipeline for
it. It employs four variations of the base Relevant Services and In-
formation Discovery and Ranking algorithm (Algorithm 1). This
algorithm processes the situation/task item description, and utilizes
the metric of semantic relatedness and a ranking mechanism to dis-
cover and generate a ranked list of candidate relevant services (from
among those registered in the Service Tier) for it. For each ranked
service, it also determines the three most relevant information cat-
egories. Currently, we focus only three relevant categories because
the relevant information should be available to the user within 2 or
3 interactions (swipes/clicks) with the client application.

As shown, the algorithm iterates over each service listed in the
‘Service Tier Registry’ and employs the Semantic Relatedness (SR)
Computation Module to calculate the SR score between each of the
service categories and the item description. Once the scores have
been computed for all the categories of each service, a ‘Service
Score’ is calculated for it by aggregating the scores from one or
all of its categories. The services are then ranked based on the
service score. For each ranked service, we also determine the top
3 categories which have the highest SR scores. These are the three
most relevant categories for that service. The SR scores are further
cached after retrieval to improve response time on subsequent calls.

We implemented four variations of Algorithm 1 by employing
two different methods for calculating SR scores and two different

ranking mechanisms. The methods for computing SR scores are:
• STS-based SR - This variation employs the Semantic Textual

Similarity (STS) System [13] for computing SR. The STS
system is based on Latent Semantic Analysis (LSA) along
with WordNet knowledge and is trained on LDC Gigawords
and Stanford Webbase corpora. Since the STS system incor-
porates lemmatization, POS tagging and parsing as part of
the SR computation, we do not perform these operations on
the category and situation phrases.
• Wikipedia-based SR - This variation is a novel approach sim-

ilar to Explicit Semantic Analysis [10]. It uses the cross-
lingual dictionary created by Spitkovsky and Chang [26] along
with the lch calculation from Rada et al. [22] and is further
evaluated against Wikipedia by WikiRelate [28]. It is de-
scribed in Section 3.4 for a more lucid explanation.

The service score is computed using the following two different
mechanisms and is then used to rank the services:
• Highest Semantic Relatedness (HSR) - The service score is

the highest SR score for any category of the service.
• Average Semantic Relatedness (ASR) - The service score is

the average SR score over all the categories of the service.
If the service score is below a threshold, it implies that the infor-

mation provided by the service is not relevant to the given user sit-
uation and hence, it is not ranked. This helps in reducing noise and
false positives. Since SR is a cosine similarity measure, a thresh-
old of 0.293 (1 - cos 45 ◦) is generally considered an appropriate
threshold and we use that in our implementation.

This ranked list of candidate services, along with their three most
relevant categories, is then propagated to the Service Tier Interface
component (via the ‘Service Tier Entry’). The Interface retrieves
the information for each of the 3 categories, for each service, via
the service API. It further filters this information based on the user’s
context, such as location or preferences, if available. This ranked
list of services, and the information retrieved from them, is then
sent to the TellMe client application which displays it to the user.

3.3 Illustrative Use Case
We now illustrate the utility and benefits of the TellMe system

via 2 scenarios (including the one described earlier in Section 1).

3.3.1 Use Case 1
For the user’s task ‘Get medical tests done’, a generated list of

discovered and ranked candidate relevant services and their cate-
gories by the STS-HSR variation of Algorithm 1 is:

1. ‘Laboratory testing’, ‘Health and medical’, and ‘Medical cen-
ters’ from Yelp



Algorithm 2: Algorithm to compute semantic relatedness using Wikipedia-derived data.
Input: A pair of strings
Output: A measure of semantic relatedness.
// Calculate the most related concepts from each string:
foreach Input String do

Tokenize the string into unigrams and bigrams;
Map the unigrams and bigrams to associated concepts from the substring dictionary;
Keep the combination of tokens that maximizes the sum of the pairwise lch scores;

end
// Find the most related concepts from each combination:
foreach Combination of Concepts do

Calculate lch between the two concepts;
Maintain the concept pair with the highest lch value;

end
return Largest lch value and concept pair;

Figure 4: Screenshot of the TellMe client application displaying
relevant information for a user’s task

2. ‘Doctor’s office’, ‘Medical school’, and ‘Hospital’ from
FourSquare

3. ‘Genetic medicine’, ‘Physical medicine’, and ‘Alternative
medicine’ from Angie’s List

4. ‘Health’, ‘Science’ and ‘Legal’ from Google News
Figure 4 shows a screenshot of the TellMe prototype client ap-

plication displaying the aggregated ranked list of services, and rele-
vant information retrieved from each service (for each of its 3 most
relevant categories), to the user via the calendar event gadget. Since
the current client is a web-based system, the server side system uti-
lizes the current geolocation of the user obtained from the user’s
browser to filter the information for each category.

As other services registered with the Service Tier (such as those
for weather, music etc.) do not provide information relevant to this
task, they are not discovered or ranked. This list is intuitive and
beneficial to the user as it provides him with helpful suggestions on
laboratories, medical centers and hospitals, near his current loca-
tion, where he can go and get the tests done. Moreover, it enables
him to discover new information serendipitously, such as informa-
tion about alternative medicine or latest news regarding health and
science, which further aids him in making an informed decision.

3.3.2 Use Case 2
Similarly, consider another situation item - ‘Go sailing’. The

STS-ASR variation of Algorithm 1 generates the following ranked
list of relevant services and categories:

1. ‘Surfing’, ‘Diving’, and ‘Boats’ from Yelp
2. ‘Wind’, ‘Weather’, and ‘Visibility’ from Weather Underground
3. ‘Navigation’, ‘Routes’ and ‘Maps’ from MapQuest

In this case, the STS-ASR algorithm aggregates a wide variety of
content which could benefit the user. For instance, the user may
want to rent boats for sailing. In addition, he may want to check
weather conditions before undertaking any water sport activity.

These two use cases highlight the diversity of the information
needs of users according to their situations. It also demonstrates

Category:
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Category:
Medical
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Medical_test
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Foursquare: 
“Doctor’s office”“Get medical tests done”

Figure 5: Graphical illustration of the lch calculation for the
phrases “Get medical tests done” and “Doctor’s office”.

that the TellMe system can aggregate heterogeneous content from
various sources, which the user might have been oblivious of but,
nonetheless, proves valuable in decision making.

3.4 Wikipedia-based Semantic Relatedness
Algorithm 2 outlines the process of calculating semantic relat-

edness between two phrases based on Wikipedia. In this algo-
rithm, we first tokenize each phrase (which can be a situation de-
scription or a service category in our case) and disambiguate its
meaning using the substring dictionary provided by Spitkovsky and
Chang [26]. We have processed this dictionary to be of the form:
substring → (Concept, pl, pc) where Concept refers to a Wikipedia
article, pl is the probability of the substring linking to the specific
concept and pc is the probability of the concept itself. These sub-
strings come from link text in Wikipedia and internet crawls, and
their tf-idf values are used to generate pl and pc. For performance
optimization, we have discarded substrings shorter than 2 charac-
ters (for instance, really short strings such as ‘I’) and longer than
32 (for instance, extremely long words). We have also discarded
high probability concepts (pc > 0.01) which represent stop words
and low probability concepts (log(pc) < −17) which represent
very rarely used uncommon terms. Finally, we have discarded sub-
strings that have greater than 10,000 concepts (such as “here”).

To disambiguate a phrase, we first consider all combinations of
unigrams and bigrams obtained from it. We then map these to
Wikipedia concepts, retrieve the concepts with the highest likeli-
hood and select the concept combination that has the highest inter-
concept semantic relatedness. Inter-concept semantic relatedness
is a metric to measure how close the concepts are within a phrase.
By maximizing this metric within phrases, we are able to correct
cases where low-likelihood but high relatedness concepts would be
discarded by a context-free statistical calculation. We use the lch
function [22] between the concepts to provide a semantic related-
ness measure. This function calculates the closest shared ances-



tor between two articles in Wikipedia category space and has been
proved to be a decent approximation of semantic relatedness [28].
For each concept combination, we calculate this function and return
the pair with the highest score.

Figure 5 graphically illustrates the computation of semantic re-
latedness between the situation description “Get medical test done”
(Use case 1) and category “Doctor’s office” from Foursquare using
Algorithm 2. First, we map from word phrases to concepts rep-
resented by Wikipedia articles. In this case, the bi-gram “medi-
cal test” is linked to the Wikipedia article with the same name. It
also links to other articles such as “Apgar score” which is a type
of medical test. The Foursquare category “Doctor’s office” links to
both “Physician” and “Ambulatory care”. In this case, Ambulatory
care has a higher link probability, but Physician is a more prob-
able concept. The next step is to calculate the distance between
the two phrases by examining their lch score. If “Physician” were
selected, the closest common ancestor is the category “Healthcare
Occupations” which leads to a distance of 4. If “Ambulatory care”
were selected, the distance between “Medical test” and “Ambula-
tory care” is 3. We have combined these mechanisms to exploit the
execution speed and automatic curation available through crowd
sourced platforms such as Wikipedia.

4. EVALUATION

4.1 Goals and Methodologies
The primary goal of our study is to evaluate the effectiveness of

the TellMe system, and its underlying algorithms, in discovering
and ranking services and information relevant to a user’s situation
or task. We test the validity of our hypothesis - that semantic relat-
edness can be used as a measure of relevance of information to a
user’s situation and can be further used to rank it. To this end, we
model our experiments after those in Information Retrieval (IR).
In IR, retrieval correctness usually cannot be proved formally and
hence, evaluation often relies on human assessment of result qual-
ity [30]. Thus, we analyze the results generated by our algorithms
through various standard performance measures commonly used in
IR, such as Precision and Recall, in order to assess their effective-
ness and compare their performance with human generated rele-
vance rankings. We also evaluate TellMe against several qualitative
metrics such as generality, response time and robustness.

In order to evaluate our system, we used two methodologies:

4.1.1 Live deployment
We recruited 14 (8 male and 6 female) subjects, who were either

working professionals or campus community members, to evalu-
ate the TellMe system. None of these subjects had interacted with
TellMe or Rover II before and hence, we did not have any usage or
interaction logs for them. All the subjects had to import the TellMe
calendar event gadget client application (as shown in Figure 4) into
their Google calendars and had to authorize it to access their cal-
endar data and current geolocation for a period of 1 month. In
addition, the subjects were given specific instructions to use their
calendars as the main tool for scheduling appointments, to-do tasks
and reminders during the study period.

For each calendar entry, the gadget displayed in situ the top 3
ranked services, and information for the top 3 categories for each
service, as retrieved by the TellMe server side system, to the sub-
ject. Since there maybe personal biases of users towards services,
we currently do not remove information for overlapping categories
between the ranked services in the results. Also, since the TellMe
server side system currently has information about the users’ cur-
rent location but not about their preferences (for food, music etc.),
the results are personalized based on current location only. The
subjects were asked to provide feedback by marking the informa-
tion displayed to them as ‘Relevant’/‘Not relevant’ via the gadget.

4.1.2 Web-based study for Ground Truth collection
The methodology for live deployment doesn’t provide a direct

means for evaluating the efficacy of the algorithms via standard IR
performance measures. This is because the subjects could not pro-
vide Ground Truth on what information they considered relevant in
comparison to what the system displayed. Moreover, all the sub-
jects had varying calendar entries (with only a few common ones
as shown in Table 1b) and could provide feedback only for their
calendar entries. This created sparseness in the results.

Hence, we used another methodology to collect ground truth for
relevance comparison. After the live deployment, we aggregated
the calendar, to-do and reminder entries of all the subjects collected
during the live deployment period. We further augmented these
with diurnal activities such as ‘Driving’ to generate 120 unique sit-
uation and task items. Table 1b shows the most commonly recur-
ring situation and task items collected as part of our user study.

All the 14 subjects who participated in the live deployment fur-
ther participated in a web-based study. For each of the 120 items,
they were asked to rank up to 3 services (from among the 8 services
currently registered in the TellMe server side system) that they con-
sidered most relevant to the task or situation. For each ranked ser-
vice, they were asked to select up to 3 of its most relevant informa-
tion categories. If none of the categories seemed relevant to them,
they were allowed to provide their own keywords. This collected
data was then used as ground truth and we compared the results
generated by our system with it.

4.2 Evaluation Metrics and Results
Relevance is a subjective measure and as such there may not be

agreement among the users. In our study, there is a small subset
of services (such as Yelp, Foursquare and Angie’s List) that have
some overlap while others provide mostly mutually exclusive in-
formation. As a result, the service rankings responses have high
agreement. However, among overlapping services there may be
slight disagreement among users that can be caused by personal
biases towards services (say preferring Yelp to Foursquare).

On the other hand, there are significantly more categories than
services. For instance, Yelp had 698 and Foursquare had 402 cat-
egories at the time this research was conducted. As stated earlier,
the category structures are hierarchical. For instance, the general
category “restaurants” subsumes more specific categories such as
“Indian restaurants” or "Chinese restaurants". Thus, there is lower
agreement for category responses mainly caused by either lack of
full knowledge of the categories or by a user’s preferences (caus-
ing them to pick more specific categories). To address issues with
lack of knowledge of categories, we had provided category auto-
suggestions (based on substring matching) as a user provided rele-
vant categories in the web-based study.

Also, service discovery is the first step for retrieval of relevant in-
formation in our system. If the appropriate services are not discov-
ered then the relevant information from them can not be retrieved.
Due to these inherent differences in the services and categories dis-
covery process and response spaces, we have split our evaluation to
independently evaluate service rankings and categories retrieval.

4.2.1 Service ranking
Although all subjects were asked to rank up to 3 services, most

subjects ranked only 1 and in a few cases, 2. On the other hand,
our algorithms ranked 3 or 4 candidate services as relevant for each
situation item. This created data that is too sparse for a thorough ac-
curacy evaluation and hence, we use alternative measures to show
how the algorithms performed with respect to Service Ranking:

Friedman Test.
To quantify the consistency of responses, we first applied the

Friedman test - a non-parametric statistical test that is used to de-
tect differences in treatments across multiple test attempts. We ap-



plied it with an α (significance) level of 0.05 to the service ranking
responses of all subjects for all items in our study. We use this
to determine how consistent the subjects were in ranking the ser-
vices for each item and if there were any significant differences in
their responses. The null hypothesis of this test, when applied to
our study, is that there is no difference in the rankings provided by
each user. When a difference occurs, it may imply a matter of dif-
fering personal biases towards services or an ambiguous task such
as ‘Purchase birthday gift’ which has no obvious “correct” answer.

Out of the 120 items, for 85 (70.8 %) the null hypothesis held
- there was no significant variation in how subjects ranked the ser-
vices. 4 (3.3 %) of the situations did not have enough services,
ranked by the subjects, to provide a meaningful measurement. This
occurred when there were no or very few obvious relevant informa-
tion providers for the specified situation (for instance, a situation
item such as ‘Water the plants’). Finally, there were 31 (25.8 %)
situations that showed statistically significant variance in subject
response. As previously stated, this may imply some underlying
difference in personal biases or situations with no “correct” answer.

Spearman’s rank correlation coefficient.
To provide a single user generated baseline for comparison, we

applied Borda counting to combine service ranking results from
all subjects into a hybrid service ranking for each situation or task
item. Borda counting is a type of preference voting which gives
varying points for each rank (more for higher, less for lower ranks).
Table 2 shows an example of how Borda counting is applied to sub-
jects’ rankings for the task item ‘Get medical tests done’ in order
to generate a single unified ranking. Each cell value (in clomuns 2
-4) represents the # of users who assigned the rank, represented by
the column, to the service represented by the row. These rankings
are used to calculate the points awarded to each service (column 5)
and generate the user baseline ranking (column 6).

We then applied Spearman’s rank correlation coefficient (ρ) to
measure similarity between the user generated baseline and the var-
ious service rankings, generated by the four algorithms and the sub-
jects, for each item in the study. Spearman’s ρ is a nonparametric
rank statistic that determines how close two variables are by quan-
tifying the strength of the associations between two vectors. Its
value ranges from -1 (perfectly reversed; negatively correlated) to 1
(equal; positively correlated). We measured ρ for each algorithm’s
service ranking, for each of the 120 situation items, against the user
generated baseline produced by Borda counting. We performed the
same measurement for all the test subjects to show how well they
performed against the baseline.

Figure 6 shows the boxplots for the distribution of ρ for all al-
gorithms and subjects against the baseline. First, we note that the
STS-based algorithms are very sensitive to the service scoring func-
tion. The STS-HSR algorithm shows very strong correlation with
the baseline in both its median and its interquartile range (IQR). In
contrast, STS-ASR has the poorest performance in both measures
showing little to no correlation in many cases. The Wiki-based
algorithms are more closely matched and show very strong correla-
tion in both median and IQR. Unlike the STS-based algorithms, the
Wiki-based algorithms perform better with the ASR variant proba-
bly because of the tight range of the lch calculation. Overall, the
algorithms (sans STS-ASR) show a strong positive correlation with
the user generated baseline, thus, proving that they perform com-
parably to human supplied relevance rankings.

We also analyze the subjects’ rankings against the baseline to
show that it is reasonable. Examining their coefficients, we see
similar variation in responses. Almost all subjects have upper quar-
tiles with ρ > 0.5 showing a medium to strong positive correlation
with the baseline. Subjects 2, 3, 6, 10, 13, and 14 show strong posi-
tive corrections in almost all cases. Subject 8 has the worst median
correlation but a fairly tight variance whereas subject 1 has slightly
stronger median performance but the largest variance. Overall, the

Service Rank Points Final Rank1 2 3
Yelp 8 2 0 8x3+2x2+0x1=28 1

Foursquare 3 6 0 3x3+6x2+0x1=21 2
Angie’s List 2 1 2 2x3+1x2+2x1=10 3

Table 2: Service ranking results for all the 14 users and
Calculation of points for each ranked service using Borda

counting to generate singe user provided baseline
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Figure 6: Summary of the distribution of ρ between user generated
baseline and service rankings of individual algorithms and subjects

subjects demonstrate a strong positive correlation with the baseline.

Precision and Precision@k.
Spearman’s ρ does not map directly to user experience. Hence,

to put these measurements into perspective, we measured Precision
(P) and Precision@k (P@k) of the service ranking determined by
our algorithms where P = Retrieved services∩ Relevant services

Retrieved services
As stated earlier, most subjects ranked only 1 or 2 services as

relevant in comparison to our algorithms which ranked 3 or 4 ser-
vices for each situation item. Hence, for P@k, we set k =1 i.e. we
compute the % of times the subjects’ rank #1 service matched with
the rank # 1 service returned by each algorithm.

Table 3 shows a summary of performance for the user generated
baseline and the algorithms for service ranking. We can see that
the baseline agrees with the subjects’ ranked # 1 service, 70% of
the time and this rank # 1 service would appear in the baseline’s
top 3 services, 94% of the time. STS-ASR performs the worst in
precision, only agreeing with the subjects’ rank # 1 service 33%
of the time and only retrieving the # 1 service in its top 3 results,
53% of the time. STS-HSR and Wiki-ASR have very similar cor-
relation profiles (when considering ρ) but Wiki-ASR outperforms
STS-HSR (when considering Precision) retrieving the # 1 service
in top 3 results, 87% of the time as opposed to 80% for STS-HSR.
Finally, Wiki-HSR, which had a slightly weaker median correla-
tion (for ρ) outperforms all the algorithms, ranking the subjects’ #
1 service as its # 1 service, 77% of the time (more than the user
generated baseline) and retrieving it in its top 3 services, 92% of
the time (comparable to the user generated baseline). This again
demonstrates that the algorithms (sans STS-ASR) perform compa-
rably to humans supplied rankings.

4.2.2 Category analysis
Since there is higher disagreement among category selections by

users, mainly because of the huge number of categories to choose
from, we do not compute a single user generated baseline for it.



Similar to service ranking, we use the metrics of Precision (P), Re-
call (R), F-score (F) and Precision@k (P@k) to evaluate category
retrieval by our algorithms. Here, P = Retrieved categories∩ Relevant categories

Retrieved categories ,
R = Retrieved categories∩ Relevant categories

Relevant categories and F = 2∗P∗R
P+R

Table 3 provides a summary of the results for these metrics. First,
we examine the % of categories that were retrieved by each algo-
rithm for each situation item and were considered relevant by the
users (P). Next, we evaluate the % of relevant categories that were
selected by the users and retrieved by each algorithm (R). F is the
accuracy measure obtained by computing the harmonic mean of P
and R. Finally, we measure P@ k. Since our algorithms return 3
categories for each situation item, we set k = 1. Thus, we measure
% of times the users’ rank #1 category matched with the rank # 1
category returned by each algorithm.

As evident, the STS-HSR algorithm had the best performance for
all metrics. It retrieved the rank # 1 category of users as its rank # 1
category (P@1) around 73% of the time while STS-ASR retrieved
it around 57% of the time. In addition, it retrieved useful and rel-
evant categories in its top 3 categories (P) 81% of the time while
STS-ASR retrieved them around 66% of the time. Overall, STS-
HSR has an accuracy (F) of 75% as opposed to STS-ASR which
has an accuracy of 60%. STS-HSR outperformed STS-ASR mainly
because the ASR scoring function did not rank some of the relevant
services (as evident by its poor performance in service ranking) and
did not retrieve the categories for them.

The Wiki-based algorithms performed much worse with an accu-
racy of 11%. A reason for their poor performance could be that the
lch calculation has a very tight range. For a situation such as “Get
medical tests done”, many of the medical-based concepts will have
the same score leading them to be returned alphabetically. This
helped with service discovery because services such as Yelp (which
have several medical categories) would score higher than services
such as Google News (which has a single health category). To im-
prove these results, a different tie breaking mechanism, based on
category probabilities or user preferences, could be used.

4.2.3 Discussion
Our initial results are highly promising. With respect to ser-

vice ranking, the proposed algorithms performed comparably to
humans. However, for category retrieval, the algorithms performed
reasonably. A possible reason could be that the current system does
not have information on individual user preferences and hence, can-
not personalize the categories for users. Similar to service ranking,
all subjects were asked to select up to 3 relevant categories for each
ranked service. However, most subjects selected only 1 or 2 cat-
egories and their selections reflected their individual preferences
for some of the situations (such as ‘Indian restaurants’ for ‘Having
Lunch’ rather than just ‘Restaurants’). On the other hand, our algo-
rithms retrieved information for general categories such as ‘Restau-
rants’ and not for specific categories, such as ‘Indian restaurants’.

However, since the aim of this study is to show the value of our
approach for bootstrapped discovery and ranking of heterogeneous
services and information relevant to a user’s situation, we leave
preference tuning for the future. It can be addressed by modeling
users’ preferences from various sources such as their social media
profiles or via preference elicitation. Thus, a hybrid system that
combines our approach with user preference modeling for person-
alizing the results will achieve an even higher accuracy for category
retrieval. Please note that a direct comparison of our work with [31]
is not possible as they do not present any accuracy evaluation.

Also, we observed that there were some subtle relationships,
between a situation item and the relevant information selected by
users, which are hard to model using existing NLP techniques. For
instance, multiple users selected weather information as relevant
information for many of the situations (such as “Mow the lawn").
We believe that these subtleties can be captured by mining terms

Algorithm Service Ranking Category Retrieval
P P@1 P R F P@1

Baseline 0.94 0.7 — — — —
Wiki-HSR 0.92 0.77 0.13 0.1 0.11 0.1
Wiki-ASR 0.87 0.66 0.13 0.1 0.11 0.1
STS-HSR 0.8 0.51 0.81 0.69 0.75 0.73
STS-ASR 0.53 0.33 0.66 0.55 0.6 0.57

Table 3: Analysis of P and P@1 for service ranking of user
generated baseline and algorithms and Summary of P, R, F and

P@1 for category retrieval by the algorithms

that commonly co-occur in web search queries and using them to
boost the SR scores. We are currently working in this direction.

4.2.4 Qualitative Metrics and Results
We further evaluate TellMe against several qualitative metrics:
• Flexibility and Generality - We note that we have used web-

based services as a primary and motivating information source
in our current implementation of the system. However, our
approach is flexible enough to incorporate other sources such
as databases, and smartphone and desktop applications. This
only requires a list of categories of information provided by
the new sources, along with an API or an access mechanism
to retrieve information.
Moreover, the system is not restricted to a domain-specific
ontology or static pre-defined rules. Instead, it employs tech-
niques that determine relevant information dynamically from
services that provide heterogeneous content. It leverages ro-
bust and domain-independent databases such as WordNet and
Wikipedia that contain a large amount of world knowledge.
As a result, it is generic and can support a wide spectrum of
users’ tasks and situations from their daily lives.
• Turn around time - The STS and Wikipedia based systems

for computing Semantic Relatedness are deployed locally on
another server where the language models are held in mem-
ory. Hence, the turnaround time is very fast (in the order of
ms). Moreover, we cache the SR scores, between categories
and situation items, for future use. As a result, any recurring
items will have faster turnaround time in subsequent calls.
• Bootstrapped and Robustness to cold start - As evident by

our experiments, the TellMe system can provide relevant in-
formation to new users and for new unanticipated user situa-
tions without requiring any user interaction history. Thus, it
is bootstrapped and capable of avoiding a cold start.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel, general and flexible approach

for bootstrapped discovery and ranking of heterogeneous services
and information relevant to a user’s situation in context-aware sys-
tems. We proposed and implemented the idea of inferring a user’s
situations via soft sensing of user generated content. We designed
and implemented four variations of a base algorithm that ranked
candidate relevant services, and the information to be retrieved from
them, based on the semantic relatedness between the information
provided by the services and the user’s situation description. We
implemented these algorithms as part of a system, called TellMe,
and conducted a live deployment with 14 subjects to evaluate their
efficacy. To this end, we performed statistical analysis of the ground
truth generated by the subjects and compared it with the ranked list
of services and categories generated by the algorithms.

Our results demonstrate that our algorithms show strong positive
correlation with human supplied relevance rankings. Hence, they
can be used as an effective means to discover and rank relevant
services and information in context-aware systems. For service
rankings, the algorithms perform comparably to human generated
rankings and baseline. For category retrieval, the STS based algo-



rithms perform reasonably well when compared to users’ responses
mainly due to lack of personalization. However, they outperformed
Wiki based algorithms by a significant margin. We also demon-
strated that our approach is general, flexible and can determine rele-
vant information for new users and unanticipated situations without
requiring any user history, thus, avoiding cold start.

This is an initial step and lays the groundwork for several new di-
rections of research. As stated earlier, we are working on improving
the SR scores by mining terms that co-occur in web search queries
and will implement it in future versions of our system. We also
plan to capture interaction and usage history for different users as
this would enable us to refine and improve information retrieved by
modeling their individual preferences and personal biases towards
services. Another refinement to the algorithm can be achieved by
combining and boosting the results generated by an ensemble of
algorithms that performed the best (say Wiki-HSR and STS-HSR).
We also plan to enhance the lch computation by boosting parts of
the category graph by combining it with the user’s context.

In future, with the integration of multiple services and databases
that may contain personal information, we envision such a system
to efficiently support every possible user situation such as retrieving
‘Medical Notes’ before a scheduled ‘Doctor’s appointment’.
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