
Integration of streaming and elastic traffic: Modeling and
Performance Analysis

Henda Ben Cheikh
Esprit School of Engineering, Tunis, Tunisia

Email: henda.bencheikh@esprit.tn

ABSTRACT
We study a flow-level model where elastic flows compete
with fixed-rate streaming flows. We assume that streaming
flows are served with priority, the remaining bandwidth be-
ing shared by elastic flows according to Balanced Fairness.
We derive exact performance results for streaming flows, and
propose performance approximations for elastic flows. Sim-
ulation results show that the relevant performance metrics
are well estimated with the proposed approximations.

Categories and Subject Descriptors
D.4.8 [Performance]: Queueing Theory.

Keywords
Performance estimation, streaming traffic, elastic traffic, bal-
anced fairness.

1. INTRODUCTION
Although elastic traffic is still predominant on the Inter-

net, we are witnessing a drastic increase of the share of
streaming traffic. In this context, network operators increas-
ingly need simple and accurate methods for predicting the
performance resulting from an expected demand in elastic
and streaming traffic. In [4], insensitive performance bounds
for both types of flow have been obtained assuming that
streaming flows are ”TCP-friendly”, that is that they share
network ressources fairly with elastic flows as if they were
themselves elastic.

However, since streaming flows usually have stringent qual-
ity of service requirements, it makes sense to give them some
form of priority over best-effort traffic. If nothing is done
to prevent streaming flows from grabbing the whole net-
work capacity, this can however lead to a severe performance
degradation for elastic flows [7]. The use of a call admission
control mechanism to limit the bandwidth taken by stream-
ing traffic has been advocated in [1], where its impact on

performance has been investigated using event-driven simu-
lations.

In this paper, we investigate the performance of streaming
and elastic flows when a call admission control is used to
limit the number of simultaneous streaming flows.

We consider an idealized flow-level model where the num-
ber of ongoing flows randomly varies as new flows are ini-
tiated, and where the flow rate adaptation is perfect and
instantaneous.

For a single link, we obtain in Section 2 exact performance
results for streaming flows, and compare two different ap-
proximation schemes for the computation of the throughput
of elastic flows. Preliminary results on how to extend our ap-
proach to an arbitrary network topology are also presented
in Section 3.

2. THE SINGLE LINK CASE
We consider a single link of capacity C that is shared by

streaming and elastic flows. We let S and E be the set of
streaming and elastic flow classes, respectively. Streaming
flows of class i arrive according to a Poisson process at rate
λi, stay for an arbitrarily distributed random duration of
mean 1/µi during which they send data at a constant bit
rate di Mbps. Similarly, elastic flows of class i also arrive
according to a Poisson process at rate λi, but instead of
having a fixed duration, they have a fixed amount of data to
transmit of mean 1/µi Mbits. In addition, the sending rate
of class-i elastic flows is limited to ci Mbps. In the following,
we refer to ρi = λi/µi as the traffic intensity of class-i. We
denote by xi the number of ongoing flows of class i. We let
x = (xs,xe) be the state of the system, where xs = (xi)i∈S
and xe = (xi)i∈E .

We denote by φi(x) the bandwidth allocated to class-i
flows in state x. Since streaming flows have a constant
bit rate, we have φi(x) = xidi for i ∈ S. In order to
limit the bandwidth allocated to streaming traffic to at most
Cs < C, an admission control mechanism is used. Thus, an
arriving streaming flow of class k is admitted in state x if
and only if

∑
i∈S φi(x) ≤ Cs − dk (lost calls are cleared).

We assume that elastic flows share the remaining capacity
C −

∑
i∈S φi(x) according to balanced fairness (BF) [2], [8].

A necessary and sufficient condition for stability is there-
fore ∑

i∈E

ρi < C − Cs. (1)

2.1 Performance metrics for streaming traffic
The main performance metric for streaming flows is the
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blocking probability. Focusing on the number of accepted
streaming flows, the set of allowed states is X s = {xs :∑
j∈S dj x

s
j ≤ Cs}, and a class-i call is blocked whenever

xs ∈ X si = {xs : Cs − di ≤
∑
j∈S dj x

s
j ≤ Cs}. The

marginal distribution of xs is easily obtained using standard
results from the theory of multi-rate loss networks [9]

πS(xs) = πS(0)
∏
i∈S

ρ
xsi
i

xsi !
, xs ∈ X s, (2)

from which the blocking probability of class i ∈ S follows:
Bi =

∑
xs∈Xs

i
πS(xs).

The well-known Kaufman-Roberts algorithm can be used
to efficiently compute Bi [9].

2.2 Approximate performance metrics for elas-
tic traffic

The main performance metric for class-i elastic flows is
the throughput γi defined as the ratio ρi/E[xei ], where E[xei ]
denotes the expected number of elastic flows in progress.

It is readily verified that in our model the stationary dis-
tribution of the network state x does depend on the dis-
tributions of elastic flow size and streaming flow durations.
However, following the approach described in [4], insensitive
performance bounds can be easily derived. These bounds
are however quite loose in general. Due to the lack of space,
we do not describe this approach.

We propose below a different approach. This approach is
based on a quasistationarity (QS) assumption. The basic
idea is to assume that the number of elastic flows evolves
rapidly with respect to the number of streaming flows and
thus reach a statistical equilibrium before the number of
streaming flows has evolved. To simplify the presentation,
we shall assume that all elastic flows have a common rate
limit c, i.e., ci = c for all i ∈ E .

Assume that xs is kept fixed. Then elastic flows share the
remaining bandwidth C(xs) = C −

∑
i∈S φi(x

s) according
to BF, which is equivalent to the ordinary PS as long as∑
i∈E x

e
i ≤ N = C(xs)/c. The resulting system can be

analyzed using the theory of Generalized Processor Sharing
(GPS) queues [6].

Provided that the total offered elastic traffic θ =
∑
k∈E ρk <

C(xs), it yields the following simple expression of the mean
number of class-i elastic flows in progress conditioned on xs

E [xei |xs] =
ρi
c

+ B(xs)
ρi

C(xs)− θ , (3)

whereB(xs) represents the congestion probability of an equiv-
alent link of capacity C(xs) and is given by the well-known
Erlang delay formula, i.e.,

B(xs) =
1
N !

( θ
c
)N C

C−θ∑N−1
i=0

1
i!

(
θ
c

)i
+ 1

N !
( θ
c
)N C

C−θ

. (4)

We note that the total mean number of elastic flows in
progress is given by the expected number of customers in the
corresponding M/M/N/∞ queue. The above QS approxi-
mation immediately yields the following approximation for

class-i throughput:

γi = ρi/
∑

xs∈X

E[xei |xs]πS(xs). (5)

Although (3) was derived in the case of a common rate
limit for all elastic classes, a similar expression (although
slightly more complex) can be obtained in the multi-rate
case.

2.3 Validity of the QS approximation
To illustrate the results, we consider that a link of capac-

ity C = 30Mbps is shared by 4 traffic classes, the first two
corresponding to elastic traffic while the other ones corre-
spond to streaming traffic. It is assumed that c1 = c2 = 4
Mbps, d3 = 3 and d4 = 4 Mbps. We also assume that the
total offered traffic is composed of 90 % of elastic traffic.

Figure 1 compares the proposed approximations with the
results obtained with discrete-event simulations for class-1
elastic flows. The relative error of the QS approximation is
below 5% in all traffic regimes, whereas the accuracy of the
upper and lower insensitive bound decreases as the total link
utilization increases.

Figure 1: Mean number of class 1 flow in progress.

3. ARBITRARY NETWORK TOPOLOGY
We now extend our model to an arbitrary network topol-

ogy. We denote by L = {1, ...,K} the set of links and as-
sume that link l has capacity Cl Mbps. We define the rout-
ing matrix A as follows: ai,l = 1 if class-i flows are routed
through link l, and 0 otherwise. In the following, Cls and
θl =

∑
i∈E ai,lρi denotes the maximimum bandwidth that

can be used for streaming traffic on link l and the total of-
fered elastic traffic on that link, respectively. We assume
that elastic flows share the remaining link capacities accord-
ing to balanced fairness.

A necessary and sufficient condition for stability is

θl < Cl − Cls,∀l ∈ L. (6)

3.1 Performance metrics for streaming traffic
From the conceptual point of view, the problem of cal-

culating end-to-end blocking in a multi-rate loss network
can be handled in a nice and simple way, since the product
form solution in Section 2.1 still applies (the allowed set is
now limited by several linear capacity constraints). How-
ever, from a practical point of view, the evaluation of block-



ing probabilities using the product form solution becomes
numericaly intractable. One has then to resort to numeri-
cal approximation, e.g., using an extension of Kelly’s fixed
point algorithm to the multi-rate case (see [9] for details).

3.2 Performance metrics for elastic traffic
We first recall performance results in absence of streaming

traffic. We then extend the results to account for streaming
traffic.

3.2.1 Absence of streaming traffic
Observe that in absence of streaming traffic, one can com-

pute the probability of each state x from

π(x) = π(0)Φ(x)
∏
i∈E

ρxii , (7)

where Φ correspond to the balance function recursively de-
fined by Φ(0) = 1 and

Φ(x) = max{max
l∈L

1

Cl

∑
i∈E

Φ(x− ei)ai,l,max
i∈E

Φ(x− ei)

cixi
} (8)

where ei represents a unit vector with 1 in position i, and
0 elsewhere. In theory, all performance metrics of interest
can be derived from (7). In practice however, the approach
based on the computation of state probabilities suffers from
the curse of dimensionality. If truncation of the state space
is feasible in light traffic regimes, the direct computation
of the performance metrics cannot be done when either the
number of flow classes gets large, or when traffic intensities
are not small enough.

In order to evaluate the number of expected class-i elastic
flows in progress in an explicit and simple way, we propose
the following approximation.

E[xi] =
ρi
c

+
∑
l∈L

ai,lbl
ρi

Cl − θl
, (9)

where bl is the congestion probability of link l as given in
(4). The form of expression (9) is first motivated by numer-
ical observations. We also note that it coincides with the
exact result (3) in the case of a single link, and that it is in
agreement with the light and heavy traffic approximations
obtained in [3].

Remark that in some pathological cases (e.g., a single traf-
fic class passing through multiple links of the same capac-
ity in series) the above approximation is highly inaccurate.
Thus, some form of independence of link congestion proba-
bilities is required. As we will show in the following example,
this independance assumption is often satisfied in practice,
and the approximation provides fairly accurate results.

Example 1. We consider the line lot network of Figure 2
where C1 = 25 Mbps, C2 = 30 Mbps, C3 = 35 Mbps and c =
4 Mbps. Defining pi = ρi/

∑
k ρk as the proportion of class-i

elastic traffic, we consider the cases p0 ∈ {0.01, 0.1, 0.3} and
p1 = 2p2 = 0.5p3.

Figure 3 shows the evolution of the relative error of the
approximation obtained with (9) for the expected number of
class-1 flows in progress as a function of the link load. For
all scenarios, the relative error is always smaller than 3 %.

Example 2. Consider the more complex network topol-
ogy depicted in Figure 4. The network has 10 links and

C1

x0

x2 x3x1 C2 C3

Figure 2: Line lot network

Figure 3: Relative error for class-0 in the network of Figure
(cf. 2)

10 flow classes. The load distribution is given by: p1 ∈
{0.01, 0.1, 0.2, 0.3} and pi = pj for ∀i, j 6= 1.
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Figure 4: Tree network.

Figure 5 shows the relative error obtained on the expected
number of class-1 flows with respect to the load of the most
loaded link. For all considered scenarios, the relative error
is always less than 6.5%.

3.2.2 Presence of streaming traffic
In presence of streaming flows, we can use the QS assump-

tion as follows. Given the vector xs of accepted streaming
flows, we can obtain the mean number E[xei |xs] of class-
i elastic flows in progress by replacing Cl with Cl(x

s) =



Figure 5: Relative error for class-1 in the Tree network of
Figure 4.

Cl −
∑
k∈S ak,lφk(xs) in (9). As for the single link case, we

obtain an approximation of class-i throughput:

γi = ρi/
∑

xs∈X

E[xei |xs]πS(xs). (10)

We emphazise that this approach requires however the
prior computation of the marginal distribution πS(xs) of
the number of streaming flows, which is clearly feasible only
for a small network due to the curse of dimensionality.

Example 3. Consider two scenarios: (i) in the first, we
consider the same exemple as in Figure 2 but with two stream-
ing traffic classes of rate d4 = 3 and d5 = 4 Mbps such that
class 4 flows (resp. 5) go through link 1 (resp. 3) (ii) in the
second one, we consider the same exemple as in Figure 2 but
with three streaming traffic classes of rate d4 = 2, d5 = 3
and d6 = 4 such that flows of class 4 go through link 0, flows
of class 5 use link 2 and class 6 flows go through link 3. For
both scenarios, we consider that elastic trafic represents 80%
of total load.

Figure 6 and 7 shows the evolution of the mean number
of class-0, 1, 2 and 3 elastic flows obtained with simulations
and QS approximation (cf. equation 10)) with respect to the
load of the most loaded link. For all considered scenarios, the
relative error is always less than 4% in all traffic regimes.
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Figure 6: Mean number of classe 1, 2 and 3 flows.

4. CONCLUSION
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We have investigated the performance of streaming and
elastic flows when call admission control is used. For the
single link case, exact results for streaming flows and an
approximation based on a quasistationarity assumption for
elastic flows were presented. The extension of this approach
to an arbitrary network topology was also discussed. Future
work includes the developement of an approximation scheme
that do not require the prior computation of the marginal
distribution of the number of streaming flows.
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