
TADA: An Active Measurement Tool for Automatic
Detection of AQM

Minoo Kargar Bideh†, Andreas Petlund†, Carsten Griwodz†, Iffat Ahmed†, Pål
Halvorsen†, Razieh Behjati†,

Anna Brunstrom‡, Stefan Alfredsson‡
†Simula Research Laboratory, Norway, ‡Karlstad University, Sweden

{kargar,apetlund,griff,iffat,paalh,behjati}@simula.no,
{annabrun,stefan.alfredsson}@kau.se

ABSTRACT
The problem of overbuffering in today’s Internet (termed as
bufferbloat) has recently drawn a great amount of attention
from the research community. This has led to the develop-
ment of various active queue management (AQM) schemes.
The last years have seen a lot of effort to show the benefits
of AQMs over simple tail-drop queuing and to encourage
deployment. Yet it is still unknown to what extent AQMs
are deployed in the Internet. In this paper, we present an
end-to-end active measurement method to detect AQMs on
the path bottleneck. We have developed an active measure-
ment tool, named TADA, and evaluated our measurement
methodology on a controlled experimental testbed. Exper-
imental results show that the proposed approach provides
the basis to identify whether an AQM is deployed on the
bottleneck.

Categories and Subject Descriptors
C.2 [Computer System organization]: Computer Sys-
tem Networks—Computer communication networks, Network
monitoring

General Terms
Theory, Performance, measurement

Keywords
Active network measurement tool, network drop scheme de-
tection, active queue management, tail-drop

1. INTRODUCTION
The classical approach for handling packets in a router

is to use tail-drop FIFO queueing. It establishes a single

.

queue for each outgoing link, and forwards packets on that
link in the order of arrival. Packets are dropped, from the
tail of the queue, only when the queue is full. To maximise
the link utilisation, and minimise loss, operators typically
configure large packet buffers in their routers. However,
research has shown that oversized buffers have resulted in
large standing queues, and consequently increased end-to-
end latency, a phenomenon that has come to be known as
“bufferbloat” [8]. Bufferbloat occurs when very large buffers
in the network create excessive delays, due to TCP flows
probing for bandwidth, in combination with simple queue-
ing schemes. Bufferbloat has been measured in different
Internet access technologies, ranging from ADSL to cable
modems [6, 15, 19].

As awareness of the topic of Bufferbloat has risen, so too
has the interest in methods to resolve it. Active queue man-
agement (AQM) schemes appear to be the most promising
approach because significant network-wide benefits can be
derived by implementing AQMs on the access network el-
ements (e.g., broadband modems) [21]. AQMs prevent or
minimize delay by managing the queue of packets intelli-
gently [18, 7, 17]. They are able to outperform the classic
tail-drop solution in many ways, for example by avoiding ex-
cessive queue buildup and preventing flow synchronization.

Although AQMs have been extensively studied [10, 14, 16,
21] and have proven to outperform the classic tail-drop so-
lution, it is only in the last few years, through the efforts in
the bufferbloat project and others [5, 4], that it has started
to get a foothold in deployed edge routers [1, 3]. However,
we do not know to which degree the efforts towards promot-
ing AQMs have convinced the ISPs and equipment manu-
facturers to deploy AQMs instead of large tail-drop queues.
Answering this question, as the first step, requires a method
that can detect the presence of AQM-enabled routers in a
network.

This detection problem can as well be viewed as an in-
stance of a new class of network tomography [20] problems.
Instead of estimating internal link delays, losses, or the net-
work topology, in this class of tomography problems the ob-
jective is to identify the type of forwarding modules that a
packet flow goes through. Knowing this may help engineers
develop more efficient computer networks and increase qual-
ity of service. As an example, some transport protocols will
perform poorly over certain AQMs [9, 16]. Knowing about
the AQM deployed on the bottleneck may provide operat-
ing system (OS) and application designers with information
that can help them make better decisions for their services.

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262684

Figure 1: The Network Topology

In addition, knowing whether a path contains an AQM could
be beneficial for future network performance measurement
studies and development of new active measurement tools.
For example, some existing active measurement tools [12, 13,
11] assume that ISPs mostly use tail-drop queues. Knowing
about the presence of an AQM in the path invalidates this
assumption and may inform on the accuracy of the results.

In this paper, we present an active measurement tool,
called TADA (Tool for Automatic Detection of AQMs), that
can detect if the bottleneck router on a particular communi-
cation path uses AQM. Our detection technique is based on
analyzing the patterns of queue delays and packet losses.
We use two statistics, namely Pairwise Comparison Test and
Pairwise Difference Test, defined by Jain and Dovrolis ([11])
to maintain accuracy even in the presence of background
traffic, which can cause dramatic fluctuations in the mea-
surements. We have evaluated the tool using an experimen-
tal testbed in a controlled laboratory environment. As per
the proposed approach, the tool is able to detect the pres-
ence of an AQM on the bottleneck router.

The rest of the paper is organized as follows: First we
explain the key idea of our measurement approach in Sec-
tion 2. Section 3 describes TADA in detail. Then, we show
experimental results in Section 4 to verify the tool accuracy.
Finally, Section 5 concludes the paper and discusses poten-
tial future work.

2. DESIGN
We first present the basic idea for differentiating between

AQM and tail-drop. We then proceed by explaining the
detection method in detail in Section 2.2 and Section 2.3.

2.1 Basic Idea
Consider a path from a Sender to a Receiver as illustrated

in Figure 1. Suppose that the capacity of the path bottle-
neck is C, and that Sender transmits an isochronous stream
s at a constant bit rate Rs > C to Receiver for the duration
of t seconds. The stream consists of N maximum-segment
sized (MSS) packets. We try to detect if the bottleneck in
the Sender-to-Receiver path uses AQM. We perform this
detection at the Receiver.

When the stream rate Rs is larger than the bottleneck
available bandwidth C, the packets begin to build up a queue
on the bottleneck. If the bottleneck employs tail-drop as
its queue management scheme, and t is long enough, the
queue will exceed the available buffer at some point. A tail-
drop queue only drops packets when there is no space left
in its buffer. On the other hand, active queue management
schemes do not wait until their buffer is saturated. AQM
schemes start dropping packets out of their buffer as soon
as they detect the queue is growing too large [18, 7, 17].

Q
u
e
u
e

D
e
l
a
y

Transmission Time

tail-drop

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

Transmission Time

AQM

Queue Delay

Cumulative Loss Nr

Figure 2: AQM Vs. tail-drop queue delay trend

In our work the main idea for differentiating between AQMs
and tail-drop is to detect if packets are dropped while the
queue is still growing. To do so, we record packet loss

information, and use the trend in packets’ queue delay to
provide an insight into the queue growth.

Suppose that Receiver receives a stream of K packets
(0 ≤ K ≤ N). N − K packets have been dropped by the
bottleneck router. Receiver computes the queue delay for
each received packet based on the packets transmission time
ti, and arrival time ai. To do so, Receiver calculates the
one-way delay (OWD) for all delivered packets as Di = ai−
ti first; the queue delays of packet i would be Qi = Di −
Dm, where Dm is the minimum OWD1. Since Rs > C, as
long as the queue is building up, the packets’ queue delays

have an increasing trend. Meaning that packet i will wait
in the queue for a longer time duration than packet i− 1.

When the bottleneck’s queue is full, the packets’ queue

delay reaches its maximum, and will stop increasing. In this
case, if the queue management is tail-drop then new packets
can get into the queue at the same rate the packets leave the
queue, causing a constant queue delay trend. Otherwise, if
the queue management is an AQM, the queue delay trend
will eventually become decreasing2. Recall that, in the case
of tail-drop, no packets are lost before the queue is full.
This does not hold if we have an AQM. Therefore, we can
distinguish between tail-drop and AQM by investigating the
first part of the queue delay curve until its maximum. We
refer to this part, which is monotonically increasing, as the
first increasing part of the queue delay trend. Combining
the first increasing part with loss occurrences in the same
period, Receiver can infer whether any loss happened while
the queue was growing and detect whether an AQM is used.

Figure 2 depicts sample measurements of queue delay

and packet loss for tail-drop and AQM. By applying the
method described above and just looking at the graphs, we
can easily detect that the graph on the left corresponds to
a tail-drop and the right one is an AQM. However, to auto-
mate the detection process in a real environment, we need
to use mathematical and statistical analysis techniques to
identify the queue delay3 trend, and find its first increas-

1Since we are only interested in the relative queue delays
not the absolute ones, the presence of a clock offset does not
influence these measurements.
2In the case of ARED, the queue delay will be varying be-
tween minimum and maximum thresholds after reaching its
maximum.
3In Figures 2-6 we intentionally removed the numbers on

ing part, and maximum in a reliable way.
In the following, we first explain how the queue delay

information is used to find the first increasing part. Then,
we explain how we add packet loss information to detect
the presence or absence of an AQM.

2.2 Finding the First Increasing Part
As mentioned in the previous section, the key idea of our

approach is to find the first increasing part of the queue

delays’ trend and check if any packets were lost in that pe-
riod. In general, and particularly in realistic environments
over the Internet where the traffic pattern is complex, find-
ing the desired increasing part of the queue delay trend
is not easy. The complexity is due to the fluctuation in
the packets’ queue delay. Jain et al [11] have proposed a
reliable algorithm to smooth a fluctuated curve. They em-
ployed two complementary statistics, called Pairwise Com-
parison Test (PCT) and Pairwise Difference Test (PDT).
We use the same method to identify the queue delay trend
and find its first increasing part.

2.2.1 PCT and PDT
Let Q = 〈q1, q2, ..., qK〉 be a sequence of measurements

regarding queuing delays corresponding to the sequence of
packet transmission times T = 〈t1, t2, ..., tK〉 (i.e., qi is the
queue delay experienced by the packet that was sent at ti).

We first partition Q into Γ = round(
√
K) groups of mea-

surements. Then, for each group j ∈ {1, ...,Γ}, we compute

its median q̂j , and define Q̂ as the sequence 〈q̂1, ..., q̂Γ〉. Note

that the sequence of medians Q̂ is more robust than Q to
outliers and errors.

The PCT metric of Q̂ is calculated as follows:

PCT (Q̂, n) =

n∑
j=2

I(q̂j > q̂j−1)

n− 1
(1)

Where 2 ≤ n ≤ Γ and I(X) is one if X holds, and zero
otherwise. PCT measures the fraction of consecutive mea-
surement pairs that are increasing, and so 0 ≤PCT ≤ 1.
The PDT of Q̂ is:

PDT (Q̂, n) =
q̂n − q̂1

n∑
j=2

|q̂j − q̂j−1|
(2)

Where 2 ≤ n ≤ Γ. PDT evaluates the strength of the vari-
ation in the measurements. Note that −1 ≤ PDT ≤ 1. If
there is a strong increasing trend, PCT and PDT approach
to one. The authors of [11] identify a set of values as increas-
ing if either PCT > 0.66 and PDT > 0.45, or PDT > 0.55
and PDT > 0.54. In our work we use the same thresholds.

2.2.2 Algorithm for finding the increasing part
In our approach, we use the PCT and PDT statistics to

find the first increasing part of the queue delays Q. In
other words, the goal is to find the largest sequence of queue
delays that have an increasing trend, starting from q1. Al-
gorithm 1 presents the pseudocode we used to find the in-
creasing part of the queue delays. The algorithm iterates

over 2 ≤ g ≤ Γ, and computes PCT (Q̂, g) and PDT (Q̂, g);
checks them against the desired range specified above and

the y-axis, since we are only interested in the trend not the
exact values.

Q
u
e
u
e

D
e
l
a
y

M
e
d
i
a
n

Transmission Time

tail-drop

Queue Delay Medians

PCT

PDT

0

0.2

0.4

0.6

0.8

1

P
C
T
/
P
D
T

V
a
l
u
e

Transmission Time

AQM

Figure 3: PCT and PDT values for the queue delay mea-
surements in Figure 2

Q
u
e
u
e

D
e
l
a
y

Transmission Time

tail-drop

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

Transmission Time

AQM

Left Section of The Key Increasing Part

The Key Increasing Part

The First Increasing Part

Figure 4: Visualization of TI , TM , and TL for an example of
tail-drop (left), and an example of AQM (right).

updates the index value. The return value of the algorithm
is the largest g for which PCT (Q̂, g) and PDT (Q̂, g) are in
the desired range.

If neither of the conditions in lines 7 and 8 of Algorithm 1
are ever satisfied throughout the algorithm, i.e., resulting in
index = 0, we cannot use the collected queue delay infor-
mation for detection. In this case, the queue management
scheme is unknown. Otherwise, QI = 〈q1, ..., qg〉 forms the
first increasing part. We use TI , a sub-sequence of T starting
at t1 and ending at tg, to denote the time sequence corre-
sponding to QI .

Algorithm 1

1: g := 2
2: index := 0
3: procedure SeparateIncPart(Q̂)
4: while g ≤ Γ do
5: pct := PCT (Q̂, g)

6: pdt := PDT (Q̂, g)
7: if (pct > 0.66 and pdt > 0.45) or
8: (pdt > 0.55 and pct > 0.54) then
9: index := g

return index

Figure 3 shows PCT and PDT values calculated in each
iteration of Algorithm 1. The blue points are the medians
of queue delays (Q̂) for the examples in Figure 2. In each
graph, the cyan line shows the largest index returned by

Table 1: Notations and assumptions

Parameter Description
C Capacity of the link
N Total number of transmitted packets
K Number of successfully received packets
Rs Transmission rate for stream s
t Transmission duration
ε constant used to update transmission rate
l packet loss threshold
Q Sequence of measurements representing

queue delay

T Sequence of packet transmission times

Algorithm 1.

2.3 Detection
After finding the increasing part of the queue delays trend,

we use the recorded loss occurrence information to check
if any packets were lost in that period (i.e., TI). If there are
no packets lost at the increasing part of the queue delays,
our job is completed. The bottleneck queue management
is tail-drop. However, if there are some packets lost, there
is still a chance that the queue management scheme is tail-
drop. This might happen because the increasing part we
find is an approximation of the actual increasing part of the
trend. Consequently, it might include a non-increasing part
of the queue delay trend. In Figure 4 we used cyan lines
to mark the first increasing parts, which in the case of both
graphs include a portion of the non-increasing part of the
trend.

If there are some packets lost during TI , we first exclude
the non-increasing part by finding the maximum value of
queue delays (qM) in the increasing part selected by Al-
gorithm 1. Let tM be the packet transmission time corre-
sponding to qM . We refer to the time interval between t1
and tM as the key increasing period, and denote it with TM .
In Figure 4 the key increasing period and TM are marked
using blue lines.

Again, if there are not any packets lost during TM , we
conclude that the path’s bottleneck is using tail-drop. Oth-
erwise, we need to further inspect the combination of the
queue delays and the loss occurrence information dur-
ing the key increasing period to be able to make a decision.

We first divide the key increasing period TM into two sec-
tions TL and TR. The left part (TL) starts from t1 to the
point where the first packet loss occurred, denoted as tl.
The right part TR contains the rest of the sub-sequence TM
(i.e., starts from tl+1 and ends at tM). TL and tl are marked
using purple lines in Figure 4.

After finding TL and TR, we compute the slope of the
line connecting (t1, q1) to (tl, ql), and the slope of the line
connecting (tl+1, ql+1) to (tM , qM). If the first slope is more
than τ times larger than the second slope, we infer that the
bottleneck queue management is tail-drop. Otherwise, it is
AQM. In our implementation, we used τ = 10.

Table 1 summarizes all the notations we have introduced
in this section.

3. TADA
We have developed a measurement tool, called TADA,

that actively detects if an AQM scheme is deployed on the
bottleneck. The tool is composed of a Sender process run-
ning at the sender machine and a Receiver process running
at the receiver machine. The tool uses UDP for sending
constant bit rate (probing) streams and TCP for a control
channel between the endpoints.

TADA works in an iterative manner. In each iteration r,
Sender transmits a constant bit rate stream with rate Rs(r)
to Receiver for a fixed amount of time t. Receiver collects
queue delay and packet loss information for the whole
period. It then analyzes this information to detect the pres-
ence of an AQM based on the idea described in section 2.
We use the path capacity C as the starting transmission rate
Rs(0), and increase it by a factor of (1 + ε) in each itera-
tion. In Section 3.1, we describe an approach for estimating
the path capacity C. By using C as the starting transmis-
sion rate and increasing it in each iteration, we maximize
the chance that the packets sent by the sender are queued
somewhere in the Sender-to-Receiver path. Note that if
queuing does not happen during the transmission phase, the
receiver will not be able to record any interesting data for
detection. In addition, if the transmission rate is too large,
it may congest a wrong bottleneck (i.e., a router before the
actual bottleneck of the path). To avoid this, we use a very
small ε for updating the transmission rate.

In the following, we first describe our approach for esti-
mating the path capacity. Then we explain the detection
loop in which we use the detection method presented in sec-
tion 2.

3.1 Capacity Estimation
To estimate the path capacity we send N number of MSS-

sized (size S) back-to-back packets to the Receiver. Sup-
pose that P ≤ N packets are successfully received. The Re-

ceiver estimates the path capacity as: C = (P−1)S
σ

(where
σ is calculated as the difference between received timestamps
of the last and first packets). In our implementation, we use
N = 500 packets.

3.2 Detection Loop
In each iteration r, we apply the detection method de-

scribed in Section 2 on the collected queue delay and packet

loss information to check if an AQM is used. If the method
detects tail-drop, the algorithm terminates reporting the ab-
sence of an AQM. Otherwise, the algorithm has either de-
tected an AQM on the bottleneck queue or the queue type
is unknown. In both cases, a new iteration r + 1 starts
with a higher transmission rate calculated as Rs(r + 1) =
(1 + ε)Rs(r). To increase the transmission rate, we keep
the packet size unchanged (MSS size) and only decrease the
inter-transmission time (ITT) between packets. We repeat
this iterative process until a high enough packet loss rate
(i.e, larger than l%) is reached or tail-drop is detected. In
the end, TADA terminates by reporting that the queue man-
agement is either tail-drop, AQM, or unknown.

4. EVALUATION
In this section, we evaluate the accuracy of the proposed

measurement approach in a controlled testbed.

4.1 Experimental setup
The controlled testbed consists of two sender machines

(i.e., Sender and XSender) and one receiver machine (i.e.,
Receiver) connected through a two-hop path as shown in
Figure 1. The first two intermediate boxes between the
senders and the receiver are Linux routers: First Router

and Second Router. We used another machine to emulate
network delay using Netem [2] (Netem Machine). The de-
lay is 50ms in each direction. All the machines run De-
bian Linux on a 4.0.0 kernel. XSender was used to produce
background traffic. In our experiments we examined several
scenarios:

• Single bottleneck: In this case, First Router has 1Gbps
bandwidth and Second Router has 10Mbps bandwidth,
making Second Router the bottleneck of the path.

• Serial bottlenecks: Here, we use two different values for
First Router bandwidth:{15Mbps, 100Mbps}, and kept
the Second Router bandwidth at 10Mbps.

We repeat each experiment 50 times. Each experiment had
a certain level of background traffic load: (1) no load, where
we have no background traffic, (2) low load, where we only
have short flows (generated using a TCP traffic generator4)
as background traffic, (3) medium load, where both short
flows and one greedy TCP flow are present, and (4) high
load, where there are short flows and three greedy TCP
flows.

We investigated TADA’s accuracy for tail-drop against
three different parameterless AQM variants, namely CoDel,
PIE, and ARED for which we have used the LARTC tc tool
to configure aforementioned AQMs. In our experiments, we
used t = 5s, ε = 0.1, and l = 20%

4.2 Results

4.2.1 Without background traffic
In the first phase of our evaluation, we have used TADA to

detect the presence of AQM for the scenario where there is
no other flow, results are illustrated in Figure 5. Each graph
in Figure 5 corresponds to a different queue management
scheme; namely tail-drop, ARED, PIE, and CoDel. The left
and right parts of the key increasing part (defined in Sec-
tion 2) are marked using two different background patterns
and separated by vertical lines. TADA is able to detect bot-
tleneck queue management schemes accurately in 100% of
the test runs for this scenario. However, in reality there are
varying background traffic patterns on the Internet. There-
fore we want to investigate how the tool performs in the
presence of various background traffic loads, as discussed
below.

4.2.2 With background traffic
In the second phase, we have performed a series of exper-

iments using different background traffic loads as described
earlier. Figure 6 shows a sample result for a single bot-
tleneck path and in the presence of high load background
traffic. The same visual aesthetics as used in Figure 5 are

4The traffic generator opens a TCP connection every 50ms,
requesting to download a file. The files sizes are Pareto dis-
tributed with α = 0.9 having minimum size of 1KB. Every
request by Receiver opens a new TCP connection, closed
by the XSender after sending the data.

Q
u
e
u
e

D
e
l
a
y

tail-drop

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

ARED

Queue Delay

Cumulative Loss Nr

1 2 3 4

Q
u
e
u
e

D
e
l
a
y

Transmission Time

PIE

1 2 3 4

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

Transmission Time

CoDel

Right section of the key increasing period

Left section of the key increasing period

Figure 5: Sample result for single bottleneck scenario with
no load

Table 2: Accuracy of detection for the scenarios where the
bottleneck is subjected to background traffic.

Scenario Load Accuracy

Single bottleneck
Low 100%
Medium 100%
High 97%

Serial bottleneck (100Mbps)
Low 100%
Medium 98%%
High 89%

Serial bottleneck (15Mbps)
Low 100%
Medium 70%
High 50%

applied to show the results for different queue management
schemes.

Table 2 reports the accuracy of TADA for each scenario.
As shown in this table, TADA is able to correctly detect the
presence of an AQM in most cases, even with a loaded bottle-
neck. Detection failures are due to various reasons, such as
high background load, or presence of loss at multiple routers
(e.g., serial bottlenecks with very similar bottleneck capac-
ities). Another possible reason for failure is random loss.
The network may randomly drop some packets depending
on the access technology and path conditions. Packet losses
that are not due to the queue management scheme can af-
fect the accuracy of TADA. We have not investigated this
fact in this paper. However, we plan to further investigate
the extent to which it affects the accuracy of the tool which
depends on the instance where the random loss took place
and how frequent it occurred during the whole transmission.

Q
u
e
u
e

D
e
l
a
y

tail-drop

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

ARED

Queue Delay

Cumulative Loss Nr

1 2 3 4

Q
u
e
u
e

D
e
l
a
y

Transmission Time

PIE

1 2 3 4

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

Transmission Time

CoDel

Right section of the key increasing period

Left section of the key increasing period

Figure 6: Sample result for single bottleneck scenario with
high background load

5. CONCLUSION AND FUTURE WORK
We have presented a novel approach that can detect whether

a bottleneck router uses an AQM as its queue management
scheme. We have evaluated our proposed approach by de-
veloping an active measurement tool and evaluated it in a
controlled testbed setup. The testbed results show that the
tool is able to accurately detect the presence of an AQM
on the bottleneck router when there is no or low load back-
ground traffic, like short flows or one greedy flow. However,
if the background traffic is high load, like more than 3 greedy
flows, it affects the accuracy of the tool. Nevertheless, we
can estimate the load of the background traffic and discard
the detection process if the background traffic is too high.

For future work, we intend to investigate the possibility of
separating different AQMs from each other. In addition, we
plan to explore multiple concurrent flows to identify schedul-
ing (flow queueing) effects in parallel queues. Another option
we will explore in future work is to analyze the robustness
of TADA against random losses and try to find out error
bounds.

Acknowledgements
This work is funded by the European Community under
its Seventh Framework Programme through the Reducing
Internet Transport Latency (RITE) project (ICT-317700)
and the TimeIn project (213265-O70) by Research Council
of Norway.

6. REFERENCES
[1] Cerowrt router firmware for fighting bufferbloat.

http://www.bufferbloat.net/projects/cerowrt.
Accessed: 2015-09-13.

[2] Netem - Linux network emulator.
http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem. Accessed: 2015-03-25.

[3] Openwrt router software. https://openwrt.org/.
Accessed: 2015-09-17.

[4] RITE Project. http://www.riteproject.eu/.
Accessed: 2014-06-15.

[5] The Bufferbloat projects.
http://www.bufferbloat.net/. Accessed: 2015-06-15.

[6] M. Dischinger, A. Haeberlen, K. P. Gummadi, and
S. Saroiu. Characterizing Residential Broadband
Networks. In Proc. of IMC’07, 2007.

[7] S. Floyd, R. Gummadi, and S. Shenker. Adaptive
RED: An algorithm for increasing the robustness of
RED’s active queue management. Technical report,
2001.

[8] J. Gettys. Bufferbloat: Dark buffers in the Internet.
IEEE Internet Computing, 15(3), 2011.

[9] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. Taht.
Fighting the bufferbloat: On the coexistence of aqm
and low priority congestion control. In INFOCOM,
2013 Proceedings IEEE, pages 3291–3296, April 2013.

[10] E. Grigorescu, C. Kulatunga, and G. Fairhurst.
Evaluation of the impact of packet drops due to AQM
over capacity limited paths. In Proc. of ICNP’13,
2013.

[11] M. Jain and C. Dovrolis. Pathload: A measurement
tool for end-to-end available bandwidth. In Proc. of
PAM’02, 2002.

[12] P. Kanuparthy and C. Dovrolis. Diffprobe: Detecting
ISP service discrimination. In INFOCOM. IEEE, 2010.

[13] P. Kanuparthy and C. Dovrolis. Shaperprobe:
End-to-end detection of ISP traffic shaping using
active methods. In IMC’11. ACM, 2011.

[14] N. Khademi, D. Ros, and M. Welzl. The new AQM
kids on the block: An experimental evaluation of
CoDel and PIE. In Proc. of INFOCOM’14 WKSHPS,
2014.

[15] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: Illuminating the Edge Network. In
Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, IMC ’10, 2010.

[16] N. Kuhn, E. Lochin, and O. Mehani. Revisiting old
friends: Is CoDel really achieving what RED cannot?
In Proceedings of the 2014 ACM SIGCOMM Workshop
on Capacity Sharing Workshop, CSWS ’14, 2014.

[17] K. Nichols and V. Jacobson. Controlling queue delay.
Queue, 10(5), May 2012.

[18] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu,
V. Subramanian, F. Baker, and B. VerSteeg. PIE: A
lightweight control scheme to address the bufferbloat
problem. In HPSR. IEEE, 2013.

[19] S. Sundaresan, W. de Donato, N. Feamster,
R. Teixeira, S. Crawford, and A. Pescapè. Broadband
Internet performance: A view from the gateway. In
Proc. of SIGCOMM’11, 2011.

[20] Y. Vardi. Network tomography: Estimating
source-destination traffic intensities from link data.
Journal of the American Statistical Association,
91(433):365–377, Mar. 1996.

[21] G. White and D. Rice. Active queue management in
DOCSIS 3.1 networks. Communications Magazine,
IEEE, 53(3):126–132, 2015.

http://www.bufferbloat.net/projects/cerowrt
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
https://openwrt.org/
http://www.riteproject.eu/
http://www.bufferbloat.net/

	Introduction
	Design
	Basic Idea
	Finding the First Increasing Part
	PCT and PDT
	Algorithm for finding the increasing part

	Detection

	TADA
	Capacity Estimation
	Detection Loop

	Evaluation
	Experimental setup
	Results
	Without background traffic
	With background traffic

	Conclusion and future work
	References

