A GLIMPSE of the Internet’s Fabric

Michael Faath, Rolf Winter
University of Applied Sciences Augsburg
michael.faath@hs-augsburg.de
rolf.winter@hs-augsburg.de

ABSTRACT

Network measurements are essential for network operations
and troubleshooting. A number of network measurement
projects have developed measurement platforms to not only
assess the state of individual networks and services but tar-
get certain aspects of the Internet as a whole.

Measuring any aspect of the Internet is challenging for
various reasons such as the sheer scale of the Internet or the
dynamics of it. Building and operating a platform that has
Internet-wide network measurements as a goal is therefore
challenging.

In this paper, GLIMPSE—an end user-based network mea-
surement platform—is introduced and its architecture is de-
scribed in detail. GLIMPSE is an attempt to build a mea-
surement platform based on standard measurement tech-
niques, external logic to trigger measurements and last but
not least community support.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Miscella-
neous

Keywords

network measurement, measurement platform, end-to-end
measurements

1. INTRODUCTION

A growing number of projects attempt to measure cer-
tain aspects of the Internet. E.g., there is the RIPE Atlas’
project, which uses a large number of small hardware devices
distributed across the Internet to perform Internet connec-
tivity and reachability measurements. Implementing such
measurement platforms, deploying them, operating them,
gathering and analyzing the measurement data are all chal-
lenging tasks in itself. In this paper, we present one such

"https://atlas.ripe.net/

platform called GLIMPSE, an end user-based, all-software
platform for coordinated network measurements. We de-
scribe its design goals, its components and describe how it
operates and differs from existing platforms for large-scale
network measurements.

2. DESIGN GOALS

GLIMPSE has a number of design goals, which makes it
occupy a unique place in the design space of existing mea-
surement platforms. First of all, GLIMPSE was always in-
tended as a software-only measurement platform. In other
words, it is not primarily intended to run on dedicated hard-
ware devices. This has a number of advantages. The poten-
tial user base of GLIMPSE is much larger as a software-only
product and there is no up-front investment in hardware nec-
essary. The disadvantage is that there is always a potential
that the measurements carried out by GLIMPSE are influ-
enced by other software running on the same device or by
device limitations.

Another goal of GLIMPSE was that the probe should be
cross-platform by design. Again, this goal was chosen to
increase the potential user base but this choice had a se-
vere impact on the measurement techniques the probe can
support. E.g. the probe cannot expect root/administrative
privileges since e.g., on off-the-shelf smartphones these are
not available. Also, operating systems typically offer quite
different low-level network access which made the develop-
ment of consistent measurement methods challenging.

The target audience for GLIMPSE probes was always reg-
ular end users and their devices. This was to increase the
reach and coverage of the probes. E.g., having probes on reg-
ular end user devices such as tablets, smartphones or laptops
places probes right at the edge of the Internet from where
true end-to-end measurements can be performed. Also, run-
ning on typical end devices enables GLIMPSE to measure
the actual Internet experience of the user. The problem with
this choice is clearly that end user devices are not always on.
Also, the probe must have a small resource footprint, i.e. the
usage of CPU, memory and other device resources should
not be noticeable by the user or impact the performance
of other applications on the device. Finally, the privacy of
users must be ensured. Not using administrative privileges
is actually helpful in this respect.

An important aspect of GLIMPSE was the ability to per-
form measurement campaigns: large-scale measurement ac-
tivities involving a larger number of probes. These cam-
paigns are necessary for measurement studies of Internet-
wide significance. E.g., estimating the average distance of

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262670

users to the Google content delivery network infrastructure
in terms of hops and latency. This requires that GLIMPSE
users donate a small amount of bandwidth to this greater
cause. This bandwidth is then used by the GLIMPSE plat-
form to perform measurements. End systems with GLIMPSE
can then be instructed to e.g., ping a destination on the In-
ternet. The maximum amount of donated bandwidth per
month can be configured by the user. This ability of the
platform also means that security of GLIMPSE is of pivotal
importance. If compromised, the platform could be misused
for distributed denial of service attacks.

In a way, GLIMPSE also attempted to follow the Unix
philosophy of “do one thing and do it well” by implement-
ing a number of small, fairly standard measurements. The
individual measurements implemented by the probes such
as ping or traceroute have all one very specific goal. Com-
posite measurements can be performed by issuing measure-
ment instructions which include an order and settings of the
measurements to be performed and a schedule to trigger
these measurements at certain times or repetitively. The
small set of tools somewhat restricts what can be measured.
GLIMPSE however uses a clever combination of these tools,
it uses a larger set of probes on the Internet which increases
the coverage of these measurements and on top of that it
makes use of schedules. This way, a wide range of interest-
ing measurements can be performed.

Cross-cutting all of the above is an issue, which is non-
technical: getting users to install the GLIMPSE application
and convincing them to donate a little bandwidth. The focus
of this paper is on the technical details of the GLIMPSE
architecture. Discussions about involving them in network
measurements and incentivizing them to install the app by
creating a benefit can be found in [3]. For GLIMPSE, this
is the possibility to identify potential network issues as well
as run own measurements with the provided built-in tools.

3. ARCHITECTURE

GLIMPSE as a whole is a collection of different compo-
nents serving different purposes. The architecture with all
subsystems and how they interact with each other can be
seen in figure 1.

Local measurement
control

. Measurement control o
HIGEEG I >

GLIMPSE probe
\ .
GLIMPSE

(O <> | Database | «—»| Dashboard
Admin Backend system

i
I
I
]
I
]
i
i -
.
] .
i p
.
v
Measurement reporting Q
[ELLEGL >

GLIMPSE probe

Web front- Result visualization - HTTP &——> Measurement
User
end interface

% = = = => Measurement
traffic

&> DB interface

non-

www.measure-it.net

Figure 1: GLIMPSE architecture

It is based on the mPlane? project’s measurement plat-
form architecture which describes a blueprint for a generic
network measurement platform. Besides the probes, the
highlighted components (supervisor, reasoner and reposi-
tory) are the core pieces of it.

The components of the GLIMPSE architecture can be
roughly divided into two groups: the ones the user directly
interacts with—the probe itself and the web front end—and
the servers and services in the background which provide the
necessary infrastructure for the probes to receive measure-
ment instructions and send back results. The figure also
helps to understand the typical workflow of GLIMPSE: a
measurement is defined by an administrator in the admin
dashboard. The supervisor then sends instructions to the
probes selected for that measurement. After the execution of
the measurements, the probes send the results to the repos-
itory. Finally, the administrator can observe the results in
the dashboard and the reasoner might do automatic and in-
telligent reasoning to schedule new measurements based on
the results. Note that all communication between the probes
and other components is secured with HTTPS. Certificates
are used to make sure a probe only receives instructions from
a legit supervisor.

In the following sections all components are explained in
detail.

3.1 Probe

The GLIMPSE probe is the application a user installs on
a device. It pulls its configuration and measurement in-
structions periodically from the supervisor, executes mea-
surements and sends results back to the repository. The app
provides the following measurement tools at the moment:

Ping This measurements determines the round-trip-time
from the probe to a specified destination (which can
be an IPv4 address, an IPv6 address, or hostname).
There are multiple parameters available for this mea-
surement, e.g., source- and destination-port, interval-
time, or timeout). The protocol used for the measure-
ment can be set by the ping-type parameter: “UDP”,
“TCP?”, or “System Ping”. The latter uses the systems
ping-tool and parses its output. Due to operating sys-
tem limitations, TCP pings are not available on all
supported platforms.

Traceroute determines the path from the probe to a set
destination and returns the round-trip-time to each
hop on the path. The previously described ping mea-
surement is used to retrieve this information. There
are multiple parameters available for this measurement
similar to the ping options.

HTTP download speed measures the currently available
bandwidth by downloading a file from a public HTTP-
server (speed test). It is possible to specify a number of
settings such as the number of threads used to down-
load the file in parallel and get results for each thread
separately.

Bulk transfer capacity This measurement determines the
so-called bulk transfer capacity[6]. It is measured from
one probe to another GLIMPSE probe by sending bulk
data over a single TCP connection.

*http://www.ict-mplane.eu

DNS lookup This returns all available DNS records for a
given hostname. The DNS server used for the mea-
surement can be specified by a parameter.

Reverse DNS lookup Determines the hostname for a given
IPv4 or IPv6 by doing a reverse DNS lookup.

Trains of packet pairs Determines the sending and receiv-
ing speed for the probe by using trains of packet pairs[6].
This measurement is considered experimental.

UPnP discovery This measurement performs a UPnP dis-
covery using the MiniUPnP library®. The result is a
dump of the raw data returned by this library.

For multiple reasons only active measurements are sup-
ported by GLIMPSE. As described before, passive measure-
ments would require root privileges on some platforms, but
we also do not want to analyze user generated data on end
user devices for privacy reasons.

The measurements described above are all written as plu-
gins. It is therefore possible to write a measurement for the
probe without in-depth knowledge of the app itself. At the
moment, these plugins are compiled directly into the probe,
but it might be possible in the future to load them dynam-
ically to allow users to include own measurements into the
software.

We have developed two front ends to support different use
cases: a graphical user interface and a console-only interface.
The latter is intended to run on servers or embedded devices
in the background. The user can only view the log output of
the probe and see the results on the GLIMPSE website, but
can not interact directly with the probe. The GUI version
of the probe is intended to run on a desktop computer or
a mobile device. The user can see the scheduled measure-
ments and the available results. It is also possible to execute
measurement by the user with the help of a toolbox (figures
2a and 2b). The results of these user-scheduled measure-
ments can be viewed in the app but are not sent back to the
GLIMPSE repository. This makes the GUI version of the
GLIMPSE probe a general purpose network measurement
and debugging tool for its users.

The user can cap the monthly traffic volume the app is
allowed to cause for externally triggered measurements. Ad-
ditionally, users with a mobile connection like UMTS or LTE
can specify if they want to allow measurements on those in-
terfaces at all and can set the maximum traffic volume for
those interfaces separately.

The GLIMPSE probe is written using Qt*, a cross-platform
application framework for C++. Therefore, the probe can
be compiled and executed on every platform supporting Qt5,
this includes Windows, Linux, Mac OS X, Android and iOS.
We provide binary packages for some of those systems for an
easy installation. The complete probe code is open source
and can be found on GitHub®.

3.2 Supervisor

The supervisor is the single point of control for the probes.
As the probes might not be directly reachable from the In-
ternet (e.g., when they are behind a home gateway), the
probes pull configurations and measurement instructions via

3http://miniupnp.free.fr/
‘https://www.qt.io/
Shttps://github.com/HSAnet/glimpse_client

Home Results Toolbox Schedules

Host measure-it.net|
3
UPnP request Count - —
Get information from local UPnP devices
1000 milliseconds
Interval =
Fing , 1000 milliseconds
Latency/availability measurement Timeout
-
Traceroute 54
Discovers the path to a certain host (using UDP probes) Time to live -
HTTP download L 33434
Comeiod i om i e gt Destination Port ™"
DNS Lookup 33434
Retrieve the IPof 3 hostname SourcePort 77 o
74 bytes
Reverse DNS Lookup Payload Yy
Retrieve the DNS name of an IP -—_—
Type System -
Bulk Transfer Capacity
Bulk transfer capacity measurement (over 2 single TCP connec! tion)
Packet Trains
Trains of packet pairs measurement (experimental)
(a) Toolbox (b) Ping

Figure 2: Probe screenshots

an HTTP GET request from the supervisor. The configu-
rations include the address of the repository and different
timings for when to pull configurations, measurement in-
structions and when to send the results. We have defined
five timings which are also used to determine when to exe-
cute a measurement:

Immediate As soon as possible.
OneOff Once at a specific time.

Periodic Repeated based on a given period, start and end
timestamps can be set.

Calendar A cron-like timing to specify the months, days,
hours, minutes and seconds something should be done.

OnDemand This gives the probe the control to do some-
thing when and as often as it likes.

The first four timings follow the information model of the
IETF working group LMAP[2]. The OneOff, Periodic, and
Calendar timing allow also to set a randomness factor. This
is helpful if e.g., multiple probes get the same measurement
and timing instruction but should not execute all at the
exact same time (to not DDoS a service).

An excerpt of a measurement instruction in JSON® can
be seen in listing 1.

"id": 43,
"task": {
"id": 14,
"method": "ping",
"options": {
"count": 4,
"destination_port": 33434,
"host": "measure-it.net",
[...]
}
},

Shttp://www.json.org/

"timing": {
"periodic": {
"interval": 3600000,
"randomSpread": 30000,
"start": "2015-07-13T00:58:00"

Listing 1: Measurement Instruction

It shows a ping measurement to measure-it.net which is
carried out every 60 minutes including a random offset of 30
seconds at max, sending four packets to the given destination
port.

3.3 Repository

The repository is the interface between the probes and
the central GLIMPSE database. The probes send their re-
sults with an HTTP POST request to the repository for
storage into a PostgreSQL database. If the probe has prob-
lems while sending results—e.g. because it has connection
problems—they will be cached locally until a connection to
the repository can be established. All server-side compo-
nents of the architecture have direct access to the database,
only the probes need to go through the repository for secu-
rity reasons.

Not only the direct results from a measurement are sent to
the repository but also some information about the system
to judge whether or not the results can be trusted. This
auxiliary information includes the processor load, memory
usage, connection mode (e.g., wireless LAN) and local traffic
counters. Abnormal values of system state (such as high
CPU load) or connection details (such as low signal strength
on wireless) can be used to filter results. For an analysis,
one should only use those measurement results with a high
confidence regarding their correctness.

An example of a result gained from executing the mea-
surement instruction seen before is shown in listing 2.

{
"probe_result": {
"round_trip_ms": [
9.823,
9.917,
9.805,
9.846
1,
"round_trip_stdev": 0.04261215669779576,
"destination_ip": "141.82.57.241",
"round_trip_max": 9.917,
"round_trip_received": 4,
"round_trip_avg": 9.84775,

"round_trip_min": 9.805,
"round_trip_sent": 4,
"round_trip_loss": "O"

},

"start_time": "2015-09-10T11:58:16Z",

"end_time": "2015-09-10T11:58:172",

"duration": 848,

"error": "",

"pre_info": {
"available_disk_space": 2481373184,
"available_traffic": 31431168,
"connection_mode": 5,
"cpu_usage": 0.0136986300349236,
"signal_strength": 100,
"used_traffic": 530688,
"battery_level": -1,

[...]

"post_info": {...}
}

Listing 2: Measurement Instruction

As the instruction requested four packets per ping, the re-
sult shows four round trip times in round_trip_ms. Multiple
statistics are directly calculated in the app (average, min,
max, ...) to reduce the processing load while analyzing re-
sults. This result shows an average round trip time for a
ping to measure-it.net of approximately 9.8 milliseconds.

3.4 Reasoner

A reasoner is a purpose-built piece of software part of
the GLIMPSE back end. It tries to do intelligent reasoning
about measurement results and it will automatically sched-
ule additional measurements if needed. This has a number of
advantages. E.g., new measurements can be created not by
updating the probes themselves, but by adding intelligence
to the GLIMPSE back end. Also, unsupervised measure-
ments can be performed, where additional measurements
are only performed in case they are really needed.

We have implemented one reasoner as an example: the
traceroute-reasoner. It performs measurements similar in
nature to Paris traceroute using the simple traceroute im-
plementation on the probes[1]. It tries to determine whether
multiple paths between a probe and a specified endpoint
exist by executing multiple UDP traceroute measurements
with different source and destination port combinations. At
first, n traceroute measurement instructions with the same
target but with different destination- and source-ports are
sent to a probe. All paths found in the results of the mea-
surements are stored into the database. If these contain
multiple paths, n new traceroute instructions are sent to
the probe with the same target but again with different
destination- and source-port pairs. This is repeated as long
as new paths are discovered.

3.5 Dashboard

To make the administration of the platform as easy as pos-
sible, a dashboard was developed. It provides an overview
of all available probes and allows one to schedule new mea-
surements with the help of a graphical interface. Results for
already executed measurements are shown as graphs or in a
table view. An example of such a result graph can be seen
in figure 3.

The figure shows a scatter plot for two HTTP download
measurements, i.e. downloads from two different servers, on
one probe. As can be seen, the dashboard makes initial re-
sult evaluation quite easy. The administrator of the system
gets a good overview of measurement results and can then
use additional tools to e.g., explain phenomena in the data,
filter potentially erroneous results or correlate results with
other data.

These graphs will be also provided to the user (the ones
running the probes) in the web front end and the app at a
later point. This makes it easy for the user to see what the
probe is doing and what it has found out.

4. FUTURE WORK

At the moment, we can schedule measurements to be per-
formed regularly on the devices. The user can only execute
one-shot measurements without a schedule in the graphical
version of the app. We want to add the possibility for the

70M
65M
60M
55M
50M o 0 . .
a5 e R Py o e, —— o Seede V»’-u: 7 e o ;un
40M
35M
30M

Bandwidth (bps)

25M
: . .
20M L, . . * L . .
. N * o, .
15M - SHet S
LR .
10M
5M
oM

4. Sep 5. Sep 6. Sep 7. Sep 8. Sep 9. Sep 10. Sep 11. Sep 12. Sep
Date ‘ ‘

Figure 3: HT'TP Download Scatterplot

users to define own schedules in the web front end to be
executed on their devices. This would make the app more
interesting to system administrators who can use this to
monitor their own infrastructure.

As described before, we want to enable users to write own
measurements and include them as a dynamically loaded
plugin into the probe. This would make it necessary to have
a capability discovery mechanism, as not all probes would
have the same set of measurements anymore. GLIMPSE is
already prepared for that as it can announce the available
measurements via so-called specifications as defined by the
mPlane project[12].

Another feature of the graphical version of the GLIMPSE
probe which is in preparation at the time of writing is an
easy to use network troubleshooting interface. It will basi-
cally consist of three buttons on the main page of the app,
which will offer the user three basic choices, in case he or
she experiences network issues. The first choice is a quick
speed test, to see whether the problem is bandwidth re-
lated. This basically mimics current user behaviour, when
using services such as speedtest.net. The second choice is
for users that suspect that the network is not working at
all. This will trigger a number of tests in the local network
and beyond. The third choice is for users that experience
performance problems but the Internet does not appear to
be down completely. Here, the measurements focus on po-
tential bandwidth and latency problems.

Besides all the technical aspects of the GLIMPSE probes,
the human user is another good source of information re-
garding aspects such as the human perceived quality of the
Internet connection. Only the user can provide interesting
auxiliary information such as the details about the broad-
band plan it has at home (e.g., the maximum download
rate). The graphical version of the GLIMPSE probe will
therefore get a survey interface, where the user will be asked
to participate in voluntary surveys.

Currently, GLIMPSE is in beta state. The probe has been
open sourced, the console version is regarded as stable and a
number of embedded probes are deployed, busily collecting
data. The GUI version is still under development but ex-
pected to be stable soon. What remains to be done is to add
the GLIMPSE probe to app stores for various platforms.

S. RELATED WORK

As briefly mentioned in the introduction, there are a large
number of measurement tools and platforms available for
various purposes, by different organizations using different
approaches. In this section, we only compare GLIMPSE to
those platforms which are closest in terms of either goals,
approach or tool set. We also briefly discuss emerging stan-
dards in this general space.

Of all measurement platforms available, Dasu[7] is the by
far most closely related to GLIMPSE. This is because Dasu
is also an end user-based probe. In contrast to GLIMPSE,
Dasu originally came as a plugin to a popular BitTorrent
client, whereas at the time of writing, a beta version of a
standalone Dasu client is also available. Both versions of-
fer multiple small measurement tools similar to GLIMPSE;,
but the BitTorrent client plugin can also measure the user-
generated BitTorrent traffic passively. This is not possible
with GLIMPSE as it is a standalone software and was not
developed to monitor user-generated traffic. In fact, user-
generated traffic is never touched at all for privacy reasons.
One of the big differences between Dasu and GLIMPSE is
the platforms the software can run on: the Dasu plugin can
run anywhere where the BitTorrent client is available, the
standalone application is available for Windows and Mac
OS X. GLIMPSE on the other hand can also be installed on
Linux and mobile operating systems like Android and iOS.

Project Bismark[11] was originally developed to measure
the performance of home networks with the help of a custom
home gateway. Today, it is also available as Android App,
Raspberry Pi image and OpenWrt package. It can perform
active and passive measurements depending on the deploy-
ment and is intended for researchers to schedule and analyse
measurements.

Another measurement project is NETIQHome, a software
installed on end-hosts which relies purely on passive mea-
surements. It “collects various statistics about Internet per-
formance”[10] by sniffing packets sent and received on the
host it is installed on. There are no active components in-
cluded and—while also being an end host-based system-—it
is an example for a measurement project with complete dif-
ferent goals than GLIMPSE.

Netalyzr[4] is a network measurement tool designed to run
as a Java applet in the webbrowser of a user”. It offers mul-
tiple measurements, e.g., to measure the bandwidth and the
reachability of different ports. It is limited to the capa-
bilities of a Java applet and can not run continuously in
the background of an end users device. It does not offer
measurement campaigns but always runs the same suite of
tests. There is also an Android app available offering the
same measurements as the website.

Various organizations such as Ripe NCC (Atlas) and re-
search institutes such as CAIDA (Scamper)® have built and
deployed quite successful measurement platforms. Obvi-
ously, network measurements are important for our under-
standing of the operational aspects of the Internet. Foremost
however, network operators should be interested in network
measurements. Therefore, it should come as no surprise
that Standards Developing Organizations (SDOs) such as
the IETF and the Broadband Forum have started to work
on standards and protocols to manage and control measure-

"http://netalyzr.icsi.berkeley.edu/
Shttps://www.caida.org/tools/measurement/scamper/

ment platforms. Most prominently, the LMAP (Large-Scale
Measurement of Broadband Performance) working group of
the IETF is busily working on a standard based on YANG
and Netconf for this exact purpose[9][8]. The scope of the
work however has been restricted to devices under the con-
trol of a single administrative entity (the network opera-
tor)[5]. This—for an SDO—understandable restriction ex-
plains the protocol choice, but it is questionable whether
Netconf is a sensible choice for more open platforms such
as GLIMPSE, which is based on JSON over HTTPS. This
has a number of advantages e.g., it is more likely to pass
firewalls. The mPlane project in which GLIMPSE was de-
veloped has has also published its protocol as an Internet
draft[12] and made a reference implementation available®.

6. CONCLUSIONS

Implementing a measurement platform is a daunting task
for various reasons. The implementation effort is high be-
cause in order to involve a representative set of devices, the
probe part needs to be cross-platform. Also, server compo-
nents need to be written and web-interfaces play a significant
part for administration, visualization and analysis. A broad
skillset is required in the development process and for the
operational aspects of the platform.

Making things worse, this relatively high up-front invest-
ment comes with a very uncertain success in terms of user
adoption. It is unfortunately questionable, whether the plat-
form itself will be a success and whether users are willing to
participate. There are platforms that are successful with
activating users mostly based on altruism such as BOINC.
Whether network measurements as an altruistic motive is
sufficient remains to be seen.

This paper however has not focussed on these non-technical
issues but solely on the technical aspects of one measure-
ment platform: GLIMPSE. In particular, we have described
its design goals, its architecture and its available measure-
ment tools. At the time of writing, only very few functions
are missing in the GUI version of the probe before it can
be released. The back end, the console version and the web
front end are all operational. A probe base of around 15
probes are currently deployed for testing purposes and have
been running for months executing various measurements in
different environments.

‘We hope that the measurement and troubleshooting tools
that are freely available to users of the app are helping to
make GLIMPSE sufficiently attractive for tech-savvy users
to install the probe. The troubleshooting interface is being
designed for the less technical audience as a value proposi-
tion for the app. More information regarding GLIMPSE is

available on the project website at https://www.measure-it.

net. Currently, the console version and a beta of the graph-
ical version can be downloaded from there.

7. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union under the FP7 Grant Agreement
n. 318627 (Integrated Project “mPlane”).

8. REFERENCES
[1] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,
T. Friedman, M. Latapy, C. Magnien, and R. Teixeira.

“https://github.com/fp7mplane/protocol-ri

[2]

3]

[4]

[5]

[6]

[7]

(10]

(11]

(12]

Avoiding traceroute anomalies with paris traceroute.
In Proceedings of the 6th ACM SIGCOMM Conference
on Internet Measurement, IMC ’06, pages 153—158,
New York, NY, USA, 2006. ACM.

T. Burbridge, P. Eardley, M. Bagnulo, and

J. Schoenwaelder. Information Model for Large-Scale
Measurement Platforms (LMAP). Internet-Draft
draft-ietf-lmap-information-model-06, IETF
Secretariat, July 2015.
http://wuw.ietf.org/internet-drafts/
draft-ietf-lmap-information-model-06.txt.

M. Faath and R. Winter. Measurements with the
masses. In IRTF & ISOC Research and Applications
of Internet Measurements (RAIM) Workshop,
Yokohama, Japan, 2015.

C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: [lluminating the Edge Network. In
Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, IMC ’10, pages 246259,
New York, NY, USA, 2010. ACM.

M. Linsner, P. Eardley, T. Burbridge, and

F. Sorensen. Large-Scale Broadband Measurement Use
Cases. RFC 7536, RFC Editor, May 2015.

R. Prasad, C. Dovrolis, M. Murray, and K. Claffy.
Bandwidth estimation: metrics, measurement
techniques, and tools. Network, IEEE, 17(6):27-35,
Nov 2003.

M. A. Sanchez, J. S. Otto, Z. S. Bischof, D. R.
Choffnes, F. E. Bustamente, B. Krishnamurthy, and
W. Willinger. Dasu: Pushing Experiments to the
Internet’s Edge. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2013.
J. Schoenwaelder and V. Bajpai. A YANG Data
Model for LMAP Measurement Agents. Internet-Draft
draft-ietf-lmap-yang-01, IETF Secretariat, July 2015.
http://wuw.ietf.org/internet-drafts/
draft-ietf-lmap-yang-01.txt.

J. Schoenwaelder and V. Bajpai. Using RESTCONF
with LMAP Measurement Agents. Internet-Draft
draft-ietf-lmap-restconf-00, IETF Secretariat, July
2015. http://wuw.ietf.org/internet-drafts/
draft-ietf-lmap-restconf-00.txt.

J. Simpson, CharlesRobert and G. Riley. Neti@home:
A distributed approach to collecting end-to-end
network performance measurements. In C. Barakat
and I. Pratt, editors, Passive and Active Network
Measurement, volume 3015 of Lecture Notes in
Computer Science, pages 168—174. Springer Berlin
Heidelberg, 2004.

S. Sundaresan, S. Burnett, N. Feamster, and

W. de Donato. BISmark: A Testbed for Deploying
Measurements and Applications in Broadband Access
Networks. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pages 383-394,
Philadelphia, PA, June 2014. USENIX Association.
B. Trammell and M. Kuehlewind. mPlane Protocol
Specification. Internet-Draft
draft-trammell-mplane-protocol-00, IETF Secretariat,
August 2015.
http://wuw.ietf.org/internet-drafts/
draft-trammell-mplane-protocol-00.txt.

