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ABSTRACT
We consider a two-queue polling model with switch-over
times and k-limited service (serve at most ki customers dur-
ing one visit period to queue i) in each queue. The major
benefit of the k-limited service discipline is that it - besides
bounding the cycle time - effectuates prioritization by as-
signing different service limits to different queues. System
performance is studied in the heavy-traffic regime, in which
one of the queues becomes critically loaded with the other
queue remaining stable. By using a singular-perturbation
technique, we rigorously prove heavy-traffic limits for the
joint queue-length distribution. Moreover, it is observed
that an interchange exists among the first two moments in
service and switch-over times such that the HT limits remain
unchanged. Not only do the rigorously proven results readily
carry over to N(≥ 2) queue polling systems, but one can also
easily relax the distributional assumptions. The results and
insights of this note prove their worth in the performance
analysis of Wireless Personal Area Networks (WPAN) and
mobile networks, where different users compete for access to
the shared scarce resources.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Queueing Theory

General Terms
Theory, Performance

Keywords
Polling model, k-limited, heavy traffic

1. INTRODUCTION
This note studies a two-queue k-limited polling model in

heavy-traffic (HT), in which one of the queues becomes crit-
ically loaded with the other queue remaining stable. Under

the k-limited strategy the server continues working until ei-
ther a predefined number of ki customers is served at queue i
or until the queue becomes empty, whichever occurs first.
The k-limited policy is easy to implement, augmenting the
exhaustive strategy (where ki = ∞) by a single “knob” for
each queue that can tune performance to be efficient or fair.

Significant gains in system performance have been ob-
served in many application areas, e.g. communication [5,
6]) and production systems (see, e.g. [13]), by implementing
the k-limited strategy instead of the traditional exhaustive
and gated strategies (see, also, [2] for a survey of applications
of polling systems). Our specific interest for this model is
fueled by performance analysis of (Bluetooth) Wireless Per-
sonal Area Networks (WPAN) and mobile networks, where
different users compete for access to the shared scarce re-
sources. In case of a Round-Robin type of scheduling, polling
models with limited service policies naturally emerge (see
[2]). Proper operation of these systems and the scheduling
therein is particularly critical when the systems are critically
loaded.

A mathematical challenge is that the k-limited strategy
does not satisfy the branching property for polling systems,
which significantly increases the analytical complexity [11].
A testament for this statement is that - notwithstanding
the wealth of literature on polling systems - the problem
of determining the steady-state distribution for our model
is one that remains open. The statement is reinforced as
well by the fact that heavy-traffic limits have only been rig-
orously proven for branching-type service disciplines with
very few exceptions. Non-branching policies differ from their
branching counterparts both in the techniques useable and
the resulting HT behavior. That is, the techniques used
for branching-type policies typically rely heavily on explicit
steady-state results for stable systems; however, correspond-
ing results for non-branching policies are not available. More-
over, non-branching systems can possess both stable and in-
stable queues which is very different from branching policies
where all queues become instable simultaneously leading to
incomparable HT behavior.

We rigorously prove HT asymptotics for two-queue k-
limited polling models with switch-over times via the singular-
perturbation technique. That is, by increasing the arrival in-
tensity at one of the queues until it becomes critically loaded,
we derive HT limits for the joint queue-length distribution.
The singular-perturbation technique can be typified by its
intrinsic simplicity and its intuitively appealing derivation,
although it requires some distributional assumptions (see [9]
for a survey of applications of the perturbation technique to
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queueing models). This technique enables us to present the
first study rigorously proving HT asymptotics for polling
models with a non-branching service strategy. It is proven
that the scaled queue-length distribution of the critically
loaded queue is exponentially distributed, whereas the num-
ber of customers in the stable queue has the same distri-
bution as the number of customers in a vacation system.
Moreover, both queue-length processes are independent in
HT. The analysis can be directly extended to an N -queue
system (N ≥ 2) with one queue becoming critically loaded,
as well as one can relax the distributional assumptions.

As a by-product, we observe a close similarity between k-
limited polling systems with and without switch-over times.
This novel result, which is reminiscent of the variance ab-
sorption result in branching-type polling systems [7], shows
that in HT the first two moments of the switch-over times
can be effectively absorbed into the corresponding moments
of the service times without impacting the HT asymptotics
of the instable queue. In this regard, new fundamental in-
sight is gained which should prove useful in the analysis of
non-branching polling systems.

The approach in the present note has its origin in [4],
where systems with zero switch-over times are studied. At
face value the extension to nonzero switch-over times may
seem a small one, however this extension impels us to, con-
siderably, modify and extend the analysis in [4]. This re-
veals itself clearly in the determination of the parameter
of the exponential distribution for the scaled queue length
of the critically loaded queue. In case of zero switch-over
times this parameter follows directly from the HT limit of
the total workload in a standard M/G/1 model and the av-
eraging principle. When analyzing a system with nonzero
switch-over times, service capacity is obviously lost due to
the switching and, as a consequence, one cannot directly
state that the total workload equals the M/G/1 workload
and the aforementioned interchange of switch-over and ser-
vice time moments is required. Lastly, we note that in many
practical applications the switch-over times may be substan-
tial and that the presence of these switch-over times may be
crucial for the operation of the system (see, e.g., [13]). In
the interest of space, we do not give all proofs in the current
note, but we focus on the main theorems, the theoretical in-
sights resulting from these theorems and the observed simi-
larity between polling systems with and without switch-over
times.

2. MODEL DESCRIPTION
We consider a polling model consisting of two queues,

Q1 and Q2, that are alternately visited by a single server.
When ki customers have been served or Qi becomes empty,
whichever occurs first, the server switches to the other queue.
Then, an exponentially distributed switch-over time Si with
parameter σi is incurred. If the other queue turns out to be
empty, the server switches back and serves, again, at most
ki customers. The situation where both queues are empty
will turn out to be negligible in the HT limit, which is con-
sidered in this note. A possible scenario is that the server
waits until the first arrival and switches to the correspond-
ing queue (say, Qj) to start another visit period of at most
kj customers. Customers arrive at Qi according to a Pois-
son process with intensity λi. We assume that the service
times of customers in Qi are independent and exponentially
distributed with parameter µi. We denote the load of the

system by ρ = ρ1 + ρ2, where ρi = λi/µi. The utilization ui
for queue i, i = 1, 2, is defined as follows

ui = ρ+ λi
E[S]

ki
, (1)

where S is the total switch-over time in a cycle, i.e. E[S] =
1/σ1+1/σ2. The cycle time C is defined as the time between
two successive visit beginnings toQi, with mean E[S]/(1−ρ).
A known result for this model (cf. [8]) is that a necessary
and sufficient stability condition for queue i reads ui < 1,
i = 1, 2 [8]. This condition can be rewritten as follows,

λiE[C] < ki. (2)

In words, this means that for a stable system the average
number of type-i customers arriving in a cycle is smaller than
the service limit ki, i.e., the maximum number of type-i cus-
tomers served in a cycle. Note that this system might have
one stable queue (with utilization less than 1) and one in-
stable queue (with utilization greater than 1), in contrast to
the commonly studied branching-type polling systems where
all queues become instable simultaneously (see, for example,
Resing [11]).

3. ANALYSIS
We study the limiting behavior of the model in HT. In

particular, we take the limit such that the utilization of Q2

reaches its critical limit 1, while Q1 remains stable. In this
note we take the limit by increasing the arrival rate of Q2

until it reaches its critical value while keeping the other pa-
rameters fixed. Note that increasing λ2 will also increase u1,
the utilization at the other queue. In order to prevent Q1

from becoming instable, we impose the following condition:

λ1/k1 < λ2/k2.

The results still hold when other (combinations of) param-
eters are modified such that u2 ↑ 1. See Section 4 for a
short discussion on this topic. The case where both queues
become instable simultaneously requires a different analysis
leading to different results and is beyond the scope of this
note (see Section 4).

3.1 Perturbed balance equations
The model is a continuous-time Markov chain, and we

start by describing its states (n1, n2, h), where n1 and n2

denote the queue lengths. The possible server states are
numbered h = 1, 2, . . . , k1 +k2 +2 and should be interpreted
as follows. States 1 ≤ h ≤ k1 indicate that the server is
serving the h-th customer during its current visit to Q1.
State h = k1 + 1 indicates that the server is switching from
Q1 to Q2. Similarly, values k1 +2 ≤ h ≤ k1 +1+k2 indicate
that the server is serving the h− k1 − 1-th customer at Q2.
The final state, h = k1 + k2 + 2, indicates that the server is
switching from Q2 back to Q1. We refrain from giving all
transition rates as they are trivial to determine.

The next step, after having defined the states and transi-
tion rates, is to give all balance equations so we can apply a
singular-pertubation to them. We select one balance equa-
tion to illustrate the technique,

(λ1 + λ2 + σ1)p(0, n2, k1 + 1) = λ2p(0, n2 − 1, k1 + 1)

+ µ1

k1∑
h=1

p(1, n2, h) + σ2p(0, n2, k1 + k2 + 2), (3)



for n2 > 1. This equation relates the in-flow and out-flow of
state (0, n2, k1 + 1), which is the state where Q1 is empty,
Q2 has n2 customers, and the server is switching from Q1

to Q2. One can leave this state through an arrival at any of
the queues, or because the switch-over time has ended. This
state can be entered from state (0, n2 − 1, k1 + 1), through
an arrival at Q2, or through a departure from Q1 when in
any of the states (1, n2, h) for h = 1, . . . , k1, or from state
(0, n2, k1 + k2 + 2). In the last case the switch-over time
S2 has finished, but since Q1 is empty, the server starts
switching back to Q2 again.

We now introduce the following definitions

E[B′2] =
1

µ2
+

E[S]

k2
, Var[B′2] =

1

µ2
2

+
Var[S]

k2
, (4)

where Var[S] = 1
σ2

1
+ 1

σ2
2

. The random variable B′2 will be

given an interpretation in Section 4.

Perturbation. We increase the arrival rate of Q2 as follows
to its critical value,

λ2 =
1− ρ1

E[B′2]
− δω, ω > 0, 0 < δ � 1. (5)

Substituting (5) in (1), taking i = 2, and letting δ ↓ 0 im-
plies that u2 ↑ 1 and, thus, that Q2 becomes instable. An
appropriate value for the constant ω is chosen at the end of
this section.

Let ξ = δn2, and

p(n1, ξ/δ, h) = δφn1,h(ξ, δ), (6)

for 0 < ξ = O(1), h = 1, 2, . . . , k1 + k2 + 2. Note that once
ω is chosen, δ and the scaled variable ξ will be uniquely
defined. The next step is to substitute (5) and (6) in the
balance equations. For Equation (3) we obtain,

(λ1+σ1)φ0,k1+1(ξ, δ)−µ1

k1∑
h=1

φ1,h(ξ, δ)−σ2φ0,k1+k2+2(ξ, δ)

=

(
1− λ1/µ1

E[B′2]
− δω

)(
φ0,k1+1(ξ − δ, δ)− φ0,k1+1(ξ, δ)

)
.

Taking the Taylor series with respect to δ yields a set of
equations.

3.2 Main results
In this subsection, we derive the limiting joint distribu-

tion of N1 and δN2, the queue length at Q1 and the scaled
queue length at Q2, as δ ↓ 0. The three results are obtained
by equating the O(1), O(δ), and O(δ2) terms in the set of
equations from the previous subsection. These steps follow
the line of reasoning introduced in [4] and, therefore, the
details are omitted in interest of space.

We define L̃(0)(z) as the steady-state queue-length PGF
of a single-server multiple-vacation queue with parameters
λ1 and µ1, with k1-limited service. The vacation distribu-
tion in this system equals the convolutions of k2 service-time
distributions in Q2 and of the switch-over times S1 and S2.
We also define P0(ξ) as the scaled queue-length distribution
of Q2, which is yet to be determined. Equating the O(1)
terms in the perturbed balance equations gives the follow-
ing result.

Theorem 1.

∞∑
n1=0

k1+k2+2∑
h=1

φ
(0)
n1,h

(ξ)zn1 = L̃(0)(z)P0(ξ). (7)

For this vacation system, the PGF of the queue-length dis-

tribution L̃(0)(z) is known (cf. [10]).
Subsequently, we determine the unknown P0(ξ) in (7) by

solving the equations for the first-order and second-order
terms in the perturbed balance equations. This results in

C0P
′′
0 (ξ) + C1P

′′
0 (ξ) + C2P

′
0(ξ) = 0, (8)

where the constants C0, C1, C2 are defined as follows,

C0 =
2λ1

µ2
1

+ 1
E[B′

2]

(
1− λ1

µ1

) [
E[B′22 ]− 2E[B′2]2

]
2E[B′2]2

,

C1 =
1

E[B′2]

(
1− λ1

µ1

)
, C2 = ω.

We obtain the density P0(ξ) of the scaled number of cus-
tomers in Q2 by solving the differential equation (8), where

we use that
∑∞
n1=0

∑∞
n2=0

∑k1+k2
h=1 p(n1, n2, h) = 1 and that∫∞

0
P0(ξ)dξ = 1.

Theorem 2.

P0(ξ) = ηe−ηξ, (9)

with

η =
2ωE[B′2]2

2λ1

µ2
1

+ 1
E[B′

2]

(
1− λ1

µ1

)
E[B′22 ]

. (10)

A natural choice for ω is ω = 1/E[B′2], leading to the com-
monly used scaling limδ↓0 δN2 = limu2↑1(1−u2)N2. We refer
to Section 4.2 for a discussion on this choice and alternatives.
By applying the multiclass distributional law of Bertsimas
and Mourtzinou [1] it directly follows that the scaled wait-
ing time at Q2 also follows an exponential distribution with
parameter λ2η.

Finally, the above has the following immediate consequence
for the joint (scaled) queue-length distribution in HT.

Theorem 3. For λ1/k1 < λ2/k2 and λ2 = (1 − ρ1 −
δ)/E[B′2], we have:

lim
δ↓0

P[N1 ≤ n1, δN2 ≤ ξ] = L(n1)
(

1− e−ηξ
)
, (11)

where η is given by (10), and L(·) is the cumulative probabil-
ity distribution of the steady-state queue length of a single-
server multiple-vacation queue with parameters λ1 and µ1,
with k1-limited service. The vacation distribution in this sys-
tem equals the convolutions of k2 service-time distributions
in Q2 and of the switch-over times S1 and S2.

4. DISCUSSION

4.1 Interpretation
The main result (11) has the following intuitively appeal-

ing interpretation, which we derive heuristically below:
1. The number of customers in the stable queue has the

same distribution as the number of customers in a k-
limited vacation system.



2. The scaled number of customers in the critically loaded
queue is exponentially distributed with parameter η.

3. The number of customers in the stable queue and the
(scaled) number of customers in the critically loaded
queue are independent.

Property 1 follows from the fact that if Q2 is in HT, then
exactly k2 customers are served at this queue during each
cycle.

For Property 2, we take a look at an alternative k-limited
polling system with the same arrival rates, no switch-over
times, the original service times at Q1 and adjusted service
times at Q2 with mean E[B′2] and variance Var[B′2]. Since
in the original system the two switch-over periods S1 and
S2 are always accompanied with precisely k2 service times
at Q2 in HT, the first two moments of the amount of time
the server is utilized - either due to serving or switching - in
the original and alternative system is obviously identical. In
[4] it is proven that the distribution of the scaled workload
within the alternative system without switch-over times -
and, thus, the original system - equals the scaled amount of
work in an M/G/1 queue in which the two customer classes
are combined into one customer class. Based on standard
heavy-traffic results for the M/G/1 queue this implies that
the distribution of the scaled total workload converges to
an exponential distribution with mean ρE[B2]/2E[B], where
E[B] = (ρ1 + λ2E[B′2])/(λ1 + λ2) and E[B2] = (2λ1/µ

2
1 +

λ2(Var[B′2]+E[B′2]2))/(λ1 +λ2). Since in HT almost all cus-
tomers are located in Q2 and λ2 ↑ (1−ρ1)/E[B′2], the scaled
number of customers in Q2 is exponentially distributed with
parameter η.

Property 3 is due to the the time-scale separation in HT,
i.e., the dynamics of the stable queue evolve at a much faster
time scale than the dynamics of the critically loaded queue.

4.2 Critical value and choice of ω
In this note, we take the limit by increasing the arrival

rate of Q2 until it reaches its critical value while keeping the
other parameters fixed. However, one could consider more
general ways of varying the arrival rates in order to let Q2

become critically loaded. To this end, we introduce λ∗1 and
λ∗2 such that λ∗1/µ1 +λ∗2E[B′2] = 1. Additionally, we assume
that

λ∗1
k1

<
1

k1
µ1

+ k2E[B′2]
, (12)

or equivalently:

λ∗2
k2

>
1

k1
µ1

+ k2E[B′2]
. (13)

We now let λ1 → λ∗1 and λ2 → λ∗2 for δ ↓ 0, with

λ1

µ1
+ λ2E[B′2] = 1− δω∗, ω∗ > 0, 0 < δ � 1. (14)

Any arbitrary way in which we let λ1 and λ2 approach
respectively λ∗1 and λ∗2, for δ ↓ 0, will cause Q2 to be-
come critically loaded (because of assumption (12)). All
results obtained in this paper will still be valid, by choosing
ω∗ = ωE[B′2].

In Section 3.2 we argued that ω = 1/E[B′2] is a good
choice, because it leads to δN2 = (1 − u2)N2. To see this,
we first introduce the notation λcrit

2 = (1 − ρ1)/E[B′2] and

rewrite:

lim
δ↓0

δN2 = lim
λ2↑λcrit

2

(
1

ω
(λcrit

2 − λ2)

)
N2. (15)

Substitution of ω = 1/E[B′2] yields

lim
λ2↑λcrit

2

(
1

ω
(λcrit

2 − λ2)

)
N2 = lim

λ2↑λcrit
2

(
(1− ρ1)− λ2E[B′2])

)
N2

= lim
u2↑1

(1− u2)N2,

which has an appealing form. From (15) one can immedi-
ately see that ω = 1 results in taking the limit of (λcrit

2 −
λ2)N2, which is also quite commonly used (see for example
[12]).

Finally, we consider increasing λ1 and λ2 simultaneously
while keeping their ratio fixed. Denote by Λ = λ1 + λ2 the
total arrival rate, and let λi = λ̂iΛ (i = 1, 2). As before,
without loss of generality, we assume that Q2 becomes un-
stable when increasing Λ. Taking ω = λ̂2 yields

lim
λ2↑λcrit

2

(
1

ω
(λcrit

2 − λ2)

)
N2 = lim

Λ↑Λcrit
(Λcrit − Λ)N2,

where Λcrit is the total arrival rate at which the second queue
becomes critically loaded.

4.3 Two critically loaded queues
In the current note we have analysed the heavy-traffic be-

haviour under the condition λ1/k1 < λ2/k2, i.e., only Q2 be-
comes critically loaded. The limiting regime, in which both
queues become saturated simultaneously (λ1/k1 = λ2/k2),
shows fundamentally different system behaviour. In this
case, it is not sufficient anymore to use a scaling that implies
that exactly k2 customers are served at Q2 during each cycle,
i.e., the probability that there are served less than k2 cus-
tomers cannot be neglected, when analyzing the asymptotic
behaviour of Q1.

5. EXTENSIONS
The presented framework can be generalized in several

areas without fundamentally complicating the analysis.

5.1 General distributions
Using the insights in the heavy-traffic system behavior ob-

tained from the perturbation analysis, a HT limit theorem
for systems with general renewal arrival processes and gen-
eral service and switch-over times can be conjectured. The
interchange between service and switch-over times proves its
value again, since it makes it possible to link the workload
of the system to the workload of a GI/G/1 queue, for which
the HT behavior is well-studied. Subsequently, the limiting
distribution of the (scaled) number of customers in Q2 can
be derived. Let Ai, Bi, and Si denote the generic interar-
rival times, service times, and switch-over times for i = 1, 2,
which can be generally distributed. Furthermore, let

E[B′2] = E[B2] +
E[S]

k2
, Var[B′2] = Var[B2] +

Var[S]

k2
,

which is a generalisation to general service times of (4), and
let

λcrit
2 = (1− ρ1)/E[B′2]

denote the limiting arrival intensity of customers at Q2. We
scale the interarrival-time distribution A2 by changing its



mean, while keeping the coefficient of variation fixed. We
can formulate the following conjecture.

Conjecture 1. The HT limit of the scaled queue length
(1− u2)N2 as u2 ↑ 1 is exponentially distributed with mean

1

η
=

1

2E[B′2]

(
λ1(Var[B1] + cv2

A1
E[B1]2)

+ λcrit
2 (Var[B′2] + cv2

A2
E[B′2]2)]

)
, (16)

where cv2
Ai

denotes the squared coefficient of variation of Ai.

5.2 N (> 2) queue polling system
One could readily extend the analysis and results of the

present note to an N(> 2) queue polling system with one
critically loaded queue. In this case the stable queues have
the same joint queue-length distribution as in an N − 1
queue polling model with an extended switch-over time,
while the scaled queue-length distribution of the critically
loaded queue follows again an exponential distribution.

6. NUMERICAL RESULTS
This section presents four numerical examples illustrating

the validity and applicability of our proven limiting results
and key concepts:

1. (Joint) queue length distributions;

2. Variance absorption result;

3. Extension to general distributions;

4. Extension to N(> 2) queue polling system.

Example 1. In the first example we consider three polling
models, referred to as P1, P2, and P3. In each model we
have λ1 = 0.06, µ1 = µ2 = 0.5, σ1 = σ2 = 0.5, k1 = 2 and
k2 = 3. The only difference between the three models are
the values of λ2, which are 0.25, 0.258, and 0.263, respec-
tively. The corresponding values for u2 are 0.953, 0.98, and
0.997. Table 1 shows the simulated queue-length probabili-
ties for Q1 for these three models, and for the corresponding
vacation model (model V ). It can clearly be seen that the
queue-length probabilities converge to those of the vacation
system as stated in Theorem 1.

Figure 1 shows how in the simulation the scaled queue-
length (1−u2)N2 in model P1 closely follows the exponential
distribution with parameter η = 1.289 as expected from
Theorem 2. For models P2 and P3 the differences between
the simulation and the closed-form asymptotics are hardly
noticeable, which is the reason why we have omitted them
in the figure.

Finally, we have calculated the correlation coefficient be-
tween the simulated number of customers in Q1 and the

Model p0 p1 p2 p3 p4 p5

P1 0.589 0.275 0.095 0.029 0.009 0.003
P2 0.585 0.277 0.096 0.030 0.009 0.003
P3 0.583 0.278 0.097 0.030 0.009 0.003
V 0.582 0.278 0.097 0.030 0.009 0.003

Table 1: Simulated values for pk := P[N1 = k].
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Figure 1: The densities of (1 − u2)N2 of model P1
and an exponential distribution with parameter η.

scaled queue length of Q2. For P1, P2, and P3 the val-
ues are 0.048, 0.022, and 0.004, respectively. These values
converge to 0, which follows from Property 3, implying that
the amount of “memory” of the stable queue asymptotically
vanishes compared to that of the critically loaded queue.

Example 2. As a by-product of our analysis we have ob-
served that an interchange exists among the first two mo-
ments in service and switch-over times in systems with and
without switch-over times such that the HT limits (for Q2)
are identical in both systems. That is, by noting that in HT
every cycle precisely k2 are served, the second terms in E[B′2]
and Var[B′2] apportion the first two moments of the switch-
over times to each of the customers fairly. It is important to
note that this interchange is just one of the possibilities, i.e.,
a variety of trade-offs exists between service and switch-over
times, all of which yield the same asymptotic distributions,
as long as the terms (4) remain unchanged.

In this second example, we want to illustrate this gen-
eralization of the variance absorption result for branching
systems [7] with a numerical case. We start by considering
again the three polling models P1, P2, and P3, but now
we construct alternative models where (a portion of) the
switch-over times is transferred to the service times of the
customers in Q2. In more detail, we construct corresponding
models with modified service times and switch-over times,
satisfying

E[B2] =
1

µ2
+ α

1/σ1 + 1/σ2

k2
,

Var[B2] =
1

µ2
2

+ α
1/σ2

1 + 1/σ2
2

k2
,

E[S1] = (1− α)/σ1, Var[S1] = (1− α)/σ2
1 ,

E[S2] = (1− α)/σ2, Var[S2] = (1− α)/σ2
2 ,

choosing α = 1/2 for models R1, R2, R3, and α = 1 for
models S1, S2, S3. Note that these latter three models are
polling models without switch-over times and that u2 = ρ
in this case. The means, standard deviations, and squared
coefficients of the scaled queue length (1 − u2)N2 are ob-
tained using simulation, and given in Table 2. These values
clearly confirm that the asymptotic distributions are iden-
tical, independent of the chosen interchange, and that they
converge to an exponential distribution with mean 1/η =
1/1.289 = 0.776. If the aforementioned interchange keeps
the distribution of the sum of k2 service times in Q2 and



(1− u2)N2 R1 R2 R3
Mean 0.742 0.762 0.778
St.dev. 0.757 0.766 0.781
CV 1.020 1.006 1.005

(1− ρ)N2 S1 S2 S3
Mean 0.730 0.757 0.770
St.dev. 0.756 0.768 0.768
CV 1.035 1.015 0.996

Table 2: Simulated means, standard deviations, and
coefficients of variation of(1−u2)N2 for Example 2.

the switch-over times unaffected, then the HT limit of Q1

remains unchanged as well.

Example 3. In this example we use simulation to vali-
date Conjecture 1 on the HT asymptotics for systems with
general renewal arrival processes and general service and
switch-over times. In many communication systems (some
of these) distributions may be heavy-tailed, stressing the im-
portance of knowing the limiting queue-lengths for general
distributions. We take the same setting as in Example 1, but
with different distributions. Table 3 gives an overview of the
various interarrival-time, service-time, and switch-over time
distributions. Note that their means are equal to those in
Example 1, where everything was assumed to be exponen-
tially distributed. Also note that we have added a fourth
system, P4, with λ2 = 0.2.635, for reasons that become
clear later.

Distribution Queue 1 Queue 2
Interarrival times Gamma(0.5, 0.03) Pareto(2/(3λ2), 3)
Service times Uniform(0, 4) Pareto(1.17, 2.4)
Switch-over times Constant(2) Constant(2)

Table 3: Settings for Example 3.

We have simulated the queue-length distributions of each
of these four systems and compare them to the limiting val-
ues, based on the exponential distribution that arises in the
HT limit. The parameter of this exponential distribution,
which can be computed using (16), is η ≈ 2.527. Table
4 gives the mean, standard deviations, and coefficients of
variation of the scaled queue lengths for each of the models.
From this table we conclude that the first two moments in-
deed approach those of an exponential distribution, albeit in
a slower pace than Example 1, which had only exponential
distributions. This slower speed of convergence is the reason
for including a fourth model, P4, with an even higher uti-
lization. Figures 2(a)–(b) shows the simulated scaled queue
length probabilities for P1, . . . , P4, and the density of the
limiting distributions, again confirming the convergence to
the exponential distribution.

Example 4. In this final example we illustrate how queue
lengths behave in a polling system with N(> 2) queues, each
with k-limited service, when all arrival rates are increased
simultaneously, as discussed in Section 4.2. We consider a
system with N = 4 queues and exponentially distributed
service times, interarrival times, and switch-over times with

(1− u2)N2 P1 P2 P3 P4
Mean 7.5 18.4 116.3 232.5
St.dev. 30.5 38.6 192.1 281.8
CV 4.0 2.1 1.7 1.2

Table 4: Simulated means, standard deviations, and
coefficients of variation for Example 3.
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(a) P1 (u2 = 0.953) (b) P2 (u2 = 0.980)
P3

exp(η)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P4

exp(η)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(c) P3 (u2 = 0.997) (d) P4 (u2 = 0.998)

Figure 2: Simulated and theoretical scaled queue
lengths for Example 3.

µi = 1/2, σi = 1/3, for i = 1, 2, 3, 4. The service limits are
k1 = 7, k2 = k3 = 6, and k4 = 5. Let Λ = λ1 + · · · + λ4

denote the total arrival rate. We will increase Λ until, one
by one, all of the queues become unstable. While increasing
Λ, we keep the ratio between the four arrival rates fixed. Let
λ̂i denote the proportion of the total arrivals that is routed
to Qi, i.e.

λi = λ̂iΛ, (17)

with λ̂i = i/10 in this example. The impact of increasing
the total arrival rate on the system behavior is graphically
illustrated in Figure 3, which depicts simulated mean queue
lengths E[Ni(Λ)] as a function of the total arrival rate Λ.
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E[Ni(Λ)]
N4 N3 N2 N1

Λ

Figure 3: The mean queue lengths in Example
4 as functions of the total arrival rate Λ. The
four vertical dashed lines correspond to respectively
Λcrit

4 ,Λcrit
3 ,Λcrit

2 ,Λcrit
1 (from left to right).

The following interesting observations can be made:



• Obviously, for Λ = 0 all mean queue lengths are 0.

• As Λ is increased, all mean queue lengths increase.
Queue 1 has the lowest utilization, causing the mean
queue length to increase slowest. Queue 4 has the high-
est utilization and, as a consequence, is the first queue
to become unstable, which happens at Λcrit

4 = 25/74 ≈
0.34 (the leftmost dashed vertical line). This value can
be computed via (1) and (17).

• Note that, although Q4 is unstable at Λ = Λcrit
4 , the

other queues are stable. We can increase Λ further,
causing the mean queue lengths of the other queues to
increase, while Q4 remains unstable.

• When Λ approaches the value of Λcrit
3 = 10/23 ≈ 0.43,

Q3 becomes unstable as well. Now Q1 and Q2 are the
only stable queues.

• As we continue to increase the total arrival rate, Q2

and, eventually, also Q1 become unstable. This hap-
pens at respectively Λcrit

2 = 15/26 ≈ 0.58 and Λcrit
1 =

7/6 ≈ 1.17.

• The mean queue lengths (as functions of Λ) are not
differentiable at Λ = {Λcrit

1 , . . . ,Λcrit
4 }.

This particular behavior can be explained using the results
from this paper. As discussed in Section 5.2, from the view-
point of customers in queues 1, 2, and 3, the four-queue
polling system behaves like a three-queue polling system
when Q4 is unstable, i.e. for Λcrit

4 < Λ < Λcrit
3 . In this so-

called “corresponding system” the switch-over time between
Q3 and Q1 is the sum of the switch-over times S3 +S4 in the
original model, plus k4 service times that are exp(µ4) dis-
tributed. In this three-queue polling model, the next queue
to become unstable is Q3, at Λcrit

3 = 10/23 ≈ 0.43, making
the system behave like a two-queue polling model with an
even longer switch-over time between Q2 and Q1. This con-
tinues, with Q2 becoming unstable at Λ = 15/26 ≈ 0.58 and,
finally, Q1 being the last queue to become unstable when the
total arrival rate reaches the value of Λcrit

1 = 7/6 ≈ 1.17.
The simulation results can be used to verify our claims

that, near the point where one of the queues becomes un-
stable, (a) the number of customers in the stable queues
are distributed as in a system with that particular queue
removed and replaced by an extra long switch-over time,
and (b) the scaled queue length of the unstable queue is ex-
ponentially distributed. Therefore, we consider the original
polling system near each of the critical values, namely at
Λ = 0.995Λcrit

i , for all i, and compare the simulation results
to the simulation results of the “corresponding” polling sys-
tems. Table 5(a) shows the simulated queue length proba-
bilities of the stable queues. For Λ ≈ Λcrit

4 queue 4 becomes
unstable and the system starts behaving as a three-queue
polling system with an extra long switch-over time S3. The
simulated queue length probabilities of this “corresponding
system” are listed in Table 5(b). It is readily seen that the
results are completely equivalent, the extremely minor dif-
ferences being attributed to simulation inaccuracies. This
has been repeated near Λ ≈ Λcrit

3 and Λ ≈ Λcrit
2 , and the

same conclusion can be drawn.
Verifying that the scaled queue lengths of the unstable

queues are exponentially distributed, which is our second
claim, requires determining the parameters of these distri-
butions as a first step. These parameters can be computed

Λ ≈ Λcrit
4

Queue p0 p1 p2 p3 p4 p5

Q1 0.534 0.292 0.118 0.040 0.012 0.003
Q2 0.325 0.281 0.186 0.106 0.055 0.026
Q3 0.186 0.205 0.177 0.136 0.098 0.067

Λ ≈ Λcrit
3

Queue p0 p1 p2 p3 p4 p5

Q1 0.410 0.301 0.166 0.076 0.031 0.011
Q2 0.177 0.200 0.179 0.142 0.103 0.071

Λ ≈ Λcrit
2

Queue p0 p1 p2 p3 p4 p5

Q1 0.296 0.273 0.195 0.119 0.064 0.031

(a) Original polling system

Λ ≈ Λcrit
4

Queue p0 p1 p2 p3 p4 p5

Q1 0.534 0.292 0.118 0.040 0.012 0.003
Q2 0.326 0.281 0.185 0.106 0.055 0.026
Q3 0.187 0.206 0.176 0.135 0.097 0.067

Λ ≈ Λcrit
3

Queue p0 p1 p2 p3 p4 p5

Q1 0.411 0.301 0.165 0.076 0.030 0.011
Q2 0.177 0.201 0.179 0.142 0.103 0.070

Λ ≈ Λcrit
2

Queue p0 p1 p2 p3 p4 p5

Q1 0.297 0.273 0.195 0.119 0.064 0.031

(b) Corresponding polling systems

Table 5: Marginal queue lengths of the stable queues
in the original polling and the corresponding sys-
tems. The simulated probabilities P(Ni = m), de-
noted by pm, are given for m = 0, 1, 2, . . . , 5.

similar to (16), but with B′2 modified to include the service
times and switch-over times of all overloaded queues, and
B1 the service time of an arbitrary customer in any of the
stable queues. The values of ηi, i = 1, 2, 3, 4, equal 1.364,
2.875, 3.739 and 4.529 taking ω = λ̂i. The latter is the ap-
propriate value when considering the scaling (Λcrit

i − Λ)Ni
as suggested in Section 4.2. Figures 4(a)–(d) depict the
simulated probability density functions of the scaled queue
lengths (Λcrit

i − Λ)Ni, for i = 1, . . . , 4 at Λ = 0.995Λcrit
i , i.e.

very close to instability. It is clear that the simulated values
are extremely close to the theoretical values.

To obtain more insight in the influence of overloaded queues,
we have chosen to do focus on one specific part of Figure
3, namely the part between Λ = Λcrit

3 and Λ = Λcrit
2 , i.e.

the interval [0.435, 0.577]. In this interval, queues 3 and 4
are unstable, causing the system to behave like a two-queue
polling system from the perspective of customers in queues 1
and 2. This corresponding system is similar to the (first two
queues of the) original system, but has a longer switch-over
time from Q2 to Q1, which is distributed as the convolution
of the original switch-over times S2, S3, S4, and k3 services of
type-3 customers, and k4 services of type-4 customers. Fig-
ure 5 depicts the mean queue lengths of queues 1 and 2 in
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Figure 4: Simulated and theoretical scaled queue
lengths for Example 4.

the original model (taken from Figure 3) and, additionally,
in the corresponding two-queue polling model, while varying
the total arrival rate Λ between 0 ≤ Λ < 0.577. It can clearly
be seen in Figures 3(a) and 3(b) that the mean queue lengths
of the two systems are different for Λ < 0.435, but they are
the same in the aforementioned region 0.435 < Λ < 0.577.
This confirms that the two systems behave identically in this
region.
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Figure 5: Simulated mean queue lengths for queues
1 and 2 in the original model (solid lines) and in the
“corresponding” polling model (dashed lines).

7. CONCLUSION
The present note has studied a novel application of the

singular-perturbation technique leading to a rigorous proof
of the HT limits in k-limited polling models with switch-over
times. The scaled queue-length of the critically loaded queue
follows an exponentially distribution of which the parameter
is known. The number of customers in the stable queue has
the same distribution as the number of customers in a vaca-

tion system. Vacation systems with k-limited service can be
analyzed very efficiently using modern numerical techniques.
In particular, when the service times and switch-over times
are constant, or in case they have a phase-type distribution
or a Gamma distribution, the notorious root-finding prob-
lem becomes trivial (see [3, 10] for more details). As such,
the asymptotics form an excellent basis for approximating
k-limited polling models - and, thus, WPAN and mobile
(adhoc) networks - with general load.
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