
PVSio-web: mathematically based tool support for the
design of interactive and interoperable medical systems

[Invited Paper]

Paolo Masci
Queen Mary University of
London, United Kingdom
p.m.masci@qmul.ac.uk

Patrick Oladimeji
Swansea University

United Kingdom
p.oladimeji@swansea.ac.uk

Piergiuseppe Mallozzi
University of Pisa

Italy
piergiuseppe.mallozzi@gmail.com

Paul Curzon
Queen Mary University of
London, United Kingdom

p.curzon@qmul.ac.uk

Harold Thimbleby
Swansea University

United Kingdom
harold@thimbleby.net

ABSTRACT
Use errors, where medical devices work to specification but
lead to the clinicians making mistakes resulting in patient
harm, is a critical problem. Manufacturers need tools to
help them find such design flaws at an early stage and regu-
lators need tools to help check devices are safe to approve for
market. We have developed a prototyping tool, PVSio-web,
to help check the safety of medical device interface and in-
teraction design. It supports a model-based design process:
that is, it is based on precise mathematical descriptions of
the device’s behaviour. This allows sophisticated proof and
model checking technology to be used to verify that devices
meet essential safety requirements. The architecture allows
for the flexible addition of ‘plug-in’ modules to extend its
functionality giving different views of the design that allow
different stakeholders to work together. Working with the
US regulator, the Food and Drug Administration (FDA),
our tool has helped identify problems in a series of com-
mercial medical devices. Hospitals have used it as part of
training programmes highlighting safety-related design is-
sues. In ongoing work we are developing plug-ins that sup-
port the verification and validation of interoperable medical
systems.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems—
human factors; J.3 [Life and Medical Sciences]: Medi-
cal Information Systems; K.4.1 [Computers and Society]:
Public Policy Issues—human safety ; K.6.3 [Software Man-
agement]: Software development; D.2.4 [Software/Pro-
gram Verification]: Formal methods, Validation

General Terms
Design, Human Factors

Keywords
Safety, Medical Devices, Interaction Design, Verification,
Formal Methods

1. INTRODUCTION
Tools that help manufacturers and regulators rigorously check
both prototypes and final designs of devices are vital if use of
those devices involve safety issues. Interaction design is an
important but under-researched area in this respect. Poor
interaction design of medical devices can lead to hazards due
to clinicians making mistakes when setting up or using the
devices. This is being taken increasingly seriously by regu-
lators, due to the large number of incidents and subsequent
recalls of devices.

Regulators such as the Food and Drug Administration are
promoting the use of model-based engineering techniques to
explore design solutions and identify design defects in ad-
vance as a solution to these problems [14]. The process is
based on the idea of creating mathematical models that de-
scribe the behaviour of the real system, and then analysing
these models to gain confidence that the real system can
operate safely. The advantage of this process is that devel-
opers can use it from the early stages of development (a full
physical prototype of the device is not needed), and enables
rapid and precise exploration of different alternative solu-
tions and different scenarios. We have focussed on extend-
ing such techniques to the interaction and interface design of
medical devices, and have developed a tool, PVSio-web [10]
that supports this process.

2. RAPIDLY GENERATING PROTOTYPES
PVS is an industry standard tool used for verifying sys-
tems that need high levels of assurance. It is used within a
model-based design process: a mathematical description of
the way a device behaves (a model) is checked against simi-
lar descriptions of what it should do, using powerful theorem
proving and model checking technology. Such techniques re-

MOBIHEALTH 2015, October 14-16, London, Great Britain
Copyright © 2015 ICST
DOI 10.4108/eai.14-10-2015.2261720



Figure 1: Screenshot of the PVSio-web prototyping environment.

quire a great deal of mathematical expertise however. An
issue is in how to make them more accessible and more natu-
rally fit with design processes. PVSio-web is a sophisticated
graphical front-end that extends PVS.

PVSio-web makes it easy to create and check realistic pro-
totypes of a device, focussing on the interface that doctors,
nurses or patients must interact with. The prototypes have
the appearance and behaviour of the real system being anal-
ysed. We took a pragmatic approach to the rapid generation
of prototypes. A picture of the real system, or if early in the
development, a design mock up, is used to represent the pro-
totype’s appearance. The developer creates programmable
areas over interactive parts, like the buttons and displays.
The prototype’s behaviour in these programmable areas is
given by an underlying mathematical model. Its behaviour
is demonstrated or explored by clicking on buttons in the
picture, with the results of the interactions seen immedi-
ately on the display areas of the picture. PVSio-web, while
making prototypes quick and easy to create, also supports
model based-engineering of both stand-alone and interoper-
able medical systems.

The standard view provided by the tool of the realistic look-
ing and interactive prototype interface is designed for do-
main specialists and end users. It allows them to explore
the behaviour of the prototype as they would in the final
design. PVSio-web is particularly suitable for presenting
mathematical properties, as well as the results of checking
them, to engineers and domain specialists in a way that is
easy to understand. Through this view, traces of behaviour
determined to be problematic can be demonstrated and ex-
plored directly on the interface. It is also good for checking
assumptions made in the models before analysis. It can also
be used in a user-centred design process, allowing early eval-
uation of prototypes with the people who will have to use
the device.

3. EXTENDING TOOL FUNCTIONALITY
WITH PLUGINS

The architecture of PVSio-web is designed to be extensible
and suitable for supporting stakeholders from wide-ranging
backgrounds. It combines different views of the device de-
signed for people with different roles and expertise. This
allows a development team and their stakeholders to work
together using a single underlying mathematical model be-



cause only those that need to see the model do so. The
extensible nature means that it is easy to combine PVSio-
web with the tools already used. For example an early
plug-in [13] allows the interface model to be co-simulated
with control software developed separately using traditional
tools, such as MathWorks Simulink. Additional plugins en-
able mathematical analysis with different verification tools,
such as Overture [7] and IVY/NuSMV [1].

3.1 Model editor
The behaviour of the prototypes developed using PVSio-web
is specified using mathematical descriptions (i.e., models).
The models drive the execution of prototypes as well as being
the target of checking by the verification tools. A model
editor allows formal methods experts to create and edit the
underlying models that describe the device’s behaviour and
do basic sanity checks on it (correct use of types, coverage
and disjointness of conditional statements used in function
definitions).

3.2 Emucharts plugin and code generation
Developers on the whole do not currently possess the for-
mal methods backgrounds to develop models directly. The
models, however, can be created through a graphical edi-
tor. The designer works with a graphical notation they are
used to and does not need to see the mathematical nota-
tion beneath. That notation can still be accessed by veri-
fication experts to check requirements mathematically and
exhaustively. Developers normally create and edit designs
using a graphical notation such as Statecharts. The tool
therefore provides an editor for a notation based on State-
charts, called Emucharts. Using Emucharts, designers can
declare variables, constants and states of an interactive sys-
tem. They can also declare transitions between the states,
as well as any conditions necessary for the transitions to
occur, and how variables change when a transition occurs.
Mathematical models are then created automatically from
these design drawings in a variety of languages including
formal languages like PVS or Ada, and general purpose pro-
gramming languages like Javascript and C. This process of
visually creating a state transition representation of an in-
teractive system makes the model based design paradigm
accessible to a variety of developers. Even those with no
training in formal methods or computer science can reap its
benefits.

4. INTEROPERABLE MEDICAL SYSTEMS
Medical devices have communication capabilities that can
be exploited for improving the safety and effectiveness of
healthcare systems. For example, consider a clinical situa-
tion where an infusion pump is infusing opioids to a patient.
A patient monitor analysing the patient’s conditions could
alert the nurses if the patient enters respiratory depression,
and at the same time immediately stop the infusion of the
opioid, thus saving the patient’s life.

The benefits of interoperable medical devices are clear. How-
ever, careful design decisions need to be taken to ensure
safety of operation. For example, with reference to the pre-
vious example, what happens if the patient monitor is con-
figured incorrectly, is operated incorrectly, or is malfunction-
ing? It is certainly desirable that the infusion pump operates

as safely as in a situation when the pump is not connected
to the patient monitor.

In [8], we have introduced a new mechanism in the tool that
allows developers to install virtual communication ports on
device prototypes developed using PVSio-web. Using these
virtual ports, device prototypes can be connected to real
communication networks, and thus use standard communi-
cation protocols to exchange data and commands with other
devices connected to the same network. This mechanism
therefore enables realistic prototypes of interoperable sys-
tems to be created that include both PVSio-web prototypes
and real devices (e.g., physical prototypes, or final prod-
ucts). These prototypes are particularly suitable for explor-
ing design requirements and regulatory issues of this new
generation of medical systems.

5. APPLICATION AND IMPACT
We have successfully used PVSio-web in several different
ways. In collaboration with the FDA, we developed Generic
infusion pump prototypes [6] for exploring the definition
of essential safety and usability requirements for infusion
pumps.

We have also developed demonstrative prototypes for inter-
operable medical systems with infusion pumps and patient
monitors [8]. Each interoperable device can be executed on
a different physical machine, and exchange data and com-
mands with the other prototypes using an open communica-
tion service for mobile devices. Future work on interoperable
devices includes developing new demonstrative prototypes
based on the Medical Application Platform [4] architecture.
It was developed by the FDA in collaboration with other
universities for the analysis of requirements for interopera-
ble medical systems.

We have used PVSio-web to demonstrate previously unde-
tected software defects in commercial medical devices that
have safety implications [9, 12]. We have validated mathe-
matical versions of a set of safety/usability requirements for
infusion pumps [2,3,11]. We have also created training ma-
terial [5] to help manufacturers, regulators, clinicians, and
procurement staff identify design issues, before expensive
design commitments are taken and/or before the final prod-
uct is placed on the market. These demonstrations have
been used as part of hospital training programmes to raise
awareness about device design issues.

International research groups are exploring applications of
our tool in other application domains. For example Hon-
eywell and NASA Langley are using it to check new flight
decks, and next generation protocols for air traffic collision
avoidance. Universities are using it to teach interactive and
safety-critical systems, and explain formal methods tech-
nologies to students.

PVSio-web was downloaded over 1,600 times in 2014 alone,
and over 1,200 times in the first six months of 2015. It is
available for download with the main PVS distribution from
SRI International, and from http://www.pvsioweb.org.

http://www.pvsioweb.org


6. ACKNOWLEDGEMENTS.
This work was funded by EPSRC through the CHI+MED
research project http://www.chi-med.ac.uk (research agree-
ment EP/G059063/1).

7. REFERENCES
[1] J. Campos and M. Harrison. Interaction engineering

using the IVY tool. In Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS09), pages 35–44. ACM,
2009.

[2] M. D. Harrison, J. C. Campos, and P. Masci. Reusing
models and properties in the analysis of similar
interactive devices. Innovations in Systems and
Software Engineering, 11(2):95–111, 2015.

[3] M. D. Harrison, P. Masci, J. C. Campos, and
P. Curzon. Demonstrating that medical devices satisfy
user related safety requirements. In 4th International
Symposium on Foundations of Healthcare Information
Engineering and Systems (FHIES2014), 2014.

[4] B. Larson, J. Hatcliff, S. Procter, and P. Chalin.
Requirements specification for apps in medical
application platforms. In Proceedings of the 4th
International Workshop on Software Engineering in
Health Care, pages 26–32. IEEE Press, 2012.

[5] P. Masci. Design issues in medical user interfaces.
https://www.youtube.com/watch?v=T0QmUe0bwL8.

[6] P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky,
and H. Thimbleby. Model-Based Development of the
Generic PCA Infusion Pump User Interface Prototype
in PVS. In F. Bitsch, J. Guiochet, and M. KaÃćniche,
editors, Computer Safety, Reliability, and Security,
volume 8153 of Lecture Notes in Computer Science,
pages 228–240. Springer Berlin Heidelberg, 2013.

[7] P. Masci, L. Couto, P. Larsen, and P. Curzon.
Integrating the PVSio-web modelling and prototyping
environment with Overture. In 13th Overture
Workshop, satellite event of FM2015, 2015.

[8] P. Masci, P. Mallozzi, F. L. De Angelis, G. Di Marzo
Serugendo, and P. Curzon. Using PVSio-web and
SAPERE for rapid prototyping of user interfaces in
Integrated Clinical Environments. In Verisure2015,
Workshop on Verification and Assurance, co-located
with CAV2015, 2015.

[9] P. Masci, P. Oladimeji, P. Curzon, and H. Thimbleby.
Tool demo: Using PVSio-web to demonstrate software
issues in medical user interfaces. In 4th International
Symposium on Foundations of Healthcare Information
Engineering and Systems (FHIES2014), 2014.

[10] P. Masci, P. Oladimeji, P. Curzon, and H. Thimbleby.
PVSio-web 2.0: Joining PVS to Human-Computer
Interaction. In 27th International Conference on
Computer Aided Verification (CAV2015). Springer,
2015. Tool and application examples available at
http://www.pvsioweb.org.

[11] P. Masci, R. Ruksenas, P. Oladimeji, A. Cauchi,
A. Gimblett, Y. Li, P. Curzon, and H. Thimbleby. The
benefits of formalising design guidelines: a case study
on the predictability of drug infusion pumps.
Innovations in Systems and Software Engineering,
11(2):73–93, 2015.

[12] P. Masci, Y. Zhang, P. Jones, P. Curzon, and

H. Thimbleby. Formal verification of medical device
user interfaces using pvs. In S. Gnesi and A. Rensink,
editors, Fundamental Approaches to Software
Engineering, volume 8411 of Lecture Notes in
Computer Science, pages 200–214. Springer Berlin
Heidelberg, 2014.

[13] P. Masci, Y. Zhang, P. Jones, P. Oladimeji, E. D’Urso,
C. Bernardeschi, P. Curzon, and H. Thimbleby.
Combining pvsio with stateflow. In Proceedings of the
6th NASA Formal Methods Symposium (NFM2014),
Berlin, Heidelberg, April-May 2014. Springer-Verlag.

[14] A. Ray, R. Jetley, P. L. Jones, and Y. Zhang.
Model-based engineering for medical-device software.
Biomedical Instrumentation & Technology,
44(6):507–518, 2010.

http://www.chi-med.ac.uk
https://www.youtube.com/watch?v=T0QmUe0bwL8

	Introduction
	Rapidly generating prototypes
	Extending tool functionality with plugins
	Model editor
	Emucharts plugin and code generation

	Interoperable Medical Systems
	Application and Impact
	Acknowledgements.
	References

