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ABSTRACT 
With the rapid growth and increased life expectancy of the 
world’s population, the prevalence of chronic disorders such as 
Parkinson’s disease (PD) is also increasing. This challenges the 
current healthcare system in terms of cost and resources 
reallocation. An emerging approach facilitated by a new 
technological platform, called the Internet of Things, and the 
introduction of wearable devices for medical applications is a 
potential solution to this problem. Miniaturized and low-cost 
sensor units are placed close to the patients’ body to unobtrusively 
collect information about their health status. This information is 
distributed through a smart Internet grid, creating an efficient 
structure that reduces costs and maximizes the resources. Patient 
engagement plays a key role in this healthcare restructuration. 
Here, we discuss the state-of-the-art of this technological 
revolution with emphasis in Parkinson’s disease. As an example 
for the application of this platform to PD, we present a potential 
approach to assess an important symptom- namely postural 
instability- using wearable sensor technology.   

Categories and Subject Descriptors 
H.1.2 [Models and Principles]: User/Machine Systems – Human 
information processing.  

General Terms 
Algorithms, Measurement, Experimentation, Human Factors. 

Keywords 
Internet of Things, wearables, Parkinson, postural instability 

1. INTRODUCTION 
As the world population continues to grow and the life expectancy 
to increase [1], chronic diseases of the elderly such as Parkinson’s 
disease becomes increasingly prevalent. Our current healthcare 
system is challenged to meet the rising demands of patients’ needs 
with high quality standards of care, effective applicability, and 
simple accessibility. 

The Internet of Things (IoT) is opening the doors to new ways of 

optimizing resources and increasing efficiency in many fields, 
including home automation, agriculture and healthcare [4]. The 
key of its success is a lateral distribution in the production and 
distribution of goods and services enabled by a smart energy grid 
and a strong network of collaboration. This platform may provide 
the means to meet current expectations in healthcare delivery. 

In parallel, the introduction of wearable technologies as personal 
objects of daily living surveys the patient health status 
unobtrusively in any scenario and at a very low cost. Connecting 
wearable devices to the IoT platform may potentiate the intrinsic 
features of both technologies (i.e., lateralization, connectivity, 
continuous monitoring, and resources optimization), shifting the 
paradigm of healthcare delivery.  

Parkinson’s disease (PD) is a progressive, chronic, and 
neurodegenerative disorder mostly prevalent in older adults. Its 
symptoms vary over the course of the disease and often within the 
course of the day [5]. Impairments include motor symptoms such 
as bradykinesia, tremor, rigidity and postural instability [6]. Other 
non-motor symptoms include sleep disorders, dementia, and 
cognitive decline. Thus, the management of Parkinson’s disease 
using wearable technologies and the IoT is an excellent working 
model of this new integrated technological platform. 

Here, we discuss the technological aspects involving PD, 
wearable technologies and the IoT platform, accompanied by the 
protagonistic role of patients in this high-tech developing process. 
We also present preliminary results on the estimation of postural 
instability in PD patients as a working example of the potential of 
this new technology. 

2. A PARADIGM SHIFT IN PARKINSON’S 
DISEASE 
2.1 The Internet of Things and Wearable 
Technologies 
The IoT concept relies on connecting any physical object to the 
Internet [7]. The number of objects connected to the Internet has 
rapidly increased in the past decade with 50 billion devices 
with*Internet connection predicted by 2020 [8].  

The IoT platform rests mainly on three concepts: (1) Renewable 
energy, to sustainably power up the technological platform; (2) 
Connectivity, to ensure the efficient flow of information; and (3) 
Collaboration, as the only way to improve efficiency through a 
lateral distribution of information, goods, and services [9]. This 
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also includes the arising of a new type of consumers that create, 
share, and consume their own products and services [9]. 

Along with this technological phenomenon, the accelerated 
development in the last decade of miniaturized, low-cost and 
efficient sensor units allowed the design of wearable and 
unobtrusive devices [10]. These sensor units are not only capable 
of sensing motion and physiological data, but also of performing 
low level of signal and data processing. Moreover, the arising of 
3D printing technology may take the design and production of 
wearable sensors a step forward as these sensors might in the 
future be designed and fabricated at home, with some examples 
already in their research stage [11], [12]. 

The emerging of wearable technologies enhances the connectivity 
achieved through the IoT platform [13]. Mobile devices gather 
spatial and temporal information of both the individual and the 
community, enabling society based large-scale phenomena 
screening and mapping [14]. 

2.2 New Ways of Knowledge Discovery 
Wearable technologies embedded into the IoT platform present a 
unique opportunity to generate data with valuable information to 
the research and medical community. However, collecting 
unbiased data is only the first stage in generating real benefits to 
the patients. Further processing is required to transform these data 
into knowledge, which can be used to design and implement novel 
diagnostics and treatments. 
With motor impairment being one of the cardinal symptoms of 
Parkinson’s disease, analyzing gait patterns to gather information 
regarding the stage of the disease is an intuitive approach. In this 
direction, wearable motion sensors attached to the patient shoes 
presents as an inexpensive and valuable option [15]–[18]. 

Gait and other body motion analysis using wearable technology 
are applicable to several fields. Instrumented medical 
examinations such as the timed up and go (TUG) test and 
posturography assessments can for example complement 
traditional medical examinations [19]–[21]. Individualized 
invasive procedures such as deep brain stimulation can be also 
optimized using information from wearable technologies [22]. 
Further, the assessment of new medication and rehabilitation 
therapies can be improved by wearable sensors [23]. 
Interconnecting wearable devices, ubiquitous devices embedded 
in the surrounding space and other objects of daily living (e.g., 
home appliances and ambient sensors) through the IoT may 
capture novel information and hence knowledge regarding the 
patient’s health, which would otherwise be impossible to uncover 
during regular medical visits. This information can be delivered 
back to the users and their caregivers in the way of unobtrusive 
displays, and vibrotactile and audible cues. This will complement 
the efforts of physicians and other caregivers to deliver high 
quality of care at an affordable cost. 

2.3 Patient Engagement 
The involvement of patients in the diagnosis and treatment of their 
own disease will transform the way that Parkinson’s disease and 
other chronic disorders are managed. Patients share their 
experience and medical information freely in the Internet [24], 
providing new venues for caregivers to interact with patients and 
for scientists to explore new research directions.  

Novel approaches of data sharing impact patient-to-patient 
interactions as well as the research and medical community as this 
information can be used for assessment of new treatment and 
medications. Moreover, self-reported data can be utilized to 

further investigate new medications in large, non-controlled, open 
label, and observational study designs, which are initially 
examined in small cohorts using best-evidence clinical study 
design [25]. This in turn may bring controversies (and a complete 
new way of quality control in data generation), but shows a clear 
path where patient engagement may dramatically change 
treatment design. 

The extension of this concept to automatic data generation using 
wearable sensors and distributed through the IoT platform is not 
far from attainment. Increasing patient engagement through user-
friendly technology will reshape the way Parkinson’s disease is 
managed, with individualized diagnosis and treatment concepts. 

3. POSTURAL INSTABILITY: AN 
EXAMPLE IN PARKINSON’S DISEASE 
Postural instability is one of the cardinal symptoms of Parkinson’s 
disease and its clinical examination is an important part of the 
diagnostic workup. The most common clinical method to quantify 
postural instability in PD is the Pull Test performed by the doctor 
[26], which is included in the Unified Parkinson’s Disease Rating 
Scale (UPDRS). It consists of pulling the patient backwards from 
his or her shoulders and rate how the patient stabilize from this 
postural perturbation. The physician’s (semi-quantitative and non-
linear) ratings of the outcome are 0 (normal), 1 (retropulsion with 
unassisted recovery), 2 (the patient falls if without assistance), 3 
(tendency to spontaneous imbalance), and 4 (test not possible, the 
patient requires assistance to stand) [26]. This examination aims at 
obtaining surrogate information on the patient’s performance 
during the activities of daily live, in particular predicting gait 
alterations leading to increased risk of falling. 

In the current medical settings, patients are required to visit a 
clinical institution to obtain an assessment of their postural 
instability. This imposes costs on patient transportation, the 
clinician’s consultation and the hospital infrastructure. An 
automatic and at-home procedure for postural instability 
assessment would reduce these costs significantly. Further, the 
subjective nature of the test makes the outcomes dependent on the 
clinician’s expertise and opinion [27]. This introduced bias may 
be also minimized with an automatic and objective instrumented 
test setting, or other sensor-based information on gait instability. 

Wearable technology in combination with the IoT platform 
presents as a unique solution to this problem. In research, 
wearable sensor placed at the patient’s trunk and lower back have 
been used to measure postural instability in PD as new 
instrumented tools, or tests that correlated with accepted scores 
[20]-[21], [28]-[29]. However, gait and foot motion analysis using 
wearable sensors remains poorly investigated. Placing unobtrusive 
sensors to record patient’s foot motion patterns to infer postural 
stability is an intuitive approach for measuring postural instability, 
which can be easily implemented at home. This could potentially 
automate the diagnosis, improving efficiency and patient 
satisfaction.  

3.1 Estimating Postural Instability 
As a first step towards developing an unbiased and automated 
approach to assess postural instability, we proposed estimating the 
Pull Test outcomes using the information from gait sequences and 
foot-motion tasks. 

We studied 139 idiopathic PD patients (phenotypes: bradykinesia, 
tremor-dominant and equivalent) equipped with a commercial 
inertial sensor unit in each shoe as part of a sensor-based analysis 



 
Figure 1. Block diagram of the classification pipeline. 

 
 

system (eGaIT, Astrum IT GmbH, Erlangen, Germany). The 
patients performed two gait tasks including walking 40 meters 
(40MW) and walking 20 meters with stops (SG). Patients also 
performed two foot-motion tasks, including circular movements 
of the foot (CL) and heel-to-toe tapping (HTT). Previous to these 
tasks, a physician performed the Pull Test for each participant. 
From these tasks, we recorded 3-D acceleration and 3-D 
orientation data from which we extracted and selected features to 
classify the Pull Test scores (Figure 1). We utilized machine 
learning algorithms (i.e., Support vector machine as the classifier 
with a radial basis function as the kernel) to classify the patient 
score. We included patients with a Pull Test score of 0, 1 and 2. 
We further investigated which task produces better classification 
results for each patient phenotype. 

A cross-validation assessment using a probabilistic approach [30] 
revealed that we were able to estimate the Pull Test scores from 
gait and foot-motion derived data similarly as the physician’s 
ratings, with an overall accuracy of 75% (Table 1). 

 Table 1. Classification performance results. 

3.2  Future Work 
 The preliminary yet promising value of the presented 
methodology warrants further evaluation on the use of wearable 
sensors attached to the patient’s shoes. This includes the 
implementation of an objective assessment such as posturography. 
Analyzing the relationships between postural sway during 
posturography measurements and gait could be potentially used in 
at-home assessments of postural instability. 

Further work also includes designing practical and user-friendly 
protocols for patients to perform at home. Physician follow-up via 
telemedicine may complement the assessment.  

4. FUTURE CHALLENGES 
4.1 Data Management 
Data handling is one of the major challenges in data-driven 
knowledge discovery. Avoiding information overload requires an 
efficient bidirectional flow of multidimensional data, which 
requires smarter and more robust data architecture. Many barriers 
regarding data sharing, data privacy and ownership must be 
overcome prior to adoption of this technology by the general 
society [31]–[33]. This discussion is currently under ethical, social 
and legal debates [34]. 

4.2 Smarter technologies 
Home monitoring is a primary goal in the applicability of 
wearable technologies and the IoT to Parkinson’s disease. 
However, its implementation is still under development. Progress 
in this direction is hampered by a deficit of robust and flexible 
technologies capable of translating lab-based results into 
unconstrained scenarios. Further, the large inter- and intra-subject 
variability of symptoms in PD patients presents as another 
obstacle in this scenario. 
Machine-machine interaction remains also underdeveloped, 
necessitating more robust designs and implementations. Currently, 
multi-level and different sensor modalities do not interact with 

each other (e.g., ambient sensors do not communicate with body-
worn sensors). The potential benefits of combined machine-
machine interaction with the IoT platform include fall prevention 
and other interventions, which otherwise would be impossible to 
achieve without human supervision. 

4.3 Collaborations 
Cooperation is the core of the IoT platform and a fundamental 
piece of the lateralization of the new healthcare system. Hardware 
and software require designs towards integration of information, 
facilitating collaborative efforts. This demands open access 
frameworks and sharing benchmarking platforms. Human 
expertise within multidisciplinary teams is critical to integrate not 
only the research and medical community, but also patients and 
family members.  Even though this process has begun, there is 
still much work to do toward an integrative management in 
Parkinson’s disease. 

5. CONLUSIONS 
A new approach to healthcare delivery in Parkinson’s disease is 
emerging to respond to the intense demands and needs of a larger 
and older elderly population. Wearable technology and the new 
technological platform of the Internet of Things are shaping this 
transition from a centralized structure to a more lateraled-
distributed healthcare architecture. Engaging patients in the 
management of their own disease represents a key aspect of this 
transition. 
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