Low-cost Gaze and Pulse Analysis using RealSense

Qiang Qiu
Duke University
Durham, NC 27707

Zhuoqing Chang
Duke University
Durham, NC 27707

Mark Draelos
Duke University
Durham, NC 27707

Jie Chen
University of Oulu, Finland

Alex Bronstein
Durham, NC 27707

Guillermo Sapiro
Duke University
Durham, NC 27707

ABSTRACT

Intel's newly-announced low-cost and high precision RealSense 3D (RGBD) camera is becoming ubiquitous in laptops and mobile devices starting this year, opening the door for new applications in the mobile health arena. In this paper, we demonstrate how the Intel RealSense 3D camera can be used for low-cost gaze tracking and passive pulse rate estimation. We develop a novel 3D gaze and fixation tracker based on the eye surface geometry as well as an illumination invariant pulse rate estimation method using near-infrared images captured with RealSense. We achieve a mean error of 1 cm

−
captured with RealSense. We achieve a mean error of 1 cm

−
captured with RealSense. We achieve a mean error of 1 cm

−
captured with RealSense. We achieve a mean error of 1 cm

−captured with RealSense. We achieve a mean error of 1 cm

ant pulse rate estimation method using near-infrared images

for low-cost gaze tracking and passive pulse rate estimation. We develop a novel 3D gaze and fixation tracker based on the eye surface geometry as well as an illumination invariant pulse rate estimation method using near-infrared images captured with RealSense. We achieve a mean error of 1 cm

for gaze tracking.

and known to have added very little cost, if at all, to current

devices. The cyclical movement of blood from the heart to the head via the abdominal aorta

color to vary in a periodic way. However, those methods are

known extremely sensitive to illumination variations. After all, given the numerous factors causing skin color fluctua-
tions, changes from the cardiac pulse is subtle.

In this paper, we focus on low-cost, scalable and real-time analysis of human gaze and pulse for unique medical diagnosis applications, using Intel's newly-announced low-cost RealSense 3D (RGBD) camera. We thereby demonstrate that such devices provide an integrated (RGB, depth, and infrared) very low-cost sensor with critical health applications.1 We first present a real-time gaze tracker from point clouds of the eye's scleral and iris surfaces acquired with RealSense. Unlike related techniques that employ 3D data in preprocessing steps [7, 8], require multiple camera units [7], or infer eye geometry from 2D images [9], we propose to exploit direct measurement of eye surface geometry captured by the RGBD camera. RealSense cameras infer depth information from a latent near-infrared (NIR) channel. We then experimentally demonstrate that pulse can be reliably estimated from faces in these near-infrared images. Such observation enables illumination-invariant passive heart rate estimation, and significantly extends its usage to low-light applications. The proposed framework for the measuring of critical health and medical signs is advantageous due to infrared structured illumination cameras' affordability, increasing availability, small form factor, low power consumption, and performance under low-light conditions.

1While the exact production cost of the sensor is not public, is known to be in the order of low tens of dollars ($10-20), and known to have added very little cost, if at all, to current
devices.

1. INTRODUCTION

Gaze provides a wealth of information for human-computer interaction, particularly as an indicator of attention in medical diagnosis (e.g., autism screening [1, 2] and child emotion studies [3]). In such applications, detecting gaze to a computer monitor region (e.g., a quadrant of it), on-screen window, or body part is all that is needed. Those applications are often available only in lab settings using expensive equipments like Tobii eye trackers [4]. Heart rate (pulse) is a critical vital sign to assess the physiological state of a subject. In many applications, it is preferred or even required to measure the heart rate, e.g., of a patient, in a passive and remote manner. Recent studies validated the concept of detecting pulse passively from face color variation in a video [5, 6]. The cyclical movement of blood from the heart to the head via the abdominal aorta and the carotid arteries causes the head to move or face

2. METHODS

2.1 Gaze Tracking

Eye surface geometry is defined by the approximately spherical scleral and corneal surfaces, as illustrated in Figure 1a. When imaging the human eye, however, infrared structured illumination in depth cameras produce sclera and iris point clouds only because the cornea itself is transparent (Fig-
ure 1b). The iris point cloud is of interest due to its geometrical relationship with the eye's optical axis or gaze, which

is the line passing through the fovea center and the pupil's center. Notably, the iris is a shallow cone that surrounds the pupil and is oriented perpendicularly to the optical axis [11]. Thus, we propose a non-ellipsoidal eye surface model. If approximated as planar, the iris normal vector is parallel to the optical axis and consequently parallel to the eye's gaze. Therefore, the iris point cloud and the pupil center

Copyright © 2015 ICST
DOI 10.4108/eai.14-10-2015.2261657

MOBIHEALTH 2015, October 14-16, London, Great Britain
in 3D space provide sufficient information to estimate gaze. We then develop and experiment a 3D fixation tracker that estimates the binocular fixation point on a known target surface, e.g., a computer screen or a car window, using simultaneous intersecting gaze estimates from corresponding left and right eyes.

Our gaze tracker consists of infrared segmentation and point cloud fitting. Pupil detection exploits poor reflection of (near) infrared illumination (860 nm as used in RealSense) back through the pupil, which produces a dark pupil in the infrared images. Given an infrared eye image, pupil detection identifies as the pupil the largest dark blob through thresholding and connected-components analysis (Figure 1c). Iris segmentation (Figure 1d) exploits the pupil-iris topographic relationship to expand the pupil region to include the iris using active contours [12]. Despite correspondence between a given infrared image and its derived point cloud, mapping the 2D pupil center image coordinates into the point cloud is nontrivial due to relatively poor infrared reflectivity through the pupil. Consequently, the pupil region in the point cloud is frequently filled with invalid or distorted depth values as shown in Figure 2a. Plane-based pupil mapping, Figure 2b, rejects the influence of distorted points, and constructs a non-ellipsoidal 3D eye surface model.

Binocular fixation (of both eyes) provides a convenient internal constraint during gaze estimation to further improve monocular (independent) gaze estimates. In applications involving devices such as laptops and tablets, requiring that the fixation estimate lie on a surface further constrains gaze estimation. Consequently, the fixation target estimation, Figure 2c, uses the pupil center and fixation target search spaces to estimate the binocular fixation target, which is the point where the optical axes of both eyes intersect. This non-limiting constraint further improves gaze estimation. Finally, a bias field correction (computed only once) offsets the raw fixation estimates to compensate for target surface and depth camera coordinate system variations and calibration inaccuracies; Figure 3. This illustrates that the proposed approach can address the type of inaccuracies expected in commercial products and consumer scenarios that are not necessarily considered in professional laboratory devices such as Tobii high-end eye-trackers.

2.2 Pulse Rate Estimation

From the infrared and depth images, face detection and landmark tracking is performed to segment the cheek area of the face after which the average intensity is computed. A global self-similarity (GSS) filter and several temporal filters [5] are applied before computing the pulse frequency.

The Viola-Jones face detector [13] combined with a supervised decent method [14] is used to track facial landmarks in the infrared image (Fig. 4a). Next the connected components of the depth image are computed (Fig. 4b). The landmarks are then mapped from the infrared image to the depth image and the connected component, excluding background, containing the majority of facial landmarks is determined to be the face (Fig. 4c). Morphological operations such as erosion and hole filling are then performed on this region before using it as a mask to segment the face region in the IR image (Fig. 4d). Using the landmarks, the cheek is then extracted be selecting the area beneath the eyes and above the mouth (Fig. 4e). The temporal data from this region, averaged, is used for further analysis. Note that the 3D information is beneficial in tracking and detecting the region of interest for the IR measurements.

In the next step, Figure 5, a global self-similarity filter [15] is used to denoise the signal. Next, temporal filters [6] are applied. Firstly, a detrending filter [16] is used to reduce slow and non-stationary trends of the signal. A second moving-average filter is then applied to remove random noise. Lastly, a Hamming window based finite impulse response bandpass filter with cutoff frequency of [0.7, 4] Hz is used to exclude frequencies outside the [0.7, 4] Hz range, which corresponds to 42 to 240 bpm. After filtering, the pulse signal is converted to the frequency domain using FFT and its power spectral density distribution is estimated using Welch’s method [17]. The frequency with the maximal power response is assumed to be the pulse frequency f_p, and the average pulse rate measured from the input video is computed as

$$P_{\text{video}} = 60 f_p.$$

3. EXPERIMENTAL RESULTS

For testing the gaze tracking framework, corresponding infrared and depth images were taken at random fixation target positions in sets of ten images. In Fig. 3, half of the dataset at each target was used for bias field training, and the remaining half was used as the test dataset. Final fixation estimates are shown for the test dataset. For purposes of illustration, four target locations are depicted from the captured dataset. Table 1 lists the associated mean and standard deviation of error for the x and y directions and the on-screen displacement. The accuracy is more than sufficient for multiple tasks, e.g., child mental health tests (where pictures on the left or the right of the screen need to be selected, e.g., in autism or anxiety studies), and active-window selection in human computer interaction.

For testing the pulse framework, a dataset consisting of ten
Plane-based pupil mapping.

Joint binocular fixation estimation.

Final fixation estimates

Figure 2: Point cloud fitting in gaze estimation. (a) Eye point cloud surface colored with infrared image showing distorted position near the pupil (blue arrow) and gaps within the pupil (red arrows). (b) Best-fit plane (red) and pupil mapping (blue) for iris region point cloud surface. (c) Example point cloud depicting initial gaze estimates (blue) based on iris plane normals without the fixation constraint and the fixation estimate (red) on the target surface (black).

(a) Pupil distortion in point clouds.
(b) Plane-based pupil mapping.
(c) Joint binocular fixation estimation.

Figure 3: Fixation estimates at four example positions on the computer screen. (a) Bias field correction (computed only once) offsets raw fixation estimates compensating system inaccuracies. This provides an example of the importance of adjusting for challenges common in consumer scenarios. (b) Raw fixation estimates (+) and targets (o) colored by target. While precise estimations for important task is already obtained, this can be further improved. (c) Fixation estimates corrected with bias field; showing the high accuracy obtained with the RealSense low-cost RGBD camera. Sub-cm accuracy is obtained.

(a) Bias field.
(b) Raw fixation estimates
(c) Final fixation estimates

Table 1: Mean and standard deviation of average pulse rate error for various methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>(M_e) (SDe) (bpm)</th>
<th>RMSE (bpm)</th>
<th>(M_{eRate}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poh</td>
<td>-8.40 (27.98)</td>
<td>15.04</td>
<td>22.59</td>
</tr>
<tr>
<td>Balakrishnan</td>
<td>-5.91 (17.95)</td>
<td>10.33</td>
<td>15.07</td>
</tr>
<tr>
<td>Li</td>
<td>-1.45 (7.99)</td>
<td>4.56</td>
<td>6.32</td>
</tr>
<tr>
<td>Ours</td>
<td>2.26 (6.54)</td>
<td>3.66</td>
<td>5.34</td>
</tr>
</tbody>
</table>

5. ACKNOWLEDGMENTS

Work partially supported by NSF and DoD. Jie Chen was supported by University of Oulu, and the work was done while this author was visiting Duke University.

6. REFERENCES

Figure 4: Cheek region segmentation using infrared and depth image. (a) Facial landmarks tracked on infrared image. (b) Connected components in depth image. (c) The connected component containing the most landmarks is selected as the face. (d) Face region in infrared image. (e) Cheek area is selected as the region between the eyes and mouth landmarks.

Figure 5: Pulse rate measurements for cheek region in infrared image. (a) Infrared intensity. (b) GSS filtering. (c) Detrending. (d) Normalization. (e) Moving average filtering. (f) Band pass filtering. (g) FFT.

