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ABSTRACT

Heart murmurs have been found to be a life threatening
condition for the newborns who are born with cardiac ab-
normalities. The first sign of pathological changes of heart
valves appear in phonocardiogram (PCG) which contains
very useful information about cardiovascular system. It is
a challenging venture to distinguish pathological murmurs
from innocent ones. In this paper, we have developed a di-
agnostic algorithm called PhonoSys to analyze PCG using
random forest. PhonoSys algorithm will run on mobile de-
vices for remote PCG analysis. We recorded PCG signals
from 120 newborns who are either healthy or with cardiac
abnormalities. Eventually, in this study, 97.6% accuracy,
96.8% sensitivity, and 98.4% specificity were obtained to
classify between innocent and pathological murmurs.
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1. INTRODUCTION

Heart murmur have been reported in 0.3-77.4% of new-
borns, with prevalence dependent on several factors, inno-
cent or pathological. S. B. Ainsworth et al published study
of heart murmurs in 1999, which indicates 46% has innocent
murmurs and 54% of newborns with murmurs are underling
pathological case [1].

PCG contains very important information of cardiovascu-
lar system which is widely used by physicians to evaluate
cardiac functions in patients and detect the presence of ab-
normalities. PCG is produced by vibrations of heart and
blood circulation which creates two major sounds (S1 and
S2) and heart murmurs. A murmur that caused by contract-
ing of the heart muscle is called systolic murmur which is
located between S1 and S2. A murmur that occurs when the
heart muscle relaxes between beats is called a diastolic mur-
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mur which is located between S2 and S1. Nowadays signals
produced by the heart are not only heard using a stetho-
scope but also observed as PCG on a screen (see figure 1).

s2

Systolic Diastolic
murmur murmur

: wl(u }j\mm ;’NVWWW} /!J\"AM]‘ T

Figure 1: Sample of two-cycle PCG, where compo-
nents S1, S2 and heart murmurs are highlighted.

Newborns often have heart murmurs that mostly originate
from normal flow patterns with no structural or anatomic
abnormalities of the heart or vessels. The type-I of mur-
mur referred to as innocent, physiological or normal mur-
murs. For instance the most common cause of murmur in
newborns is when a specific condition called patent ductus
arteriosus (PDA) occurs; it is often detected shortly after
birth, most commonly in premature newborns [7]. PDA is
a potentially serious condition in which blood circulates ab-
normally between two of the major arteries near the heart,
due to the failure of a blood vessel between these arteries to
properly close. In most cases, the only symptom of PDA is
a heart murmur until the ductus closes on its own shortly
after birth [3]. If the murmur is still present at 2 weeks,
there is a possibility of murmur type-II and paediatrician
may refer newborn to the cardiologist.

The second type of murmurs are caused by a problem in
structure of the heart and is called pathological or abnor-
mal heart murmurs. A problem with the structure of the
heart that is present at birth is called Congenital Heart De-
fect (CHD) [12]. CHDs are the most common type of birth
defect.

Some babies born with a CHD can appear healthy at first
and can be sent home with their family before their heart
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defect is treated or needs a regular health care. CHDs affect
approximately 1 in 125 live births [10] . Of these, 30% have
extra-cardiac anomalies (such as tracheoesophageal fistula,
anorectal anomalies), which might require surgery within
the first year of life [13]. These babies are at risk for having
serious problems within the first few days or weeks of life
and often require emergency care.

It is a challenging venture to distinguish pathological mur-
murs from innocent ones. In this paper we have developed a
diagnostic algorithm called PhonoSys to analyze PCG using
random forest.

2. RELATED WORK

The basic technique by S. Yuenyong [14], which reports
an automatic tele-auscultation system. Segmentation of the
heart sound is performed using ECG signal as reference.
Feature vector is constructed for each cardiac cycle by an-
alyzing the systole and diastole of each cycle by applying
discrete wavelet transform. Features were classified using
pattern recognition neural network.

W. Jin-gang [9] introduces a remote monitoring system
for PCG is constructed, which integrates embedded Internet
technology and wireless technology.

T. Chen [6] reports preliminary work performed on a gold
standard database and a cellphone platform. Results indi-
cate that HR and HRV can be accurately assessed from PCG
using only a cellphone and hands-free kit. Heart sound anal-
ysis software, which can run on a standard cellphone in real
time, has been developed that detects S1 heart sounds with a
sensitivity of 92.1% and a positive predictivity of 88.4%. But
there are a very few works that allow extracting patholog-
ical information from PCG. In this paper, we demonstrate
an approach to classify clinically-relevant, pathological data
from PCG on mobile devices.

3. METHODS

The PhonoSys algorithm consists of four major steps: (A)
Data acquisition; (B) Pre-processing; (C) Feature extraction
and (D) Classification (see figure 2 ).
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Figure 2: PhonoSys implementation scheme.

3.1 Data acquisition

PCG data has recorded by an electronic stethoscope which
was connected to a mobile, We recorded the PCG data from
120 newborns who were 1-20 old at Imam Ghaem Hospital,
Mashhad, Iran. All newborns were visited by a cardiolo-
gist who used echocardiography to label the PCG data with
information on murmur no murmur. The label for specify-

ing it that murmur is innocent or pathological. We received
consent of all parents.

3.2 Pre-processing

Data has recorded in many situations in hospital and

clinic that the signal is corrupted by different types of noise,
such as power line, electromyographic, respiration and mi-
crophone movement artifact, which can affect on PCG sig-
nals and the algorithm. The preprocessing stage improves
the classification accuracy of any algorithm; because, it gives
us more accurate features.
Figure 3 shows a spectrogram of PCG signal. Since the
main spectrum of PCG occurs within the range of 150 Hz,
the system filters the original PCG using a 3rd order band-
pass Butterworth filter, with cut-off frequencies at 50-200
Hz.

Frequence (kHz)
>
8

°
3
B

o
2

Ll
5 4

0.5 1 15 2 25 3 3.
Time(s)

Figure 3: PCG spectrogram.

The second step of preprocessing is segmentation. We
devised and implemented an algorithm aimed at identify-
ing S1 and S2 based on the timing between high-amplitude
components. To this end, we used the Gabor Wavelet for
peak detection (see [8]), which can be formally described as
follows:

U(t)=C e ™ e (1)

where e~ . e~ is the complex Gaussian function and C'is
a normalizing constant. The threshold was used to identify
the peaks. The threshold value was set to 0.1 for wavelet
scale coefficients (PCG components).
Latter step is zero-crossing which has used to find the spots
where peaks occur, the number of zero crossings per segment
being also an equivalent representation of the dominant com-
ponent of a signal segment. The algorithm calculates the
size of the intervals in which the value of the function is
zero (systolic and diastolic). Let us recall that systolic (S1-
S2) and diastolic (S2-S1) murmurs occur respectively in the
smaller and bigger time interval (see Figure 4).

After segmentation for detecting PCG components and
heart murmurs (systolic and diastolic murmurs), it is very
important to select a cycle instead of whole signal which can
reduce the number of data and the cost of computing. The
proposed algorithm to find best cycle is based on which cy-
cle shows more signs of heart disease —as detecting the most
informative cycle can optimize the performance of the clas-
sification process. For each patient, recorded data include
several cardiac cycles on a time span of few seconds. De-
spite the fact that filtering has been implemented to remove
noise, the residual noise may be part of the heart sound sig-
nal —such as respiratory sound, artifact noise or newborn
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Figure 4: PCG segmentation to detect systolic and
diastolic area; a) Raw signal, b) Complex Gaussian
Wavelet coefficients.

Table 1: The average coefficients of correlation be-
tween cycles.

Cl CQ 03 C14
(& 1 -0.15 | 0.13 | 0.16
Co -0.15 1 -0.99 | -0.51
Cs 0.13 | -0.99 1 0.85
Cy 0.16 | -0.51 | 0.85 1

>C;, | 1.14 | -0.65 | 0.99 | 1.5

voices. Pearson’s Correlation Coefficient (PCC) has been
used to select the cycle with minimum noise and most prop-
erties of the whole signal. PCC between two signals X and
Y (cardiac cycles, in this context) is defined as follows:

o SSxy )
T /(55xx)(SSvy)

where:!

° SSXY:ZXY*%~ZX'ZY
Lo Xy
LSy

The Pearson correlation coefficient is calculated between
pairs of signals, each signal including several cycles. An
example of correlation is is shown in Table 3.2. The overall
correlation for each cardiac cycle C; ; is obtained through
the following formula:

1 J
re: = 3 > Ci ®3)

i#]

e SSxx :ZXQ—

e SSyy :ZYQ —

where n is the number of cardiac cycles. In the given exam-
ple C4 and C5 are selected as best and worst cycles according
to Equation (3) which means the cycle with minimum and
maximum noise (and hence with the most informative con-
tent for the whole signal).

3.3 Feature extraction

This phase is focused on extracting features of the signal
that better highlight characteristic properties of the PCG
1

n is number of data pairs for each sample; in this case 1500.

signal, with the goal of identifying those that are more suit-
able for the classification purpose. The features extraction
are proposed for two goals, heart murmurs detection and
diagnosis.

Different signal processing tools are used on smart-phone
or tablets for detecting heart murmurs. For instance, max-
imum and minimum value amplitude, total Absolute Area,
peak to peak time window and variance are some of these sig-
nal processing tools that are used on smart phone or tablet.
Based on our research a range value has defined for each
categorizes. The smart-phone display that the newborn has
heart murmurs or no. If yes, smart-phone send selected cycle
to cloud for future computing. Is that an innocent or patho-
logical murmur? The algorithm on smart-phone is defined
as:

e Recording or receiving PCG signals.

e Filtering for removing unwanted noises.

Segment signal into systolic and diastolic murmurs.

Data reduction by selecting the best cardiac cycle.

Features extraction to detect heart murmurs, Is there
any heart murmurs?

1. Yes, Send selected cardiac cycle for heart mur-
murs diagnosis (innocent or pathological murmur)

2. No, display data as normal and without heart
murmurs

The latter step was aimed at, extracting features accord-
ing to distinguish between innocent and pathological mur-
murs. Features are extracted on the basis of signal infor-
mation in alternative domains, such as time, frequency, or
time-frequency domains. The features with respect to the
templates were Shannon Energy, Bispectrum, Wigner Dis-
tribution and Wigner Bispectrum [2].

3.4 Classification

A novel application of random forest for clinical and phys-

iological data in monitoring and remote diagnosis is pre-
sented in this work.
The random forest methodology, developed by Leo Breiman
[5] in 2001 . Random forest has been proved an excellent
performance in classification tasks which is a general class
of ensemble building methods using a decision tree as the
base classifier [11]. Random forest is an ensemble learning
algorithm that composed of a collection of individual tree-
structured classifiers, and the output is based on majority
vote among the random tree classifiers (see figure 5).

The learning algorithm choose their splitting features from

a random subset of k features at each internal node. Ran-
domness is injected into each tree in two ways, the utilize
of bootstrapping to sample from the original dataset or by
growing each tree on different random subsamples and de-
termining splitter partly at random [6, 4].
In the each decision tree for predicting heart murmurs, we
start at the top of the tree and follow different branches,
depending on conditions involving the predictor variables.
Once we arrive at an end-point of the tree, we used 50
trees and variables classified in two classes (O=innocent and
1=pathological murmurs).
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Figure 5: Structure of the random forest classifier.

4. EXPERIMENTS AND RESULTS

The likelihood ratio (LR) is calculated to archiving sensi-
tivity and specificity on a random forest, define into positive
and negative ratio as follows:

sensitivity

. 1 —sensitivity
" 1 — specificity’

R— = 2SIy

LR
+ speci ficity

Likelihood ratio positive is the probability for a newborn

that has pathological murmur of being classified as unhealthy,
divided by the probability for a newborn that given test re-
sult would be expected as healthy.
Likelihood ratio negative is the probability for a newborn
that has innocent murmur of being classified as healthy, di-
vided by the probability for a newborn that given test result
would be expected as unhealthy.

Table 2 in the form of a confusion matrix presents the
results for real-time classification of PCG data with accu-
racy percentage. Experiments have been performed on a
balanced set of 120 samples (meaning that the number of
samples was the same for innocent and pathological mur-
murs).

Table 2: Classification result of heart murmurs in
newborns.

Innocent | Pathological | Correct%
Innocent 59 (98.4%) 1 (1.6%) 98.4%
Pathological 2 (3.2%) 58 (96.8%) | 96.8%
Average/Overall 120 97.6%

It can be seen that out of 60 PCG signal with innocent
murmur, 59 were recognized as healthy and 1.6% were not
recognized. Similarly, out of 60 PCG signal with pathologi-
cal murmur, 58 were recognized as pathological and 2 were
not recognized. Overall sensitivity for pathological murmur
was 96.8% with a specificity of 98.4%.

5. CONCLUSION

PhonoSys is an mHealth system for monitoring and re-
mote diagnosis of heart murmurs using PCG signal. We pro-
vided an implementation of algorithm framework for moni-
toring PCG signal and a remote diagnosis of heart murmurs
on mobile devices. This methods includes novelties in both,
reducing amount of data by selecting best cycle, and apply-
ing random forest algorithm. The diagnostic system shows a
high fidelity to distinguishing between innocent and patho-
logical murmurs. The proposed system will aid physicians

in remote monitoring and diagnosis of patients using mobile
device and/or wearable sensors.
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