About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Bio-Inspired Models of Network, Information, and Computing Systems. 5th International ICST Conference, BIONETICS 2010, Boston, USA, December 1-3, 2010, Revised Selected Papers

Research Article

Evolutionary and Noise-Aware Data Gathering for Wireless Sensor Networks

Download(Requires a free EAI acccount)
641 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-642-32615-8_5,
        author={Bingchun Zhu and Junichi Suzuki and Pruet Boonma},
        title={Evolutionary and Noise-Aware Data Gathering for Wireless Sensor Networks},
        proceedings={Bio-Inspired Models of Network, Information, and Computing Systems. 5th International ICST Conference, BIONETICS 2010, Boston, USA, December 1-3, 2010, Revised Selected Papers},
        proceedings_a={BIONETICS},
        year={2012},
        month={10},
        keywords={Wireless sensor networks Data gathering protocol Noisy multiobjective optimization problem Genetic algorithm},
        doi={10.1007/978-3-642-32615-8_5}
    }
    
  • Bingchun Zhu
    Junichi Suzuki
    Pruet Boonma
    Year: 2012
    Evolutionary and Noise-Aware Data Gathering for Wireless Sensor Networks
    BIONETICS
    Springer
    DOI: 10.1007/978-3-642-32615-8_5
Bingchun Zhu1,*, Junichi Suzuki1,*, Pruet Boonma2,*
  • 1: University of Massachusetts
  • 2: Chiang Mai University
*Contact email: numchun@cs.umb.edu, jxs@cs.umb.edu, pruet@eng.cmu.ac.th

Abstract

This paper formulates a prioritized data gathering problem in noisy wireless sensor networks (WSNs) and solves the problem with a noise-aware evolutionary multiobjective optimization algorithm (EMOA). Unlike existing local search heuristics, the proposed algorithm can seek the Pareto-optimal routing structures with respect to conflicting optimization objectives. Simulation results demonstrate that the proposed algorithm outperforms a traditional EMOA in a noisy WSN.

Keywords
Wireless sensor networks Data gathering protocol Noisy multiobjective optimization problem Genetic algorithm
Published
2012-10-18
http://dx.doi.org/10.1007/978-3-642-32615-8_5
Copyright © 2010–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL