About | Contact Us | Register | Login
ProceedingsSeriesJournalsSearchEAI
Bio-Inspired Models of Network, Information, and Computing Systems. 5th International ICST Conference, BIONETICS 2010, Boston, USA, December 1-3, 2010, Revised Selected Papers

Research Article

An Algorithm for Automatically Discovering Dynamical Rules of Adaptive Network Evolution from Empirical Data

Download(Requires a free EAI acccount)
460 downloads
Cite
BibTeX Plain Text
  • @INPROCEEDINGS{10.1007/978-3-642-32615-8_47,
        author={Hiroki Sayama},
        title={An Algorithm for Automatically Discovering Dynamical Rules of Adaptive Network Evolution from Empirical Data},
        proceedings={Bio-Inspired Models of Network, Information, and Computing Systems. 5th International ICST Conference, BIONETICS 2010, Boston, USA, December 1-3, 2010, Revised Selected Papers},
        proceedings_a={BIONETICS},
        year={2012},
        month={10},
        keywords={Adaptive networks automatic rule discovery graph rewriting systems generative network automata algorithm},
        doi={10.1007/978-3-642-32615-8_47}
    }
    
  • Hiroki Sayama
    Year: 2012
    An Algorithm for Automatically Discovering Dynamical Rules of Adaptive Network Evolution from Empirical Data
    BIONETICS
    Springer
    DOI: 10.1007/978-3-642-32615-8_47
Hiroki Sayama1,*
  • 1: Binghamton University, State University of New York
*Contact email: sayama@binghamton.edu

Abstract

An algorithm is proposed for automatic discovery of a set of dynamical rules that best captures both state transition and topological transformation in the empirical data showing time evolution of adaptive networks. Graph rewriting systems are used as the basic model framework to represent state transition and topological transformation simultaneously. Network evolution is formulated in two phases: extraction and replacement of subnetworks. For each phase, multiple methods of rule discovery are proposed and will be explored. This paper reports the basic architecture of the algorithm, as well as its implementation and evaluation plan.

Keywords
Adaptive networks automatic rule discovery graph rewriting systems generative network automata algorithm
Published
2012-10-18
http://dx.doi.org/10.1007/978-3-642-32615-8_47
Copyright © 2010–2025 ICST
EBSCOProQuestDBLPDOAJPortico
EAI Logo

About EAI

  • Who We Are
  • Leadership
  • Research Areas
  • Partners
  • Media Center

Community

  • Membership
  • Conference
  • Recognition
  • Sponsor Us

Publish with EAI

  • Publishing
  • Journals
  • Proceedings
  • Books
  • EUDL