Research Article
Optimal Ranking for Video Recommendation
443 downloads
@INPROCEEDINGS{10.1007/978-3-642-12630-7_30, author={Zeno Gantner and Christoph Freudenthaler and Steffen Rendle and Lars Schmidt-Thieme}, title={Optimal Ranking for Video Recommendation}, proceedings={Personalization in Media Delivery Platforms}, proceedings_a={PERMED}, year={2012}, month={10}, keywords={}, doi={10.1007/978-3-642-12630-7_30} }
- Zeno Gantner
Christoph Freudenthaler
Steffen Rendle
Lars Schmidt-Thieme
Year: 2012
Optimal Ranking for Video Recommendation
PERMED
Springer
DOI: 10.1007/978-3-642-12630-7_30
Abstract
Item recommendation from implicit feedback is the task of predicting a personalized ranking on a set of items (e.g. movies, products, video clips) from user feedback like clicks or product purchases. We evaluate the performance of a matrix factorization model optimized for the new ranking criterion BPR-Opt on data from a BBC video web application. The experimental results indicate that our approach is superior to state-of-the-art models not directly optimized for personalized ranking.
Copyright © 2009–2024 ICST