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Abstract

The deployment of small cell networks is seen as a major feature of the next generation of wireless networks.

In this paper, a novel approach for cell association in small cell networks is proposed. The proposed approach

exploits new types of information extracted from the users’ devices and environment to improve the way

in which users are assigned to their serving base stations. Examples of such context information include the

devices’ screen size and the users’ trajectory. The problem is formulated as a matching game with externalities

and a new, distributed algorithm is proposed to solve this game. The proposed algorithm is shown to reach

a stable matching whose properties are studied. Simulation results show that the proposed context-aware

matching approach yields significant performance gains, in terms of the average utility per user, when

compared with a classical max-SINR approach.
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1. Introduction

Owing to the introduction of smartphones, tablets,

and bandwidth-intensive wireless applications, the

demand for the scarce radio spectrum has significantly

increased in the past decade [1]. The concept of small

cell networks (SCNs) is seen as a cost-effective and

promising approach to cope with such an increasing

demand. Indeed, the dense deployment of small cells,

powered by low power, low cost base stations (BSs),

is seen as a promising technique to improve the

coverage and capacity of wireless cellular systems

[2-4]. However, due to the presence of different
categories of cells with diverse power, capacity, and

range, the introduction of such heterogeneous SCNs

leads to many technical challenges such as resource

allocation, network modeling, interference mitigation,

and network economics [5].

One important challenge in SCNs is that of cell

association and handover [6]. Indeed, developing

approaches to assign mobile users to their preferred

small cell while also handling prospective handovers

is necessary to achieve efficient SCN operation. Due

to the diversity of coverage-range of the cells in

SCNs, applying traditional approaches for user-cell

association (UCA) in an SCN can lead to undesirable

network performance and possibly increased handover

failures [7].

In [7], a user association algorithm based on traffic

transfer is introduced which aims at pushing the

users onto the more lightly loaded cells in order

to improve load balancing in small cell networks.

This is achieved by proposing a novel sub-optimal

solution for optimizing the long-term rate that each

user experiences. The authors in [8] propose a novel

UCA strategy by joint optimization of channel selection

and power control for the purpose of minimizing the

delay. The authors use an approach that is related to

the sum of per-user SINR. The work in [9] proposes

a flexible UCA method which aims at reducing the

outage probability of the network. This is done by

analyzing the received SINR form each tier, when the

tiers are distributed randomly according to Poisson

process. A new approach for UCA in the downlink of

small cell networks is introduced in [10] for increasing

the minimum average users’ throughput which is based

on an iterative algorithm that exploits the feedback

information of the users. The authors in [11] and

[12] proposed a load-aware cell association strategy

which, by adjusting the transmit power, dynamically

modifies the coverage area of the cells depending on

their current load. This approach aims at balancing the

load over neighboring macrocells. However, in small

cell networks, one must balance the load over the

various network tiers. A simple approach for user-

cell association in small cell networks is proposed in

[13]. In this approach, the authors use biasing factors

for the transmit power of different tiers and attempt

to distribute the traffic among the cells more fairly.
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Strategies based on channel borrowing from lightly-

loaded cells are studied in [14-16]. In these works,

some resources of lightly-loaded cells will temporarily

be used for servicing the users in a neighboring

cell. However such channel-borrowing strategies have

been proposed for cell association in macrocell-only

networks and are not effective in small cell networks.

Other related works can be found in [17-20].

Most of this existing literature assumes that the

network makes resource allocation and cell association

decisions based solely on physical layer parameters.

Indeed, the current state-of-the-art often ignores

the fact that the users can have different mobility

patterns and diverse quality-of-service (QoS) demands.

However, an effective and optimum UCA approach

must be able to distinguish the individual properties

of the users and, thus, be able to prioritize them based

on their traffic type (i.e. urgent real-time traffic and

delay tolerant traffic), QoS demands, and trajectory.

For instance, a fast-moving user that is using a video

application should be treated differently from a semi-

static user who is downloading a file. Here, the QoS

of the first user could be dramatically impeded by the

slightest of delays, while the latter is relatively delay

tolerant. We refer to such additional information about

the users or the network as context information.
Thus, our main goal is to introduce a self-organizing

approach for cell association in small cell networks,

using which users and the network’s cells can interact

to decide on their preferred UCA in a way to optimize

the overall network QoS. In particular, we propose

a load-ware, application-aware approach for UCA

which accounts for a plethora of context information

including user mobility. Indeed, by exploiting context

information from different network layers, we can

develop a more efficient cell-association strategy which

can lead to an improved network performance.

The main contribution of this paper is to introduce

a novel context-aware UCA approach which employs

useful information from different features of the

network in order to optimize the network-wide QoS.

In our proposed model, we explore a combination

of several context information which, to best of our

knowledge, have not been used by any other work for

user association in small cells: trajectory and speed of

the users, cells’ load, quality of service requirements of

the users, and the hardware specification of the user

equipments. We show that by utilizing the mentioned

combination of context information, the network can

better decide on which user should be assigned to which

cell. We model the UCA problem as a many-to-one

matching game with externalies. To do so, we introduce

novel and well-defined utility functions to capture

the preferences of the users and cells. To solve the

proposed matching game, we propose a novel iterative

algorithm that converges to a stable matching between

Figure 1. Users’ mobility scenario in consideration

the set of users and the set of the network’s cells.

Simulation results show that the proposed matching-

based approach yields considerable QoS improvement

relative to classical, context-unaware UCA approaches.

The results also show that the proposed algorithm

converges in a reasonable number of iterations.

The rest of this paper is organized as follows: The

system model is presented in Section 2. In Section

3, we formulate the user assignment problem in the

framework of matching game with externalities and

propose a novel algorithm to solve it. The performance

of the proposed algorithm is assessed via simulations in

the Section 4, and, finally, the conclusions are drawn in

Section 5.

2. System Model

Consider the downlink of a two-tier wireless small cell

network consisting of macrocells and picocells. Let M,

P , and N denote the set of M macrocells, the set of P
picocells, and the set ofN users, respectively. Each small

cell can serve a quota of up to q users simultaneously.

We assume a wireless channel having slow multipath

fading. Users are moving at low speeds and request

service from the different small cells that they meet

during their travel in the network. Figure 1 shows a

typical small cell network in which the users aremobile.

As shown in Figure 1, the communication sessions

should be handed over between the neighboring cells.

Each user in the network has its own performance

indicators such as the urgency of data, and the QoS

demand which depends on the hardware specification

of a user’s device and the application type. Thus, as a

first step toward developing the proposed model, we

will explicitly discuss all the user context information

that will be accounted for.

Screen Size: The screen size of the user equipment

will affect the QoS perception of the user, especially for
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video-oriented applications. Indeed, user equipments

with large screens have more sensitive QoS perception

to a video’s resolution than the smaller user equip-

ments. We capture the impact of the screen size of

each user i ∈ N using a parameter Li that reflects the

diameter length of each user’s device. Devices with

bigger screen size, are capable of showing the pictures

with higher resolution which requires greater amount

of network resources. Therefore, to satisfy the QoS

demand of the devices with higher Li , such as laptops

or tablets, the network should allocate more resources

to them relative to the smaller equipments such as

smartphones.

Data Urgency: The resource requirements of the

users naturally depend on their traffic patterns and

application requirements. For example, the QoS of a

live video streaming vitally depends on the delivery

time since a small amount of delay could decrease

the QoS dramatically. In contrast, the download of an

Internet file may not be too susceptible to delay. By

prioritizing the users based on their QoS needs, we are

able to improve the average QoS for the users while also

distributing the traffic among the cells more reasonably.

The QoS that each user experiences depends on the

urgency of the user’s data. Hence, we consider the QoS

to be a function of delivery-time t. Naturally, for highly

urgent data, the QoS will decrease more drastically as

time elapses. Some suggestions to quantitatively model

such behavior are presented in [21]. Consequently, for

any user i ∈ N , the QoS that reflects the data urgency

can be given by:

Qi (t) =
1

1 + et−τi , (1)

where τi is a parameter that reflects the urgency of

the data. A smaller τi implies a more urgent data. This

function shows that, within an interval of 2τi , the QoS

drops to approximately e−τi times of its initial value.

This implies that only delivering the data before τi
could be acceptable, and after that, the QoS becomes

relatively small.

Handover Process: Due to the mobility of the users,

the active communication sessions must be handed over

between the cells. Figure 1 shows the handover scenario

in consideration. A handover (HO) process cannot occur

immediately when a user enters to the boundary of the

cell as it requires some initial preparation time. Prior

to that, no data could be handed over between two

neighboring cells. To guarantee the connection of the

users to the cells, the network must avoid risky HOs

that could potentially incur a signal loss or erroneous

communication. A handover failure occurs when the

received signal to noise and interference ratio (SINR)

drops under a certain threshold [19]. Therefore, one

can use received SINR to determine the handover-

failure circles. In particular, we will use the typical

Figure 2. The handover failure and coverage regions

value of -6 dB as the threshold of the received SINR

for the handover-failure circle [20]. Here, we study

the probability of handover failure (HF) considering

the users’ speed and trajectory. It is assumed that all

cells are equipped with omnidirectional antennas. We

assume a circular coverage area for tractability. We note

that the matching approach presented in Section 3 can

easily accommodate other forms of coverage areas and

mobility models.

In a two-tier network, one must consider two

handover types: 1) from macrocell to picocell and,

2) from picocell to picocell. Assume that a user that

has previously been served by a macrocell enters a

picocell submits a request for handover. When user

i ∈ N enters a picocell j ∈ P , the total possible time of

interaction between the user and the picocell, t
ij
T , could

be computed as:

t
ij
T =

2Rjcos(θi )

Vi
, (2)

where Rj represents the radius of the coverage area,

and θi is the angle of the user’s direction with respect

to the imaginary line connecting it to the center of

the cell as shown in Figure 2. Vi is the user’s average

speed. Indeed, the numerator of (2) represents the

length of the chord of the coverage circle that the user

takes when it passes through the coverage area of the

cell. Hereinafter, we assume that Vi is small enough

that channel conditions remains constant during the

handover and that the users have low to medium
mobility. A successful HO process necessitates a certain

preparation time of duration Tp before it could be

initiated. Thus, based on the values of t
ij
T and Tp , we

distinguish two different scenarios: 1) If t
ij
T > Tp , the

user is considered as a candidate to be served; 2) If

t
ij
T < Tp , the user is called a temporary guest and no HO

would be initiated.

The users enter the picocell at an arbitrary direction.

Therefore, θ is a random variable which is distributed

uniformly in (−π
2 ,

π
2 ). Assume D to be the length

of the chord that the user takes. The cumulative
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distribution function (CDF) of D, Pr(D < d), is equal to

2Pr(θ > cos−1
(
d
2R

)
). Therefore, given that θ has uniform

distribution, the probability density function (pdf) ofD,

fD(d), can be given by:

fD(d) =
1

πR
√
1 − d2

4R2

. (3)

A handover process fails when the user’s path

intersects with the handover failure (HF) circle. When

the path is the tangent of the HF circle (with the

radius r), D is equal to 2
√
R2 − r2. Therefore, when D ≥

2
√
R2 − r2, the user’s path intersects with the HF circle

and the handover fails. Using (3), the probability of HF

when a user enters frommacrocell to picocell (M2P) can

be derived as follows:

PrM2P
HF =

∫ 2R

2
√
R2−r2

fD(x)dx =
2

π
cos−1

(√
1 − (

r
R
)2
)
. (4)

(4) shows that the probability of a handover failure is a

function of r
R . Therefore,

r
R can be used as an indicator

of the handover reliability. For example, assume that a

handover could be initiated only if PrHF(
r
R ) ≤ 0.05; then

the next cell must hold this condition: r
R ≤ 0.08. If the

cell does not satisfy this condition, then, no handover

should be initiated. Indeed, he HO process becomes

more reliable as r becomes smaller relatively to R. The
ratio of r to R varies from cell to cell and therefore, the

different cells guarantee different levels of reliability

during the handover process.

Now, assume that a user exits from picocell j1 ∈ P and

enters to another neighboring picocell j2 ∈ P and sends

a request for data handover. The handover process

could be initiated once the user leaves j1. However, it

must be terminated before the user’s distance from j1
exceeds r ′1 > R1 and also before it enters the coverage of

picocell j2 to a distance of r2. LetO andO′ represent the
centers of j1 and j2 respectively. Thus, OO′ represents
the distance between the two picocell base stations. To

ensure a reliable and successful handover, only those

cells which satisfy the inequality R1 + r2 ≤ OO′ ≤ r ′1 +
R2, must be considered for the handover.

The speed of the users can vary between two

extremes Vmin and Vmax. In practice, as the small

cells often do not have all the information on the

mobility distribution, then, it would be reasonable to

assume that the users’ speed varies uniformly between

these two extents [24]. The probability of handover

failure when a user enters from picocell to another

picocell (P2P) can be computed by subtracting the

probability of successful handover from (1). For a

successful handover, two independent conditions must

be satisfied. First, the user should move slowly enough

so that the handover in the first cell could be triggered.

The probability of this event is given by Pr(V <
r ′1−R1

tm1
).

Second, the path of the user should be in such a way that

it does not intersect with the HF circle of the destination

cell. Therefore, given that users’ speed has a uniform

distribution, the probability of handover failure is given

by:

PrP2PHF = 1 −
r ′1−R1

Tp1
− Vmin

Vmax − Vmin

(
1 − 2

π
cos−1(

√
1 − (

r2
R2

)2)

)
.

(5)

Now, considering the defined context information, in

the next section, we formulate the UCA problem as a

context-aware many-to-one matching game.

3. Cell Association as a Matching Game with
Externalities

Originally introduced by Gale and Shapley in their

seminal work [25], matching games are seen as a

powerful and efficient framework to model conflicting

objectives between two sets of players. Players of each

set have a ranking, or preference, over the players in the

opposite set. These preferences capture the objectives

of players and the purpose of a matching game is to

match the players of these two sets according to their

preferences [26].

Among different types of matching games, the many-

to-one matching scenario is especially suitable for the

studied cell association problem because in this game,

several players of one set can be matched with a

single player of the other set. As an analogy to the

many-to-one matching game, in the cell association

problem several users can be assigned to a single cell.

Here, using the context information introduced in the

previous section, we can define proper utility functions

to capture the preferences of users and small cells. Once

this is done, the many-to-one matching model could

be employed to assign the users to the cells based on

each player’s individual preferences and goals. In other

words, using many-to-one matching games, we aim at

maximizing the utility functions of users and small cells

and thereby, optimizing the network-wide performance.

In the classical matching game introduced in [25-

27], it is assumed that the preferences of the players

are independent. However, this assumption does not

hold in our model since the QoS metrics of the

players are interdependent. In other words, as we can

see from (6) and (7), the prospective utilities of the

cells and users must depend on the current matching

which itself depends on the preferences of the players.

In such situations in which externalities affect the

preferences of the players, the many-to-one matching

game model with externalities is a promising approach

to study the problem [28], [29]. However, there is no

general solution for matching games with externalities
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as the general approach of Gale and Shapley cannot

be generalized to this case. Therefore, introducing a

novel approach which is tailored to specific nature of

the proposed game is required. Indeed, the unique

properties of our problem requires the introduction of

a novel solution to the matching game which is tailored

to the specific nature of the UCA problem.

Formally, the outcome of the UCA problem is a

matching between two sets N and P which is defined

as follows:

Definition 1. A matching μ is a function from N ∪ P to

2N∪P such that ∀n ∈ N and ∀p ∈ P : (i) μ(n) ∈ P ∪ ∅ and
|μ(n)| ≤ 1, (ii) μ(p) ∈ 2N and |μ(p)| ≤ qp , and (iii) μ(n) = p
if and only if n is in μ(p).

The users who are not assigned to any member of

P , will be assigned to the nearest macrocell. Members

of N and P must have strict, reflexive and transitive

preferences over the agents in the opposite set. In the

next subsections, exploiting the context information we

introduce some properly-defined utility functions to

effectively capture the preferences of each set.

3.1. Users’ Preferences

Each user seeks to maximize its QoS requirements.

Indeed, the users prefer those cells that are able to

provide a reasonable delay while also meeting the QoS

requirements as dictated by the application type and

the screen size of each user’s device. Users require a

target rate Ĉ that reflects the type of applications which

fits their screen size. Therefore, for each user i ∈ N
with screen size Li , we assign a target rate Ĉi (Li ) which

quantifies the QoS requirement of the user. Moreover,

the users seek to optimize their transmission rate which

depends on the received power and the interference

caused by neighboring small cells. Hence, those cells

that are less congested and have higher transmission

rate are prioritized by the users. In fact, the available

amount of resources in a cell depends on the number of

its current users, in such a way that the less congested

the cell is, the more resources could likely be available.

For each user i serviced by a small cell j , the utility

function can be given by:

Uuser
i (μ, j, Li ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ci−Ĉi (Li )

Ki
)αi − γi (qj −mj )

if Ĉi (Li ) ≤ Ci,

−λi

(
Ĉi (Li )−Ci

Ki

)βi − γi (qj −mj )

if Ĉi (Li ) > Ci ,

(6)

where qj is the quota of the small cell j , and mj is

the total number of users being served by it. Li is

the screen size of user i and Ĉi is the its target rate.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−10

−8

−6

−4

−2

0

2

4

6

8

10

Rate difference C − Ĉ
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Figure 3. Utility of the users with different screen size

Ci represents the received rate of the user i which is

equal to W log2(1 +
Pj cij∑

k�j Pkcik+σ
2 ), where Pj is the power

of small cell base station (SCBS) j , cij is the channel

coefficient between user i and SCBS j , σ2 is the power

of additive noise, andW is the bandwidth. γi is the cost
per unit traffic and αi , βi , λi and Ki are the coefficients

that shape the utility function.

Figure 3 shows an example of the utility of a user

for γ = 0. This illustrative example will show how each

user, having different screen size, can perceive the rate

gains. As we can see, for large-screen devices, such

as laptops, the utility of the users is very sensitive to

the received rate since a large screen allows users to

better discern the quality of the application being used

(e.g. video or multimedia). In contrast, the utility of

the users with small screen size is not too susceptible

to the received rate. Therefore, users on smartphones

will overweight low rates (with respect to the reference

Ĉ), since the quality might be perceived as good, even

though in reality it is below par. Moreover, because they

are not capable of showing the pictures with extremely

high resolution, receiving rates that are much higher

than the target rate cannot change the utility of users

with small screens significantly.

The value of mj depends on the current matching,

because it is the current matching that determines how

many users are assigned to a specific small cell. As a

result, the utility of each user is a function of current

matching μ, as shown in (6). The first term in (6)

captures the user’s natural objective to maximize its

transmission rate and the second term accounts for the

fact that the users seek to find lightly loaded small cells

to achieve more resources.

In fact, this utility function encourages the user to

select lightly loaded cells and consequently, helps to
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offload the heavily-loaded cells by pushing the users to

more lightly-loaded cells. Using (6), the users can rank

the SCBSs in their vicinity based on the defined utility.

3.2. Small Cells’ Preferences

The main goal of each small cell is to increase the

network-wide capacity by offloading traffic from the

macrocells while providing satisfactory QoS for the

users. To decrease the number of total handovers, the

small cells prefer the users which stay longer in the

cell. The possible interaction time between the user and

the cell depends on the speed and direction of the user.

Clearly, users with lower mobility and a trajectory close

to the cell’s diameter would stay longer in the cell. On

the other hand, to increase the network-wide QoS, the

small cells must prioritize users having more urgent

requests compared to those with less urgent ones.

By prioritizing the users coming from congested cells,

the small cells could offload the heavily-loaded cells. To

encourage the cells to prioritize the users coming from

congested cells, we assume that each user is carrying a

potential utility as a function of the pervious cell j ′ load,
f (

mj′
qj′ ). This utility depends on the current matching

which determines the number of users in neighboring

cells. We define the following utility that each SCBS

j ∈ P obtains by serving an acceptable UE i ∈ N :

USCBS
j

(
μ, i, mj ′ , qj ′

)
=

cos(θi )

Vi

[
1 + log

(
max(1, mj ′ )

qj ′

)]
1

τi
. (7)

The first term in (7) allows to prioritize the users

that stay longer in the cell. The second term accounts

for the offloading concept, and the third term is the

utility achieved by the SCBS j when serving a specific

application. This utility function is well matched with

the fact that a given small cell gains more utility by

giving service to the users that are moving slower,

having more urgent data, and coming from more

congested cells. Thus, by doing so, the network could

provide higher QoS and distribute the load more

effectively.
From (6) and (7), we can see that the utilities depend

on the current matching μ and consequently, the

preferences of the players are interdependent. Under

this condition, the preferences of players are not solely

based on individuals, but some externalities affect the

preferences and matching as well.

Definition 2. The preference relation 
i of the user i ∈
N over the set of matchings Ψ(N ,P ) is a function that

compare two matchings μ, μ′ ∈ Ψ such that:

μ

μ μ′ ⇔ Uuser
i (μ, j, Li ) > Uuser

i (μ′ , j, Li ).(8)

Table 1. Proposed Algorithm For The Matching Game

Input: context-aware utilities and the preferences of each set
Output: Stable matching between the users and SCBSs

Initializing: All the UEs are assigned to the nearest macro-BS

Stage I: Preference Lists Composition

• UEs and SCBSs exchange their context information

• UEs(SCBS) sort the set of acceptable candidate SCBSs(UEs) based on
their preference functions

Stage II: Matching Evaluation
while: μ(n+1) � μ(n)

• Update the utilities based on the current matching μ

• Construct the preference lists using preference relations 
i and 
j for
∀i ∈ N and ∀j ∈ P

• Each user i applies to its most preferred SCBS

• Each SCBS j accept the most preferred applicants up to its quota qj
and create a waiting list while rejecting the others

Repeat
• Each rejected user applies to its next preferred SCBS
• Each SCBS update its waiting list considering the new applicants

and the pervious awaiting applicants up to its quota
Until: all the users assigned to a waiting list

end

The preference relation for an SCBS j , 
j , is defined

similarly. Users and SCBSs rank the members of the

opposite set based on the defined preference relations.

Our purpose is to match the users to the small cells so

that the preferences of both side are satisfied as much

as possible; thereby the network-wide efficiency would

be optimized.

To solve a matching game, one suitable concept is

that of a stable matching. In a matching game with

externalities, stability has different definitions based on

the application. Here, we consider the following notion

of stability:

Definition 3. Amatching μ is blocked by the user-SCBS

pair (i,j) if μ(i) � j and if j 
i μ(i) and i 
j i
′ for some

i ′ ∈ μ(j). A many-to-one matching is stable if it is not

blocked by any user-SCBS pair.

In the next section, we propose an efficient algorithm

for solving the game that can find a stable matching

between users and small cells.

3.3. Proposed Algorithm

The deferred acceptance algorithm, introduced in [26],

is a well-known approach to solving the standard

matching games. However, in our game, the preferences

of the players as shown in (7) and (9), depend

on externalities through the entire matching, unlike

classical matching problems. Therefore, the classical

approaches such as deferred acceptance cannot be used

here because of the presence of externalities [28],[29].

To solve the formulated game, we propose a novel
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Table 2. Typical values of data rate for different devices

Device type Average screen size Typical Data rate

Laptop 17” 1000 kbps

Tablet 10” 600 kbps

Smartphone 4.5” 400 kbps

algorithm shown in Table I. Assume that all the users

are initially associated to the nearest macro base station

(MBS). Each user sends its profile information (V , α, τ)
to the neighboring SCBSs. Each SCBS, on the other side,

only keeps the users satisfying (8) and ranks them based

on their utilities (9). After ranking the acceptable UEs,

the SCBS sends to the currently waiting users its own

context information including its rate over load defined

in (6) and its corresponding coverage andHF circle radii

R and r.
Each user makes a ranking list of the available SCBSs

and applies to the most preferred one. The SCBSs rank

the applying users and keep the most preferred ones

up to their quota and reject the others. The users who

have been rejected in the former phase, would apply to

their next preferred SCBS and the SCBSs modify their

waiting list accordingly. This procedure continues until

all the users are assigned to a waiting list.

However, since the preferences depend on the current

matching μ, an iterative approach should be employed.

In each step, the utilities would be updated based on the

current matching. Once the utilities are updated, the

preference lists would be updated accordingly as well.

Therefore, in each iteration, a new temporal matching

arises and based on this matching, the interdependent

utilities are updated as well. The algorithm initiates the

next iteration based on the modified preferences. The

iterations will continue until two subsequent temporal

matchings are the same and algorithm converges.

The proposed algorithm will lead to a stable

matching when it converges, since by contradiction, the

“deferred acceptance” in Stage II would not converge if

the matching is not stable. Although a formal analytical

proof of convergence for the proposed algorithm is

difficult to derive, we make several observations that

can help in establishing such a convergence. First, we

note that in each iteration the “deferred acceptance”

method in Stage II yields a temporary matching

between the users and cells for any initial preferences

[25], [26]. Following each iteration, the preferences are

updated according to (5) and (6) which are functions of

three main variables: the topology and speed of users,

the channel conditions, and the current matching.

Second, in view of the fact that users have low

mobility and experience a wireless channel with slow

fading, we can assume that the network’s topology and

channel conditions remain almost constant during an

algorithm run. As a result, we can conclude that in each

iteration the preferences are updated solely based on

the current temporary matching. Therefore, since there

is only a finite number of possible matchings between

the users and their neighboring cells, the updating

the preferences is not an endless process. In other

words, there would be a limited number of iterations

which beyond that, updating the preferences will either

converge to a final, stable matching or cycle between

a number of temporary matchings. However, here, we

note two things: a) based on our thorough simulation

results in Section 4, the case in which there is a cycling

behavior only rarely occurs and b) under this case, we

assume that the players can detect a cycle and stop the

algorithm.

4. Simulation Results

For our simulations, we consider a single MBS with

radius 1 km and overlaid by P uniformly deployed

picocells. The transmit power of each picocell is 30 dBm

and its bandwidth is W = 200 kHz. The small cells’

quota is supposed to be a typical value q =4 for all

SCBSs [30]. The channels experience a Rayleigh fading

with parameter k = 2. Noise level is assumed to be

σ2 = −121 dBm and the minimum acceptable SINR for

the UEs is 9.56 dB [31]. There are N users distributed

uniformly in the network. The QoS parameter τi in

(1) is chosen randomly from the interval [0.5,5] ms.

The users have low mobility and can be assumed

approximately static during the time required for a

matching. The speed of users varies between 20km/h
and 40km/h. Utility parameters in (6) are chosen in line

with Figure 3. γi and Ki , are assumed to be 1 and 10

respectively, for all the users i ∈ N . All the statistical

results are averaged via a large number of runs over

the random location of users and SCBSs, the channel

fading coefficients, and other random parameters. The

performance is compared with the max-SINR algorithm

which is a well-known context-unaware approach used

in wireless cellular networks for the UCA. In this

approach, each user is associated to the SCBS providing

the strongest SINR.

Figure 4 shows the average received rate per user for

different number of SCBSs. As the number of SCBSs

increases, the interference between the different cells

increases. Therefore, the average rate that each user

achieves will decrease. Figure 4 demonstrates that the

proposed algorithm can lead to higher average rate per

user in comparison to max-SINR approach reaching up

to 66.7% gain for a network size of P = 36 SCBSs.
Figure 5 shows the average utility per different

types of devices, for different number of SCBSs when

the number of users is N = 60. According to (6),

each user has a specific target rate tailored to its

screen size. Typical values used for the target rates

for three different types of devices are shown in Table
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Figure 4. Average received rate per user for different number of

SCBSs with N = 60 users.

2. Figure 5 shows that, for small-screen devices such

as smartphones, the perceived utility of the user will

not change dramatically if it receives a rate that is

higher than its target rate. However, this utility for

larger devices such as tablets and laptops is more

sensitive to the received rate. From Figure 5, we can

see that, when the number of SCBS is small and the

average received rate is high, the utility of the laptops

and tablets is greater than that of the smartphones

because they are more sensitive to the received rate.

However, as the number of the SCBSs increases and

the network becomes more congested, the average

received rate decreases and the utility of laptops and

tablets decreases considerably, while the utility of the

smartphones decreases very slowly. In Figure 5, we

can see that, in general, for all types of devices, the

proposed approach outperforms the conventional max-

SINR approach.

Figure 6 shows the average utility per user for

different number of SCBSs for N = 60 users. As the

number of SCBSs increases, the average utility per user

will decrease because the received rate will decrease

due to the stronger interference. Although the cost for

the traffic will also decrease (second term in (6)) when

the number of SCBSs increases, but its effect is less

than the effect of rate (first term in (6)). Figure 6 shows

that the proposed algorithm outperforms the max-

SINR algorithm for all network sizes. This performance

advantage reaches up to 194% gain over to max-SINR

criterion for a network with 24 SCBSs.

Figure 7 shows the average utility per user for

different types of devices and, for different number of

users when the number of SCBSs is P = 15. In Figure

7, we can see that, as the number of users increases,

the average received rate per user will also increase.

Therefore, the utility of the devices which is a function

5 10 15 20 25 30 35 40
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Number of SCBSs

A
ve

ra
ge

 u
til

ity
 p

er
 d

iff
er

en
t d

ev
ic

es

Laptop: Proposed Matching Game
Laptop: Max−SINR
Tablet: Proposed Matching Game
Tablet: Max−SINR
Smartphone: Proposed Matching Game
Smartphone: Max−SINR

Figure 5. Average utility per different types of devices with

N = 60 users.

of the received rate will increase as well. However, when

the average received rate is small, devices with smaller

screens have more utility relative to the ones with large

screens. This is due to the fact that the small devices

are not so sensitive to the rate since they are incapable

of handling higher resolutions. Similar to Figure 5, in

Figure 7, we can see that devices with larger screen

size are more susceptible to the received rate, i.e. the

distance from the BS. In fact, as the rate increases, we

can see that the devices with large screen size such

as laptop, achieve more utility in comparison to the

small devices, since they are so sensitive to the rate

and an increase in the received rate can increase their

QoS considerably. We can see from Figure 7 that the

proposed algorithm has noticeable gain over the max-

SINR approach and can reach up to 4%, 32%, and 87.5%
gain over the max-SINR criterion for the smartphones,

tablets, and laptops respectively.
Figure 8 shows average utility per user for different

number of users with P = 15 SCBSs. As the number

of users increases, the average received rate will also

increase which leads to an increase in the average user’s

utility. Figure 8 demonstrates that at all network sizes,

the proposed approach has a performance advantage

over max-SINR. The average gain of the proposed

approach over the max-SINR scheme is 39.4%.

Figure 9 shows the average utility per user for

different percentage of the smartphones for a network

size of N = 60 users and P = 20 SCBSs. As the

percentage of the smartphones increases from 50% to

100%, the gain of the proposed approach relative to

max-SINR scheme decreases from 113% to 9%. This

is directly related to the features of the smartphones.

In fact, devices with small screen size are not

very sensitive to the received rate, therefore, the

proposed context-aware UCA algorithm which aims
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Figure 6. Average utility per user for different number of SCBSs

with N = 60 users.

at optimizing the received rate of the devices will

not have considerable gains over the context-unaware

max-SINR approach when the network encompasses

devices with small screens only. Conversely, when

the network has considerable percentage of laptops

and tablets which are very sensitive to the received

rate, then the proposed context-aware approach yields

significant gain over the max-SINR because the

proposed algorithm prioritize the devices based on their

QoS demands and requirements.

In Figure 10, we show the average utility achieved

by each SCBS as a function of the number of users for

P = 15 SCBSs. As the number of users N increases, the

network becomes more congested, and the probability

that a new user who applies for an SCBS is coming from

a congested BS increases. Therefore, it is more likely

for the SCBSs to gain more utility by offloading the

network. However, when the network is considerably

congested, the new users that arrive to the network

would be mostly assigned to the MBS, since many of

SCBSs have already reached their maximum capacity.

Figure 10 shows that, at all network sizes, the proposed

algorithm achieves significant gains over the max-SINR

approach that reach up to 72.8% gain for a network size

of 40.

Figure 11 shows the average number of iterations per

user required for the algorithm to converge to a stable

matching for two different network sizes, as the number

of users varies. In this figure, we can see that the

number of algorithm iterations is an increasing function

of the number of users and the number of SCBSs. Figure

10 shows that the average number of iterations varies

from 1.09 and 1.1 at N = 3 to 8.3 and 9.7 at N = 80,

for the cases of 15 SCBSs and 20 SCBSs, respectively.

Clearly, Figure 11 demonstrates that the proposed
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Figure 7. Average utility per different types of devices with

P = 15 SCBSs.

algorithm converges within a reasonable number of

iterations and scales well with the network size.

5. Conclusions

In this paper, we have proposed a new context-

aware user association algorithm for the downlink

of wireless small cell networks. By introducing well-

designed utility functions, our approach accounts for

the trajectory and speed of the users as well as

for their heterogeneous QoS requirements and their

hardware specifications. We have modeled the problem

as a many-to-one matching game with externalities,

where the preferences of the players are interdependent

and contingent on the current matching. To solve

the game, we have proposed a novel algorithm that

converges to a stable matching in a reasonable number

of iterations. Simulation results have shown that the

proposed approach yields considerable gains compared

to max-SINR approach.
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