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Abstract

Distributed spectrum sharing via congestion advertisement is modelled and studied as a game theoretic
problem. A related graphical anti-coordination game problem and a suitable logit-response learning
mechanism is proposed and studied. It has been shown that introducing an arbitrary small congestion
advertisement term into the users utility can improve the convergence rate of the spectrum sharing game
exponentially. Finally, simulation results are presented to evaluate the price of anarchy, convergence rate and
phase transition properties.
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1. Introduction

Cognitive radio (CR) nodes learn to configure their
transmission and reception parameters based on
different cognitive processes. These cognitive processes
vary from sensing an existing wireless channel,
configuring a radio’s parameters to accommodate the
perceived wireless channel, evaluating the current
situation and taking the best possible action based
on this available knowledge [2], etc. Therefore, every
action of a specific cognitive radio or user has an effect
on the other nodes’ payoffs.
In a recent work [3], we addressed the problem

of distributed optimization of secondary user sharing
of primary user spectrum, considering spatial re-use.
This was modelled as a spatial or graphical game
theoretic problem considering the radio interference
induced by communication in a local neighborhood in
a specific band. However as it will be shown later in
this paper, this spectrum sharing game suffers from a
high price of anarchy. Also, the distributed iterative
algorithm to compute the equilibrium strategies for all
the users is slow to converge. Therefore, we investigate
the feasibility of computing a good (to be made precise
later) equilibrium solution in polynomial steps (in the
number of secondary nodes n).

∗Corresponding author. Email: mazarafr@stevens.edu

Mechanism design is a tool that can be used to align
incentives of the users with the system’s objective. In
systems where there are multiple Nash equilibria, using
mechanism design, a central authority could move the
system’s behavior from a less efficient equilibrium to a
more efficient one by promoting better user behavior.
The objective of this paper is to investigate such
a mechanism design and an iterative technique to
compute an efficient Nash equilibrium solution with
fast convergence properties. In this regard, we propose
the idea of congestion advertisement by base stations as
one of the mechanism design approaches.

In [5], spectrum sharing and spatial reuse in a
wireless network is posed as an extended form of
the congestion game where users’ payoffs for using a
spectrum band or channel is a function of the number
of its interfering users sharing that channel. In [6],
spectrum management is studied in CR networks by
defining a secondary user specific utility as a function of
the spectrum opportunity, congestion and bandwidth.
The behavior of selfish nodes that dynamically switch
their channels using broadcasted random public signal
is presented in [7]. In [8], dynamic spectrum access
is modelled as a minority game where the CR nodes
try to minimize their cost in finding a clear band. A
graphical game model for competitive spectrum access
is discussed in [9].
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This paper is directly related to [10-12]. In [10], the
convergence rates of congestion games towards a good
equilibrium is studied. Convergence of coordination
games in a social networking context is presented in
[11]. In [12], a framework for graphical games with
global interactions is considered.
The main contributions of the paper are:

• The dynamics of the graphical spectrum sharing
game is mapped to that of anti-ferromagnetic
Ising model using a MECE logit-response learning
mechanism.

• The effect of the graph of interaction on the
convergence rate of the spectrum sharing games
is studied both in terms of social welfare
optimization and the convergence rate of the
game.

• It has been shown that introducing an arbitrary
small congestion advertisement term into the sec-
ondary users utility can improve the convergence
rate exponentially.

This paper is organized as follows. In Section II
a graphical anti-coordination spectrum sharing game
model is proposed. A maximum entropy correlated
logit response mechanism is discussed in Section
III. Analysis of convergence rates of the response
mechanism for specific graphs are presented in Section
IV. Congestion advertisement for spectrum sharing is
discussed in Section V. Simulation results are given in
Section VI and conclusions in Section VII.

2. Spectrum Sharing as a Graphical
Anti-Coordination Game

Consider a CR network scenario where n secondary
users are placed in an undirected graph G = (V , E),
where |V | = n and E is the set of edges. Let Ni denote
the neighbor set of node i. We will interchangeably
use the terms node and user throughout the paper.
Users are assumed to have access to B primary user
bands. Let A1×n be the users’ action vector where the ith
element ai ∈ {1, ..., B} denotes the index of the spectrum
band that user i is active in. Users can follow different
approaches for evaluating the spectrum quality, e.g.,
based on whether data or video application needs to
be supported. We assume that the evaluation approach
is the same for all the users. Let Θ1×B represent the
spectrum quality vector, i.e, θl , l ∈ {1, 2, . . . , B} denotes
the quality of the lth spectral band. For example,
this could be a function of the primary user activity,
required data rate, etc. The higher the value of θl

the more desirable that band is. let Iai be the set of
interfering transmissions with user i scheduled in band
ai .

The secondary users compete for spectrum opportu-
nities in a decentralized non-cooperative manner. The
utility obtained by secondary user i isU i(|Iai |, θai ). That
is, the utility function depends on the interference level
as well as the quality of the operating band. However
from the perspective of the designer of a wireless cog-
nitive network it is important that the system as a whole
entity can achieve a good operation point. A simple
metric for example is social welfare which is defined as
the accumulation of all users utility in the network i.e, .

U(A,Θ) =
∑

i

U i(|Iai |, θai ) (1)

The optimal solution A∗ to the spectrum sharing
problem is then given by:

A∗ = argmax
A

U(A,Θ) (2)

We first address the issue of solving this problem when
users play the non-cooperative decentralized spectrum
sharing game.

Consider a simple scenario seen in Fig. 1 where users
1, 2 and 3 are playing a graphical anti-coordination
game as follows. Each user selects a color (spectrum
band) white (W) or black (B) as their strategy based
on the output of the evaluation function. Based on
the color of their neighbors their utility is realized
according to the payoff matrix shown in Fig.1. If two
neighbors select the same color they incur a cost of -1
otherwise they get a reward 1. Moreover each user plays
the game with each neighbor separately and its final
decision is based on the realization of the composite
game. For example, assume the users’ strategy vector
is A = (a1 = W, a2 = B, a3 = W ). Then user 3 obtains a
cost -1 for choosing the same band as user 1. Also it
obtains 1 from playing the game with user 2 since they
have chosen different bands. Therefore user 3 obtains
a total utility of U3 = 0 from playing the composite
game with it’s neighbors. We can also define a potential
function for this game, an example is shown in Fig. 1.
For example given a1 = B, a2 = B, user 3 can improve it’s
utility from -2 to 2 by changing it’s strategy from B toW
which corresponds to the same change in it’s potential
function value.

We can generalize this example by defining the
elements of a spectrum sharing graphical game G:

1. Players are the secondary users i ∈ V .

2. Set of pure strategies for user (vertex) i is the set
ai = {1, ..., B}. Then the joint action strategy space for the
entire network is A = {1, ..., B}n. Let us denote the joint-
action by A ∈ A and let A(i : a′i) ≡ (a1, ..., ai−1, a

′
i , ..., an)

denote the vector resulting from setting the strategy
of user i in vector A to a′i while keeping all other
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..................................................................................................................................... 

 

Action set (B, B) (B, W) (W, B) (W,W) 

B (-1,-1,-2) (-1,1,0) (1,-1,0) (1,1,2) 

W (1,1,2) (1,-1,0) (-1,1,0) (-1,-1,-2) 

Payoff  matrix for the composite  game. 

 

Action set (B, B) (B, W) (W, B) (W,W) 

B -2 0 0 2 

W 2 0 0 -2 

Potential  function  for  the  composite game. 

Action Set B W 

B (-1,-1) (1,1) 

W (1,1) (-1,-1) 

  User 3 

 1  2 

 3 

User  j 

      User  i 

  User  3 

  (User 1, User 2) 

(User 1, User 2) 

Figure 1. Simple example of a spectrum sharing graphical anti-
coordination game.

strategies the same. The mixed strategy set for user i is

the probability mass function {p(ai) ≡ piai },
B
∑

ai=1

piai = 1.

3. The utility user i receives, U i , is given by the
following linear function:

U i(A(i : ai )) = θai +
∑

j∈Ni

Mi (ai , aj ) (3)

where j ∈ Ni if there is an edge e(i, j) ∈ E and Mi(ai , aj )
denotes the symmetric payoff user i obtains by playing
the strategy ai against the strategy aj of user j .Mi is the
following anti-coordination payoffmatrix:

M1 = M2 = ... = M =

























−1,−1 0, 0 ... 0, 0
0, 0 −1,−1 ... 0, 0
... ... ... ...
0, 0 0, 0 ... −1,−1

























(4)

From Mi we see that if two users choose the same band
then their respective payoff is -1 otherwise it is 0 for
each. Also we assume the payoffMatrix to be symmetric
i.e, M1 = M2 = ... = M .
Note 1 The linear selection of users utility is

for the the ease of modelling of the distributed
spectrum sharing games and does not reflect the actual
performance of a practical communication network.
However in the Simulation Results section it is shown
that the result of the theoretical parts remains valid for
the more generalized model where users utility follow a
non-linear function of the interference.
Definition 2.1 A joint action strategy A ∈ A is called

a Nash equilibrium (NE) if no user i,∀i ∈ V has an
incentive to deviate from the equilibrium strategy.
Definition 2.2 [4] A correlated equilibrium (CE) for

game G is a joint-probability distribution Q over the

joint action spaceA such that for every user i, and every
action pair (j, a′i) ∈ A

2, j , a′i ,

∑

A∈A

Q(A)U i (A(i, ai )) ≥
∑

A∈A

Q(A)U i(A(i : a′i )) (5)

A NE is a CE such that Q is a product distribution; that
is Q =

∏n
i=1 qi .

Definition 2.3 [20] Given a joint mixed strategy Q,
letH(Q) ≡ −Q(A) ln(Q(A)) denote the Shannon entropy.
Then a maximum entropy correlated equilibrium
(MECE) is the joint mixed strategy

Q∗ = argmax
Q∈CE

H(Q) (6)

Theorem 2.1. The spectrum sharing game G has a
potential function Φ : A → R given by:

Φ(A) =
∑

i

θai +
∑

i

∑

j∈Ni

H(ai , aj ) (7)

where H is :

H =

























−1 0 ... 0
0 −1 ... 0
... ... ... ...
0 0 ... −1

























(8)

Proof. We observe that if a matrix game M has a
potential function H , then so does the associated
graphical game with the following potential function
Φ
′:

Φ
′(A) =

∑

i

∑

j∈Ni

H(ai , aj ) (9)

To see this suppose that user i deviates, say by
choosing strategy a′i . Then,

U i (A(i : ai )) −U
i (A(i : a′i )) =

∑

j∈Ni

[M(ai , aj ) −M(a′i , aj )] =

∑

j∈Ni

[H(ai , aj ) −H(a′i , aj )] (10)

From this it is now easy to see that matrix H
characterizes a potential function:

H =

























−1 0 ... 0
0 −1 ... 0
... ... ... ...
0 0 ... −1

























(11)

Therefore it follows that:

Φ(A) =
∑

i

θai +
∑

i

∑

j∈Ni

H(ai , aj ) (12)

EAI
European Alliance
for Innovation 3

EAI Endorsed Transactions on Wireless Spectrum 
05-07 2014 | Volume 01 | Issue 2 | e1



M. Azarafrooz and R. Chandramouli

The existence of the potential function then shows
the existence of pure Nash strategies for G [1]. Let
E(G) ⊆ A denote the set of pure NE equilibria.
Definition 2.4 [13]. The price of anarchy PoA(G) is:

PoA(G) :=

max
A∈A

U(A)

min
A∈E

U(A)
≥ 1 (13)

PoS(G) denotes the price of stability defined as:

PoS(G) :=

max
A∈A

U(A)

max
A∈E

U(A)
≥ 1 (14)

Consider a special case of the spectrum sharing game
G when there are B = 2 available channels andΘ1×2 = 0
[14]. It can then be shown that PoA(G) can be Ω(n2)
worse than PoS(G) [15]. For example consider G to
be the complete bipartite graph G = K n

2 ,
n
2
. Since G is

bipartite PoS(G) = 1. To show that PoA can be Ω(n2)
worse it is enough to notice that one Nash equilibrium
can be realized when half of the users on the left side
of this bipartite graph occupy a same channel and
the other half occupy the other channel. This implies
that there are both good and bad Nash equilibria in
spectrum sharing games. Let us call an equilibrium
A good if PoA(A) is small and bad otherwise. In this
situation a central authority can be employed to move
the system behavior from a bad to a good equilibrium.
For example in [15], a central authority advertises the
optimal equilibria. It has been demonstrated that in
a general graph G, if users employ the advertisement
strategy in their best response learning mechanism,
with probability more than half, the game converges
to the optimal equilibrium in polynomial time. In this
work we consider using a distributed learning method
such as Log-linear mechanism [17-18] modified by a
congestion advertisement for two reasons. First, because
finding the optimal configuration (for a centralized
approach) even for a simplified game model is a NP-
hard problem [14]. Second, transient properties of
the available spectrum opportunities in CR makes
methods such as [15] not applicable for this problem.
Transient properties could be of several types. Primary
users evacuate and occupy their band continually.
Autonomous secondary users join or leave the network.
Moreover the network structure can also be unknown.

2.1. Logit-Response Dynamic

We proposed a synchronous logit-response in [3]
for spectrum sharing games. In asynchronous logit-
response [17], it is assumed that players are equipped
with independent and identically distributed (i.i.d.)
rate 1 “Poisson alarm clocks" and when their alarm
goes off they revise their strategy according to a noisy

a) Users select their strategies asynchronously based on the best response

mechanism in the vertex order: 

 1          2          3 1         2    3 (NE)  

b) Users select their strategies asynchronously based on the best response

mechanism in the vertex order: 

3          1          2 (NE) 

 Second Round   First Round 

 First Round

 1  2 

 3 

 1  2 

 3 

 1  2 

 3 

Figure 2. In graphical games how users learn is as much

important as who learns first.

best response. Poisson distribution assumption implies
that exactly one player at a time is allowed to update
its strategy (asynchronous). Therefore the time between
consecutive revision opportunities are independent and
distributed with an exponential distribution of mean 1.
When the user i alarm goes off it selects the strategy ai
with probability p(ai ) according to a noisy best response
mechanism given below::

p(ai ) =
exp(βU i (A(i : ai )))
B
∑

a′i=1

exp(βU i (A(i : a′i)))

(15)

where β represents the inverse temperature parameter.
β →∞ is equivalent to the best response mechanism.
For β → 0 the dynamics are totally random.
Proposition 2.1 [17] If the game has the potential

function Φ(A) the logit-response mechanism leads to a
reversible and irreducible Markov process on the state
space A with the following stationary distribution:

π(A) =
exp(βΦ(A))

Z
(16)

where Z =
∑

A∈A

exp(βΦ(A)) and as β →∞, π(A) is

concentrated on a Nash equilibrium. Moreover it turns
out that the achieved equilibrium A∗ for β →∞ using
the logit-response is a good equilibrium. That is, the
price of anarchy is small for the achieved equilibrium
A∗.
However the main problem with this mechanism is

its slow convergence rate. Therefore, in the next section
we introduce the fastest logit-response mechanism.

3. MECE Logit-Response Mechanism

In the standard logit-response mechanism, users find
the opportunity to update their strategies with a fixed
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rate which is independent of the their positions in
the graph and dynamics of the system. However using
a simple example we can show that the order in
which users update their strategy affects the speed of
convergence to a NE.
Consider Fig.2a where user 1 as the first player selects

strategy B and then user 2 selects W. There is no payoff
dominant strategy for user 3 at this stage. Suppose user
3 randomly selects the strategy W. The same process is
then repeated for another round in order to reach the
Nash equilibrium. However if user 3 selects its strategy
before others as in Fig.2b the game ends up in a NE after
the first round. This implies that the standard logit-
response should be modified with respect to parameters
such as the position of the users in the graph and the
system dynamics.
Consider the maximum entropy correlated equilib-

rium MECE logit learning as is shown in Algorithm 1.
In the MECE learning mechanism the clock alarms of
the users go off according a time varying probability
distribution of Q∗ as is described in (6). When a user
gets the chance it updates according to (15).
As we showed in the previous example, the order of

learning may cause negative effects in the convergence
speed. This effect in fact can be explained via term Z in
the stationary distribution π(A) of (16) [10]. 1

In the next lemma we show that MECE logit
learning mechanism removes the term Z from the
stationary distribution which can make the dynamics
exponentially faster.
Lemma 3.1 The stationary distribution of G, with the

potential function Φ under the modified logit-response
is π(A) ∝ exp(βΦ(A)).

Proof. A correlated equilibrium can be explained
conceptually by introducing a mediator who has
access to a randomization device. The “alarm clocks”
described in the standard logit-response mechanism is
one such randomization device. The i.i.d assumption
on the alarm distribution in the standard logit-response
implements the NE with Q =

∏n
i=1 qi with qi =

1
n . The

corollary 4.1 in [20] shows that there exists a joint
probability distribution Q∗ which removes the term Z
from stationary distribution π(A).

The modified learning approach can be thought of as
a Stackelberg learning approach in which leaders and
followers change roles along with the dynamics of the
system.
The main importance of the modified mechanism is

that it maps the dynamic of the game G to that of

1 We have avoided the formal discussion on the effect of term Z in the
convergence rate of the logit response to keep the context as consistent
as possible. In order to understand the relation between the term Z
and learning dynamics please refer to example 2 in [10].

Ising models (as described in the next theorem).This
demonstrates how hard it is to achieve a good
equilibrium for spectrum sharing game G in polynomial
time.
For ease of analysis lets consider B = 2 and Θ = 0.

Assume if user i is transmitting in channel 1, ai = −1
and if it is transmitting in channel 2, ai = 1.
Theorem 3.1 The modified learning mechanism of

the game coincides with the Glauber dynamics for the
anti-ferromagnetic Ising models.

Proof. Consider the strategy set a = {−1, 1} to be the
set of spins. Glauber dynamics for Ising models are
defined as algorithms that sample random assignments
of spins to vertices V , according to a target distribution
π(A) using the following procedure: starting from
any initial condition, repeatedly choose a site i ∈ V
uniformly at random, replace the spin of the site i with
one sampled from π(A) conditioned on the spins of
Ni . The Ising model is called a anti-ferromagnetic for

π(A) ∝ −
∑

i

∑

j∈Ni

aiaj ,∀i ∈ V . Ising and ferromagnetic

for π(A) ∝
∑

i

∑

j∈Ni

aiaj ,∀i ∈ V [21].

Using the simplified assumptions and Theorem 2.1

we can rewrite Φ(A) = −
∑

i

∑

j∈Ni

aiaj ,∀i ∈ V . Then the

proof is complete by using Lemma 3.1.

Theorem 3.1 establishes the connection between anti-
ferromagnetic Ising models and dynamics of spectrum
sharing games. Propositions 4.1 and 4.2. in the next
section are the direct results of this theorem.

4. Convergence Rate for Specific Graphs

It is known that the lower bound for mixing time
(defined in appendix) of the Glauber dynamics for the
Ising models is O(n logn) if the β < βT where βT is
dependent on the graph G and the model of interaction
(in our case an Anti-ferromagnetic Ising model) [21].
For β > βT the mixing time is exponential.
Proposition 4.1 For spectrum sharing game G there

is a graph G where it is impossible to achieve a good
equilibrium in polynomial steps.

Proof. As explained in section II-A in order to achieve
a good equilibrium under logit-learning β →∞ is
required. However Theorem 3.1 shows the game
borrows the dynamic characteristic of the Ising model
and for β > βT exponential steps in n is needed for
convergence.

The previous theorem raises the question of what
kind of graphs show better behavior in terms of the
convergence speed. This can be answered using the next
Proposition.
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Initialization: t = 0.
1. A central authority solves the alarm clock probability distribution Q∗ = argmax

Q∈CE
H(Q).

2. When the alarm goes off for a player i, t = t + 1

Update strategy ai with probability p(ai ) =
exp(βU i(A(i:ai )))

B
∑

a′i=1

exp(βU i (A(i : a′i )))

.

3. If ∀i, |U i
t+1 − U

i
t | ≤ ǫstop, Stop .

Otherwise go back to step 1.

Algorithm 1: MECE Logit Response Learning

Consider all the possible subdivisions of the graph
in two disjointed subsets of vertices: S and its
corresponding complement V \S. The Isoperimetric
function of graph C(G) is defined as the minimum
value over all possible partitions of the number of
edges connecting S with V \S divided by the number of
sites in the smallest of the two subsets. That is, C(G) =

min
S⊂V :|S |≤ n

2

cut(S, V \S)

|S |
.

Proposition 4.2 The smaller the value of Isoperimet-
ric function of a graph CG the faster anti-ferromagnetic
Ising model dynamics converges.

Proof. Let W represent the adjacency matrix of G
defined as the n × n matrix W = (Wij ) in which Wij =














1 j ∈ Ni ,

0 Otherwise.
. Moreover assume I to be the adjacency

matrix of complete graph. Then let write Φ(A) as:

Φ(A) = −
∑

i

∑

j

Wijaiaj ,∀i ∈ V (17)

LetGc be the complementary graph ofG with adjacency
matrix Wc , i.e ∀i , j,Wij +W c

ij = 1 then we can rewrite

Φ(A) as:

Φ(A) =
∑

i

∑

j

W c
ijaiaj −

∑

i

∑

j

Iijaiaj ,∀i ∈ V (18)

The first and second term of the right hand side of (18)
can be recognized respectively as the (ferromagnetic)
Ising model over the complementary graph G and
anti-ferromagnetic Ising over the complete graph. The
second term is independent of the phase transition
analysis. This is because we can look at it as a symmetric
congestion game which shows no phase transition
behavior [10]. Therefore the phase transition behavior
of the anti-ferromagnetic Ising can be shown by using
Ising model on complementary graph Gc. The phase
transition behavior of first term has been studied via
Isoperimetric function of graphs in [11-27]. Using the

result of [11-27] over complementary graphG the proof
is complete.

The previous proposition states that the more connected
the graph of interaction G is, the faster the spectrum sharing
game reaches an equilibrium.

4.1. Normalized Social welfare Optimization

In the previous discussions we addressed under what
kinds of graphs, games converge faster to good
equilibrium. This should not be confused with the
problem of finding graphG whose purpose is to achieve
the maximal social welfare

∑

i U
i .

Consider the optimization problem of (2). Our
objective here is to find the graphsGwhich achieve high
social welfare U(A) =

∑

i∈V U i (A(i, ai ). Let’s modify the
optimization problem with a new notion of normalized
social welfare defined as:

max
A:A∈{−1,1}n

U(A)

2|E|
(19)

This is because we are looking for the graphs that have
a high capacity for achieving the optimal social welfare.
Therefore it should be normalized with respect to the
number of edges |E|.
Instead of solving the linear optimization problem

of (19) let’s consider solving the quadratic problem by

rewriting U(A) =
∑

i U
i as U(A) = −

∑

i

∑

j∈Ni

(ai − aj)
2.

We can rewrite in the graphical format

U(A) = −
∑

i

∑

j∈Ni

(ai − aj )
2 = (20)

−ATLGA

whereLG is the Laplacian graph ofG (refer to Appendix
for definition). Moreover notice the term 2|E| = ATA.
Then the normalized social welfare maximization
problem can be written as minimization problem of

min
A:A∈{−1,1}n

ATLGA

ATA
(21)
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We assume G to be any arbitrary connected graph.
Lemma 4.1 Let λ be the smallest nonzero eigenvalue

of LG, then

λ = min
A∈Rn

ATLGA

ATA
≤ min

A:A∈{−1,1}n

ATLGA

ATA
(22)

That is the optimal normalized social welfare is
bounded below by λ.
Then to show the theorem now concentrate on the
family of graphs that have high values of C(G) and
therefore fast convergence properties. A graph G is
called ζ-expander for every subset S with |S | ≤ n

2 ,
C(G) ≥ ζ.
Lemma 4.2 (Cheeger inequality [29]) Let λ be the

smallest nonzero Laplacian eigenvalue of graph ζ-
expander graph G then

ζ2 ≤ λ ≤ 2ζ (23)

That is C(G) = ζ is upper bounded with λ.
(22) states that the graphs with lower value of λ provide
larger normalized social welfare. However (23) shows
larger λ are needed for faster convergence. This shows
a trade off between the normalized social welfare and the
convergence speed.

5. Spectrum Sharing Via Congestion Advertisement

We saw in the previous section that it is impossible
to achieve a good equilibrium with polynomial
mixing time on particular graphs. Therefore we are
investigating a method to reach a good equilibrium in
any graph.
Theorem 5.1 Assume that each user i evaluates it’s

utility as:

U i
h = −

∑

j∈Ni

aiaj + aiǫ (24)

The game G under the MECE-logit response converges
within polynomial steps to the good equilibrium if
at each stage of the game ǫ = sign(E2 − E1)h where

h > 0 is a small value, E1 =
∑

i

∑

j∈Ni

δai ,−1δaj ,−1, E2 =

∑

i

∑

j∈Ni

δai ,1δaj ,1 and δ is the Kronecker delta .

Proof. With the utility function of (24) the best response

strategy of user i can be written as sign(−
∑

j∈Ni

aj + ǫ).

By doing this the term ǫ makes one specific strategy
for user i “risk dominant”. The risk dominant strategy
for user i is the one yielding the highest payoff and
that is when user i have no information about its
neighbors Ni . If half of the Ni are active in a channel

strategy and the other half are active in the other, user i
will select the risk dominant one. Theorem 3.1 shows
that dynamic of G can be analysed by studying the
dynamics of Glauber algorithms for anti ferromagnetic
Ising model. [11] implies that polynomial mixing time
for ferromagnetic Ising model over any graph G can
be achieved by introducing a risk dominant term in
the favor of one of the strategies. Let’s show this risk
dominant strategy by ad ∈ {−1, 1}. Then in the stationary
state with probability converging to 1 every user select
strategy ad . This is the key to polynomial mixing time.

However having a fixed risk dominant in the
spectrum sharing games is disastrous as it provides
wrong incentive for the users to occupy the same
channel and therefore cause a large interference. Let’s
write the social welfare as U i (A) = −(n11 + n22) where
n11 and n22 represent the number of edges e(i, j)
in which ai = aj = 1 and ai = aj = 2 respectively. This
format is clear since the other edges that don not
experience interference add zero value to the social
welfare. The logit-response leads to good equilibrium
for β →∞ when the term n11 + n22 will be minimized.
The risk dominant strategy should be selected in
favor of the appropriate strategy to minimize this
term. In order to select the appropriate term, lets
define the energy of a strategy in the system, by
the value of concentration of users on that specific

strategy, E1 =
∑

i

∑

j∈Ni

δai ,−1δaj ,−1, E2 =
∑

i

∑

j∈Ni

δai ,1δaj ,1.

For example in a complete graph due to the symmetry
of strategy configuration, the channel with more active
users has higher energy. Energy also depends on the
graphical characteristics of the users that have occupied
a strategy. Then it would be enough to flip the sign of
ǫ in favour of the strategy with less energy. Assume
that the energy of strategy -1 (channel 2) is more
than +1 (channel 1). Then by making the ǫ > 0 we
actually balance the energy by making the strategy
+1 risk dominant (channel 1). This reduces the term
(n11 + n22) as it prevents it from any existing permanent
risk dominant strategy in the network. Notice that
if one strategy becomes risk dominant permanently
without considering the energy difference, every user
with probability converging to 1 chooses the same
strategy and therefore increases the existing interfering
links.

The previous theorem states that to have an
exponentially faster spectrum sharing, users need to
introduce an arbitrary small risk dominant term ǫ in
their utility. Producing these suitable risk-dominant
terms can be based upon an advertisement entity such
as a base station. Finding the exact risk dominant
terms is a difficult problem but it can be approximated
by a congestion announcement. A simple scenario of
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spectrum sharing via congestion advertisement can be
described as follows:
Base stations announce the number of active users

in different spectrum bands during each time slot.
When users experience the same signal interference for
both available channels, they select the one with less

congestion. Let’s ρai =
1
|V |

∑

j∈V

δai ,aj be associated with

action profile A and advertisement control parameter
h > 0. Then user’s i utility can be displayed in the
following form:

U i
h(A(i, ai )) = U i (A(i, ai )) − hρai (25)

This generalizes (24) by presenting the energy differ-
ence as the congestion term ρ. The congestion adver-
tisement method has been applied to the spectrum
sharing game with utility format of (25). The results are
explained in the next section.

6. Simulation Results

Our simulations have been conducted for a more
generalized version than the theoretical part. It shows
that many of our theoretical results maintain their
validity even with the change of some assumptions.
These generalized assumptions are:

• Learning method is a Responsive Learning
Automata (RLA) [24] with the learning parameter
of α ∈ (0, 1). The description on this learning
algorithm is given in Appendix.

• Users update their strategies simultaneously.

• In the simulations there are four channel
strategies B = 4 and arbitrary Θ.

• Utility format is of the form U i(A(i, ai )) =
θai

ρai (1+|Ii |)
.

• G is a geometric graph.

6.1. Price of Anarchy

In a distributed cognitive system when there are
multiple Nash equilibria it is important to understand
the gap between worst and best possible equilibria of
the network. As it is described in Section 2 a good
way for understanding this is the comparison between
the price of anarchy and stability. These metrics then
imply how bad or good the network output can be
from its best achievable one. When the price of anarchy
is much worst than the price of stability it becomes
crucial for the network designer to come up with
mechanisms that could move the system’s behaviour
from a less efficient equilibrium to a more efficient
one by promoting better user behavior. This paper
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Figure 3. Price of Anarchy Improvement, B = 4 and the

simulation has averaged over 100 realizations, best α for RLA
learning for each case has selected to make the comparison

independent of learning process, the network interference

avoidance is: 1
|V |

∑

i∈V
1

1+|Ii |
.

introduced congestion advertisement for the spectrum
sharing games as one of these mechanisms.
Fig. 3 shows the improvement of spectrum sharing

with congestion advertisement mechanism in terms of
network interference avoidance. As well as demon-
strates that by injecting congestion incentive into users
utility, there is less probability that users will herd to a
spectrum with higher quality. This in turn reduces the
interference.

6.2. Convergence

Network volatility has been plotted in oder to
show the convergence rate has improved. Volatility
is defined as the variance of alternating between
different strategies. Fig. 4 shows that with the increase
in the communication range, the convergence rate
improves since it increases the graph connectivity. This
validates the result of Proposition 4.2. Fig. 5 also
shows congestion advertisement method enhances the
dynamics of G.

6.3. Phase transition

We have run several simulations for different values
of learning parameter α. We have also selected the
best α which will bring the highest social welfare of

1
1+|Ii |

for different values of h. These results indicate a

transition point in Fig 6. You can see at the beginning,
with the increase in h, the exploration rate α required
to find the good equilibrium reduces. This improves the
convergence rate. However by continually increasing h,
the system arrives at a transition point hT . This is where
users herd on the channel with less congestion which
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Figure 4. The simulation has run for the geometric graph. We

assume a square area 100 units uniformly distributed random
configuration of n = 100 secondary users. We consider different

communication ranges R. For example R = 1 means that for a

secondary node i all other nodes within an Euclidean distance
of R = 1 are considered to be the neighbors Ni . It shows well

connected graphs have higher convergence speed.
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Figure 5. Network volatility improvement (as a convergence

criteria) comparing with graphical spectrum sharing, B =
4, homogeneous spectrum quality θ = [1/4 1/4 1/4 1/4],
simulation has averaged over 15 realization, α in RLA learning

for each case has selected so that it shows the best performance
possible in the shown region, utility format is U i(A(i, ai )) =

θai
ρai (1+|Ii |)

.

starts to increase the signal interference. Therefore
in order to reduce the interference, a higher level of
irrationality becomes necessary. This is similar to the
behavior of the Glauber dynamics for β > βT
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Figure 6. We have used 20 realizations for a observation window

size of 500 for a network size of n = 100 and B = 4 numbers
of channel. Also the simulation has run for a constant range of

interaction on a random geometric graph to make the analysis
independent of range of interaction.

7. Conclusion

We addressed the spectrum sharing games using
graphical anti-coordination games. We showed how
a modified logit learning mechanism establishes the
connection between the simplified spectrum sharing
games and anti-ferromagnetic Ising models. We studied
the convergence rate of these spectrum sharing games
and discovered the trade offs between achieving a good
social welfare and convergence rate. This demonstrated
spectrum sharing games under graphs which have
lower isoperimetric values, tend to converge faster
to equilibrium. We also showed how introducing an
arbitrary small advertisement parameter into equations
can enhance the convergence significantly.

Appendix A. Laplacian Graph

Definition A.1 The Laplacian of the graph G is
defined as the n × n matrix LG = (Lij ) in which Lij =














dij i = j,

−wij i , j
.

Appendix B. Markov

Definition A.2 The total variation distance between two
probability distributions µ and v on A is defined by

‖µ − v‖TV =
1

2

∑

i∈A

|µi − vi | (B.1)

Definition A.3 The time it takes for a process to reach
to its stationary distribution v is known as mixing times
τ(ǫ):

τ(ǫ) = min
t
{‖µ(t) − v‖TV ≤ ǫ} (B.2)
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Appendix C. Responsive Learning Automata

Let rti represents the payoff obtained at time t by playing
strategy i. The update rules for responsive learning
automata are:

pt+1i = pti + αrti

∑

j,i

stjp
t
j

∀j , i, pt+1i = pti − αr
t
i s

t
jp

t
j

stj = min[1,
ptj − α/2

αptj r
t
i

]

where α is the learning parameter and pti is the
probability of playing the strategy i at time t.
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