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Abstract

The theory of compressive sensing (CS) has been employed to detect available spectrum resource in cognitive
radio (CR) networks recently. Capitalizing on the spectrum resource underutilization and spatial sparsity of
primary user (PU) locations, CS enables the identification of the unused spectrum bands and PU locations
at a low sampling rate. Although CS has been studied in the cooperative spectrum sensing mechanism in
which CR nodes work collaboratively to accomplish the spectrum sensing and PU localization task, many
important issues remain unsettled. Does the designed compressive spectrum sensing mechanism satisfy the
Restricted Isometry Property, which guarantees a successful recovery of the original sparse signal? Can the
spectrum sensing results help the localization of PUs? What are the characteristics of localization errors?
To answer those questions, we try to justify the applicability of the CS theory to the compressive spectrum
sensing framework in this paper, and propose a design of PU localization utilizing the spectrum usage
information. The localization error is analyzed by the Cramér-Rao lower bound, which can be exploited to
improve the localization performance. Detail analysis and simulations are presented to support the claims
and demonstrate the efficacy and efficiency of the proposed mechanism.
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1. Introduction

Today, with rapid developments of wireless commu-
nication technologies and emergence of new wireless
services, radio spectrum resource are facing the crisis
of “spectrum drought" [1]. On the other hand, the spec-
trum resource are underutilized because of the current
fixed spectrum allocation policy. Due to its capability
of improving network spectrum utilization efficiency,
cognitive radio (CR) [2], which enables the dynamical
use of licensed spectrum bands from licensed/primary
users (PUs)[3], has become a promising technique to
resolve the dilemma of spectrum resource shortage
versus underutilization.

★Please ensure that you use the most up to date class file, available
from ICST at http://icst.org/icst-transactions/
∗Corresponding author. Email: zhan2@uh.edu

The success of CR networks relies on the spectrum
sensing technique [4, 5] that detects the unoccupied
spectrum bands for opportunistic spectrum access.
In CR networks, the CR nodes sense the spectrum
and the locally collected measurements can be used
collaboratively to detect the unused spectrum bands.
These cooperative approaches significantly enhance
the sensing reliability and efficiency. Traditionally,
the CR nodes used to sense one band at a time,
which results in a long sensing delay and high
computational complexity in order to have the full
picture of spectrums. Recent advances in compressive
sensing (CS)[8, 9] make it possible to obtain the wide-
band signals at a sub-Nyquist sampling rate by taking
random projections, which can relax the analog-to-
digital (ADC) requirements as well as shorten the
sensing time. The reduced number of measurements
also saves the energy for communication and reduces
the signalling for the CR nodes. Moreover, the
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proliferation of CR devices has fostered the demand
for lots of context-aware applications, in which the
location information of PUs is viewed as one significant
context. As a byproduct, the compressive spectrum
sensing scheme exploits the spatial sparsity of PU
locations to estimate their locations, which facilitates
the spatial frequency reuse and improves spectrum
resource utilization.

Despite many benefits of compressive spectrum
sensing, several significant issues in this mechanism
have not been fully addressed. Firstly, in order to
guarantee a successful recovery of the original sparse
signal, the CS sensing/sampling matrix is required to
have certain properties. In particular, for the recovery
to be robust to sensing noises, the matrix needs to
satisfy the restricted isometry property (RIP) [10].
Does the adopted sampling mechanism in compressive
spectrum sensing possess this property? Secondly, the
scheme of localization via spatial sparsity imposes
a requirement on the (spatial) incoherence of the
channel gain matrix, which is unnecessary for the
purpose of spectrum sensing. Instead of estimating the
spectrum occupation and PU locations at the same
time, can the two processes be separated, and can
the spectrum sensing results be exploited to reduce
the requirement on the channel gain matrix that is
needed for the stable recovery of PU locations? Finally,
what are the error characteristics of the localization
errors in this mechanism, and how can we utilize those
characteristics in the deployed system to control the
errors? To guarantee a stable performance, all those
issues in the compressive spectrum sensing scheme
should be carefully discussed and analyzed.

In this paper, while we try to answer the above
questions, the framework of compressive spectrum
sensing is redesigned and a novel mechanism is
proposed to accomplish the spectrum sensing and PUs
localization tasks. Specifically, a compressive sampling
mechanism is utilized by each CR node to take
the measurements of the received signal spectrum.
By exploiting the spectrum resource underutilization,
the CS techniques can acquire a sparse signal at a
sampling rate much lower than the Nyquist rate by
taking a small set of random linear projections. The
measurements collected at the CR nodes are processed
in a collaborative way to reconstruct the original
sparse signal, and we propose algorithms based on
the alternating direction method of multipliers [6, 7]
to recover the received signal spectrum. Then, we
utilize the spectrum sensing results to localize the
PUs by a Bayesian inference scheme and improve the
algorithm based on analyzing the Cramer-Rao lower
bound (CRLB). The main contributions of this paper are
listed as follows:

1. The RIP of the cooperative compressive spectrum
sensing mechanism is justified mathematically,
which guarantees a successful reconstruction of
the original sparse signal with high probability.
Three different algorithms, Lasso, group Lasso,
and distributed group Lasso with feature splitting
are used to recover the spectrum usage infor-
mation. Compared to Lasso, group Lasso is an
improved centralized algorithm exploiting joint
sparsity, and distributed group Lasso with feature
splitting is an approach suitable for distributed
implementation. Hence, we validate the applica-
bility of CS to spectrum sensing both theoretically
and numerically.

2. The two tasks – spectrum sensing and PU
localization – are done one after another. Instead
of recovering the transmitted signal spectrum at
PUs, the signal spectrum at CR nodes is recovered.
After the recovery, the results are used for the
localization of PUs. The benefits of this treatment
are two-fold: the incoherence requirement of the
channel gain matrix required for stable spectrum
and PU location recoveries is relaxed, and the
spectrum sensing results can be exploited to
reduce the computation complexity and improve
the performance of the localization step.

3. The error characteristics of localization are
analyzed by calculating the Cramér-Rao lower
bound, which is a lower bound on the covariance
of any unbiased location estimate. We analyze
the localization error characteristics in detail and
improve the localization algorithm design by
exploiting the revealed error trends associated
with the deployed system.

The rest of this work is organized as follows: Section
2 discusses the related work. The system model and
problem formulation are given Section 3. The proposed
approaches for spectrum sensing and PU location are
detailed in Section 4 and Section 5, respectively. Section
6 presents the simulation results, and finally Section 7
concludes this paper.

2. Related Work

Closely related to this paper is the existing work
on compressive spectrum sensing and PU localization
taking advantages of sparsity and CS. CS has been
first proposed in wideband CR in [11] for spectrum
hole identification. Exploiting the sparsity of the signal
spectrum, CS samples the wideband signal at a sub-
Nyquist sampling rate, and thus, significantly reduces
the ADC cost. [12] adopts CS in combination with
decentralized recovery algorithms in cooperative CR
networks, which the spectral estimates from all CR
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nodes are fused together to determine the spectrum
availability. The spatial diversity gain induced by the
distributed CR nodes greatly improves the sensing
performance under fading channel environments.
Recently, CS has been used to solve the spectrum

sensing problem in cooperative CR networks in [13–
16]. In [13], the CS technique has been adopted for
sampling wideband channel information at a sub-
Nyquist rate at CR nodes. A small portion of the
compressedmeasurements of received signals spectrum
are reported to the fusion center, which recovers the
spectrum usage information by matrix completion
or joint sparsity reconstruction. In this centralized
approach, the sampling rate at CR nodes is reduced,
which saves time and energy for spectrum sensing.
Also, the significantly compressed measurements save
the energy consumed by transmission from the
CR nodes to fusion center. [14] uses a distributed
computing approach instead. Each CR node obtains
its compressed individual samplings of received
signal spectrum, and only communicates with the
neighboring CR nodes with the one-hop range. A
consensus constraint is imposed on each CR to
ensure convergence, and the global convergence can be
obtained by several rounds of information exchange.
Upon convergence, all CR nodes obtain the fused
spectrum sensing results. This approach gets rid of
the fusion center at an expense of a certain amount
of communication overhead. The locations of PUs are
taken into consideration in [16], which exploits both
the spectrum sparsity and PUs’ spatial sparsity. A
basis expansion model of the power spectral density
(PSD) map in space and frequency is utilized to model
the transmitted signals in CR networks. Each CR
node collects the attenuated transmitted signals by
the channel and work collaboratively to estimate the
signal spectrum. The PSD of the transmitted signal
is estimated by the Lasso [17] algorithm implemented
via distributed online iterations, which can sense the
spectrum occupation as well as recover the PU locations
in the network. This kind of localization via spatial
sparsity is formally defined in [18], and explicitly
uses the CS theory in the localization algorithm. To
guarantee a successful recovery of the source locations
in the network, the requirement on the incoherence
of the channel gain matrix is given therein. [19]
further develops [18], which introduces a Bayesian
framework for the localization problem and provides
sparse approximations to its optimal solution.
Despite the early emergence and wide range

of applications of the CS theory to compressive
spectrum sensing, the applicability of the CS theory
to this application scenario has not been rigorously
justified yet. For example, the channel gain matrix is
required to be sufficiently incoherent for reliable PU
localization, but this requirement is often unexamined.

RF Environment

Spectrum 

Sensing

Primary User 

Localization

Primary User

Compressive Sampling

Cognitive Radio node

Figure 1. An illustration of system model

Furthermore, the characteristics of the localization
errors have not been explicitly analyzed before. All
these issues are the motivations for this paper.

3. System Model and Problem Formulation

Consider a CR network with K PUs and J CR nodes.
The CR nodes locate randomly in the network with
known locations β = {β1, β2, . . . , βJ }. However, for PUs,
neither the number of the active PUs K nor their
locations are known. We define a finite position space
α = {α1, α2, . . . , αI } as the candidate positions of the PUs
in the planar deployment area. Note that the PUs locate
sparsely in the network and only present at K out of
I positions. Each CR node in the network receives a
superposition of the transmitted signals of the PUs, and
our objective is to infer the spectrum occupation and
locations of the PUs based on the received signals. An
illustration of the system model is shown in Fig. 1.
In our model, we adopt a slotted frequency

segmentation model to describe the PSD of the
transmitted signal. The whole bandwidth is divided
into B non-overlapping narrowband slots centered at
fb(b = 1, . . . , B) with full-width W . Suppose the PUs
transmitted signals xi (t) are stationary over t and
mutually uncorrelated. Here i means candidate position
αi . The PSD of the transmitted signal xi(t) for the PU at
position αi can be approximated by:

si(f ) =
B

∑

b=1

θi,brect

(

f − fb
W

)

, i = 1, 2, . . . , I , (1)

where θi,b is the PSD for the corresponding narrowband
slot centered at fb. Apparently, the locations of those
bases are known in our model, but the PSD levels are
dynamic varying and need to be determined. If the
PSD levels for certain bases are under a predefined
threshold, those temporarily idle frequency bands are
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called spectral holes and can be opportunistically
accessed by the CR nodes. We use vector si =
[θi,1, θi,2, . . . , θi,B] to represent the PSD for PU at αi .
Note that only K out of I positions have PUs and many
of si are all-zero vectors.
The transmitted signals are attenuated by the

multipath channels between the PUs and CR nodes. The
received signal of the CR node at βj is a summation of
amplitudes and delays of the multiple arriving signals
from all PUs, and can be expressed as:

yj (t) =
I

∑

i=1

h(di,j ; t) ∗ xi (t) +wj (t), j = 1, 2, . . . , J , (2)

where ∗ represents the convolution, h(di,j ; t) is the
channel response that is a function of distance di,j
between αi and βj , and wj (t) is the noise. We
assume that the signals propagate in a frequency-
selective fading channel, and the channel responses are
stationary w.r.t. t. Hence, we can calculate the PSD of
the channel response by taking the Fourier transform
of the autocorrelation of h(di,j ; t), i.e., Hi,j (f ) = F (R(τ)),
where R(τ) = E[h(di,j ; t)h(di,j ; t − τ)]. The channel gain
Hi,j (f ) can be obtained through extensive measurement
campaigns or through the path loss model1.
At the receiver end, the received PSD can be

expressed as the product of the PSD si(f ) of the
transmitted signal and channel gain Hi,j (f ):

rj (f ) =
I

∑

i=1

Hi,j (f )si(f ) + σj (f )

=
I

∑

i=1

Hi,j (f )
B

∑

b=1

θi,brect

(

f − fb
W

)

+ σj (f ), (3)

where rj (f ) is the PSD of the CR nodes at position
βj , and can be estimated by the Fourier Transform
of the received time domain signal yj (t) traditionally.
However, since the transmitted bands occupied by
the PUs are quite narrow compared with the whole
available band, we can exploit the spectral sparsity and
utilize CS to effectively sample the signal.
To clarify this point, we first simplify the expression

of (3) to a matrix-vector form:

rj = Hα→βjs + σj, j = 1, 2, . . . , J , (4)

where vector rj denotes the received PSD of CR node
at βj , and s = [s⊤1 , s

⊤
2 , . . . , s

⊤
I ]
⊤ denotes the transmitted

PSD at all I candidate points. Mapping operator Hα→βj

1For a fading channel, the channel gain can be calculated by Hi,j (f ) =

d
−γ/2
i,j |hi,j (f )|, where hi,j (f ) is the channel fading gain that can be

obtained by averaging out the effect of the channel fading and γ is
the path loss factor.

stands for the corresponding channel gain matrix for
all sub-bands between I candidate positions and CR
node at βj . The complete channel gain matrix from all
candidate positions to all CR nodes can be written as
Hα→β .
By utilizing the CS theory, the compressed measure-

ments at the CR node can be expressed as follows:

zj = ΦjF −1rj + σ̃j = ΦjF −1Hα→βjs + σ̃j, ∀j, (5)

where matrix Φj ∈ RM×B,M ≪ B. Matrix Φj can be
designed sampling from a certain distribution, e.g.,
i.i.d. Gaussian distribution or i.i.d. Bernoulli distribu-
tion with ±1. This matrix can be implemented by the
techniques used in CS for analog signals like Xamp-
ing [20, 21], random modulator [22] and frequency-
selective surface [11]. The benefits of utilizing matrix
Φj are two-fold: Firstly, it reduces the number of
measurements of the CR nodes, which saves time and
energy for spectrum sensing; Secondly, the reduced
measurements obtained by the random projection are
quite compressed compared with the original time
domain signals. Since all CR nodes need to transmit
the measurements back to the fusion center or exchange
them with neighbors for spectrum sensing and local-
ization, the reduction in the number of measurements
saves the energy consumed by the transmission and
signalling for the CR nodes.
We remark that the spectrum sensing problem is

recover {rj}Jj=1 from {zj}Jj=1 for all CR nodes, and can
be solved without the channel state information (CSI)
Hα→β . As long as the channel does not experience

deep fadings, the received signals PSD {rj}Jj=1 provide
sufficient information for spectrum usage. Moreover,
note that the received signals PSD {rj}Jj=1 are also

sparse. To clarify this point, we assume s̃ =
∑I

i=1 si.
The operation of summation neglects the location
information of PUs and s̃ only contains the spectrum
occupation information of transmitted signals. For each
rj and s̃, their supports, i.e., the positions of non-
zero entries, are the same. The physical explanation is
that every rj is only the attenuated duplicates of s̃ by
channel effects. By exploiting these key observations,
the received signals PSD are acquired by a small
number of incoherent linear measurements in (5). As
to localization, a Bayesian inference scheme can be
adopted to localize the PUs from {rj}Jj=1.

4. Compressive Spectrum Sensing

The spectrum sensing task is completed by recovering
the received signals PSD, which can be implemented
in two ways, centralized or distributed. An overview of
CS is given first, and then the proposed algorithms is
illustrated in detail.
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4.1. Compressive Sensing Overview

CS is an emerging signal processing technique for
finding sparse solutions to under-determined linear
systems. By utilizing the fact that a signal is sparse
or compressible in a certain domain, the CS technique
can powerfully acquire a signal from a small set of
randomly projected measurements with a very low
sampling rate. Suppose x is an N × 1 vector with k
nonzero entries, and y is anM × 1 vector that k < M ≪
N . If sensing matrix Φ satisfies the RIP, the solution
of the noisy under-determined system of equations
y = Φx +w can be reconstructed by

min
x
||x||1 + λ||y −Φx||22, (6)

where ||.||1 and ||.||2 are the l1 norm and l2 norm,
respectively. The parameter λ is chosen according to the
amount of noise in the measurements. The optimization
problem in (6) is known as the least-absolute shrinkage
and selection operator (Lasso) [17], a.k.a. the de-nosing
basis pursuit for solving a sparse linear regression
problem. A detail review of traditional and advanced
methods to solve (6) can be found in [23] and the
references therein. In this paper, we use the ADMM
[24, 25] to solve (6). In particular, to be robust again
noise, we require the sensing matrix to satisfy the RIP,
which is defined as follows:

Definition 1. (restricted isometry property) [10] Let
Φ ∈ Rm×n matrix having unit l2-norm columns. For
each integer S ∈ N, we say that Φ satisfies the restricted
isometry property of order K with the smallest
restricted isometry constant δK ∈ (0, 1), and write Φ ∈
RIP(K, δK ), if

(1 − δK )‖θ‖22 ≤ ‖Φθ‖22 ≤ (1 + δK )‖θ‖22, ∀θ : ‖θ‖0 ≤ K,
(7)

where ‖θ‖0 is the number of nonzero elements in θ.

The same framework applies if signal x is sparse in
some transformed domain Ψ instead of the canonical
domain. In this case, y = ΦΨx +w, and we recover x
from y by:

min
x
||x||1 + λ||y −ΦΨx||22, (8)

where ΦΨ is the sensing matrix and satisfy RIP if Ψ
andΦ are incoherent.

4.2. A “Naive" Approach

The compressed measurements {zj}Jj=1 are cooperatively
used to recover the spectral estimates {rj}Jj=1 of the
received signals at all CR nodes. According to (5),
zj = ΦjF −1rj + σ̃j = Φ̃jrj + σ̃j. When a fusion center is
presented to collect all the compressed measurements
{zj}Jj=1, the fused measurements can be concatenated

together to form a new vector z = [z⊤1 , z
⊤
2 , . . . , z

⊤
J ]
⊤.

Conformably, the received PSD of CR nodes can be
written as r = [r⊤1 , r

⊤
2 , . . . , r

⊤
J ]
⊤ and the sensing matrix is

Φ̄ =



































Φ̃1 0 . . . 0

0 Φ̃2 . . .
...

...
...

. . . 0
0 . . . 0 Φ̃J



































. (9)

Here, we assume all CR nodes use the same random
sampling matrix {Φj}Jj=1, denoted as Φ, sampled from
the i.i.d. Gaussian distribution, and thus, Φ satisfies
the RIP. Since the inverse Fourier transform matrix F −1
is orthonormal, the RIP of {Φ̃J}Jj=1 (denoted as Φ̃) is

unaffected. Formula (9) can be write as Φ̄ = IJ ⊗ Φ̃. ⊗ is
the Kronecker product and IJ is a J × J identity matrix.
The overall observation model can be expressed as:

z = Φ̄r + σ̃ , (10)

where σ̃ = [σ̃⊤1 , σ̃
⊤
2 , . . . , σ̃

⊤
J ]⊤. r can be solved by:

min
r
||r||1 + λ||z − Φ̄r||22. (11)

To guarantee a successful recovery of signal r, the
overall sensing matrix Φ̄ must satisfy the RIP, which
can be justified by the following theorem.

Theorem 1. Let A be an orthonormal basis, and let B be
the matrix with restricted isomery constant δK (B). The
restricted isometry constant of the Kronecker product
of A and B satisfies:

δK (A ⊗ B) = δK (B), (12)

This theorem provides conservation of restricted
isomerty constants across the Kronecker product of
an orthonormal matrix and a sensing matrix. The
proof is given in Appendix A. For our case, δK (Φ̄) =
δK (IJ ⊗ Φ̃) = δK (Φ̃), which implies that sensing matrix
Φ̄ satisfies RIP.
The centralized fusion (11) results in the global

optimal solution by incorporating the measurements
from all the CR nodes. This approach to recover the PSD
of the received signal is straight-forward and we use it
as a simple illustration. To solve (11), we first rewrite it
as:

min
r,p
||p||1 + λ||z − Φ̄r||22, s.t. r − p = 0. (13)

The scaled augmented Lagrangian can be written as:

Lρ(r,p,u) = ||p||1 + λ||z − Φ̄r||22 + ρ/2||r − p + u||22. (14)

The objective function and variables are split into two
parts. The separated variables p and r can be updated
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in an alternating fashion as follows:

rk+1 = argmin
r

(λ||z − Φ̄r||22 + ρ/2||r − pk + uk||22), (15)

pk+1 = argmin
p

(||p||1 + ρ/2||rk+1 − p + uk||22), (16)

uk+1 = uk + rk+1 − pk+1. (17)

The r-update process is a quadratically regularized
least-square problem, and the p-update can be solved in
closed form by soft-thresholding. In this case, the fusion
center collects the compressed measurements {zj}Jj=1
from all the CR nodes. The compressed measurements
are computed centrally to recover the received signals
PSD {rj}Jj=1, and thus, the unoccupied spectrum bands
are determined.

4.3. Spectrum Sensing via Joint Sparsity

Unlike the approach above, a more sophisticated
approach further exploits the structure of the received
signals PSD {rj}Jj=1 is proposed in the sequel. Since

the signal ensembles {rj}Jj=1 are the received signals
PSD at all the CR nodes, the sparse structures of
{rj}Jj=1 are identical to s̃. In other words, the occupied
frequency bands of the transmitted signals and received
signals are the same as long as the channel does
not experience deep fading. Note that {rj}Jj=1 are the
attenuated duplicates of s̃ and share a common support.
This kind of jointly sparse signals can be solved by the
proposed algorithm as follows,

min
B

∑

b=1

||r̃b||2 + λ||z − Φ̄r||22, (18)

where r̃b = R(b, :), R is a matrix formed by {rj }Jj=1, and
R = [r1, r2, . . . , rJ]. The solution to (18) has a natural
grouping of its components, and the components within
the group are likely to be either all zeros or all non-
zeros. Each r̃b corresponds to the received signals PSD
in the bth frequency band. We remark that the model
in (18) incooperating joint sparsity outperforms that in
(11), which recovers the spectra separately. In (18), the
first term tents to select the same sparse structure of
the received signals PSD, and thus, it can achieve a fast
convergence and high accuracy compared with (11).
To solve (18), we first rewrite it as:

min
B

∑

b=1

||r̃b||2 + λ||z − Φ̄p||22

s.t. r̃b − p̃b = 0, b = 1, 2, . . . , B, (19)

where {r̃b}Bb=1 are the received signals PSD at each
frequency bands, and p is the globe variable cascading

all received signals PSD. In this case, p̃b is the
corresponding part of rb in p. To solve (19), we first
write down the scaled augmented Lagrangian:

Lρ(r̃b,p,u) =
B

∑

b=1

(||r̃b||2 + ρ/2||r̃b − p̃b + ub||22) + λ||z − Φ̄p||22.

(20)
Similarity, the separate variables can be updated in an
alternating fashion:

r̃k+1b = argmin
r̃b

(||r̃b||2 + ρ/2||r̃b − p̃kb + ukb ||22), (21)

pk+1 = argmin
p

(
B

∑

b=1

ρ/2||r̃b − p̃k+1b + ukb ||22 + λ||z − Φ̄p||22),

(22)

uk+1b = ukb + r̃k+1b − p̃k+1b . (23)

The update rule is similar to the above with the
r̃b-update replaced by block soft-thresholding. This
approach exploits the structure of joint sparsity which
further reduces the number of measurements and
improves recovery quality. Once {rb}Bb=1 are recovered,
the availability of the spectrum resource in the network
is determined.

4.4. Distributed Spectrum Sensing via Joint Sparsity

The centralized approaches are costly and impractical
to implement when a fusion center is absent. To address
this situation, a distributed spectrum sensing algorithm
is proposed in the sequel.
Note that Φ̄ is a block diagonal matrix, and the

second term of (18) can be split into J least squares
terms corresponding to the measurements form all CR
nodes. The optimization problem can be equivalently
expressed as:

min
B

∑

b=1

||r̃b||2 +
J

∑

j=1

λj ||zj − Φ̃rj||22. (24)

The second least-square term is naturally separable
across j . At the same time, the first term enforcing
group sparsity of the received signals PSD and couples
all CR nodes. Assume the CR nodes are connected to
each other in the network. In this case, the spectrum
occupation can be estimated in a cooperative way by the
CR nodes through one-hop communication. To design a
decentralized implementation of (24), we first define a
function f (R) =

∑B
b=1 ||r̃b||2, which calculates the sum of

row vector norm of matrix R. The formula in (24) can
be rewritten as:

min
J

∑

j=1

(f (R) + λj ||zj − Φ̃rj||22). (25)
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To distributively solve the above problem, J identical
copies {Rj }Jj=1 of R are induced and the above problem
can be reformulated as:

min
J

∑

j=1

(f (Rj ) + λj ||zj − Φ̃pj||22)

s.t. pj − Rj (:, j) = 0, R − Rj = 0, j = 1, 2, . . . , J .
(26)

The basic idea of this approach is to update the
received signals PSD at each CR nodes locally, and a
synchronized update procedure on the coupled variable
R is performed by using the consensus averaging
technique. Specificity, the variables {Rj }, {pj } and {R}
can to be grouped into two sets, one set is {Rj } and
the other one is ({pj }, {R}). After separation, we can
update the two sets in an alternative fashion. When
given {pj } and {R}, the updates of Rj are separable.
When given {Rj}, we can update ({pj }, {R}) separatively.
The scaled augmented Lagrangian of this problem is
given as follows:

L(pj,R,Rj,u1j,u2j) =
J

∑

j=1

(f (Rj ) + λj ||zj − Φ̃pj||22

+ (ρ1/2)||pj − Rj (:, j) + u1j ||22
+ (ρ2/2)||R(:) − Rj (:) + u2j ||22),

(27)

During the iterative updating procedure, each CR node
maintains a copyRj of the global variable R and its local
variable pj . At a specific iteration step, Rj is updated
locally by each CR node:

Rk+1j = argmin f (Rj ) + (ρ1/2)||pkj − Rj (:, j) + uk1j ||22+
(ρ2/2)||R(:)k − Rj (:) + uk2j ||22),

(28)

where R is the consensus average of the Rj from all
the CR nodes, which can be obtained by the one-hop
communication between a CR node and its neighbors.
The global variable R is updated in a synchronous
fashion and disseminated throughout the network to all
CR nodes, as follows:

Rk+1 = argmin(1/J)
J

∑

j=1

(Rj (:)
k+1 + uk2j ), (29)

and the local received signal PSD pj is updated locally
at each CR node by calculating

pk+1j = argminλj ||zj − Φ̃pj||22
+ (ρ1/2)||pj − Rj (:, j)k+1 + uk1j ||22. (30)

The parameters are updated locally at the end of each
iteration step as follows:

uk+11j = uk1j + pk+1j − Rj (:, j)k+1,
uk+12j = uk2j + R(:)k+1 − Rj (:)k+1. (31)

Upon the convergence, every CR nodes in the network
obtain the same global variable R and its own local
received signal PSD. Hence, the spectrum occupancy is
determined locally at each CR node.

5. Primary User Localization

This section illustrates the PU localization mechanism.
The spectrum sensing results are utilized to relax the
incoherence requirement on Hα→β , and then the CRLB
is provided to give a lower bound of the errors of the
location estimates and to improve the performance of
the proposed algorithm.

5.1. Incoherence Requirement on Hα→β
Before analyzing the incoherence requirement on
channel gain matrix Hα→β , we first recall the definition
of the coherence of a matrix as follows:

Definition 2. (Coherence)[26] Let ψ1, . . . , ψn be the
columns of matrix Ψ ∈ Rm×n. The coherence of matrix
Ψ is defined as the maximum absolute value of the
cross-correlation between any two columns ψi ,ψj for
∀i, j , 1 ≤ i , j ≤ n, i.e.,

µ(Ψ) = max
1≤i,j≤n

〈ψi , ψj 〉
‖ψi‖2‖ψj‖2

. (32)

By definition, we have µ(Ψ) < 1 for all µ(Ψ). On the
other hand, if Ψ has orthonormal columns µ(Ψ) = 0.
Actually, we can find the lower bound of µ(Ψ) for Ψ

such that µ(Ψ) ∈ [
√

n−m
m(n−1) , 1].

Intuitively, the PU location can be obtained by
recovering s = {si }Ii=1 from the measurements z =

{zj }Jj=1 of all CR nodes,

z = Φ̄Hα→βs + σ̃ . (33)

Although straightforward, this approach imposes the
incoherence requirement on Hα→β , which can be
explained by the following theorem.

Theorem 2. [18, 27] For a K-sparse signal θ with
exact K non-zero entries. Let Ψ ∈ RL×N be a matrix
with coherence µ(Ψ), and Φ̄ = I ⊗Φ ∈ RM×L with Φ ∈
RIP(K, δK ). Then with high probability, any K-sparse
signal θ can be reconstructed from the measurement
y = Φ̄Ψθ by the l1 minimization if

K ≤ 1 +
1

16µ(Ψ)
, (34)
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and the number of measurements M obeys the relation
M = O(K log(N/K)).

For the inequality in (34), when there are more than
one PU in the CR network, the coherence of Hα→β
should be quite small, which limits the application
scope of this algorithm. To recover multiple PUs in
the CR network, channel matrix Hα→β should be
incoherent enough to separate the PUs and recover their
locations. The coherence property of Hα→β depends
on the geographical separation of the PUs, channel
frequency response, and the number of CR nodes
in the network. An incoherent matrix Hα→β can
separate multiple PUs in the network to implement
the localization task. This may require the well spaced
PUs in the geographical field, detailed profile of the
channel information, or a large number of CR nodes in
the network, which may be impractical to satisfy.
If we view the problem from a different perspective,

however, the incoherence requirement on Hα→β can
be delicately removed. We remark that the PUs are
naturally separated in the frequency domain due
to the avoidance of communication interference. So
at different frequency band {fb}Bb=1, the geographical
positions of the transmitted signal can be estimated.
Note that there is only one transmitted signal at
a specific frequency fb, which can greatly relax the
incoherence requirement on Hα→β for localization.
Once the geographical position of the transmitted
signal is obtained, the corresponding PU locations
are determined. Capitalizing this key observation, a
localization algorithm based on the Bayesian inference
at each frequency band is proposed in the sequel.

5.2. The Localization Inference Problem

Once the spectrum sensing results {rj }Jj=1 are obtained,
the occupied spectral bands are determined. For a
specific occupied frequency band fb, the geographical
location of the transmitted signal can be estimated
through a Bayesian inference. Specifically, the posterior
density of αi can be determined by p(αi |r̃b) ∝
p(r̃b |αi )p(αi ), where p(αi ) is the prior probability of
being at location αi . Without loss of generality, we
assume p(αi ) subject to an uniform distribution in
our problem. The conditional probability p(rb |αi ) is
calculated as:

p(r̃b |αi ) =
J

∏

j=1

p(rb(j)|αi ), (35)

and can be obtained during the off-line training. For
a specific position αi , the probability p(r̃b |αi ) for the
PSD r̃b at frequency band fb subjects to N (ub ,Σb). The
localization problem can be solved as:

αi = argmax p(αi |r̃b) = argmax p(r̃b |αi ). (36)

In this case, the αi with the largest p(αi |r̃b) is chosen as
the geographical position of the transmitted signal. The
centroid of K locations with the largest p(αi |r̃b) can also
be used as the final estimate of the transmitted signal
geographical position, and this approach is called KNN
(K-Nearest Neighbors).

5.3. Localization CRLB

Understanding the characteristics of the localization
error is an essential step to the error control and
performance improvement [28]. In CR networks, the
localization error depends on variety of network
configuration parameters. In this part, the CRLB is
calculated to specify this dependency and understand
the error characteristics of network localization.
The CRLB provides a lower bound on the error

covariance of any unbiased estimator. It is independent
on particular estimation methods as long as the
statistical model of observations on the variable is
specified. It is a benchmark to evaluate various
estimators that provide estimates equal to the ground
truth if averaged over enough realizations.
In our case, the parameters to be estimated include

the coordinates of αi and can be denoted as αi =
(xi , yi )

⊤. Its corresponding estimation is α̂i = (x̂i , ŷi )
⊤.

The covariance matrix of the estimate α̂i can be written
as

Cov(α̂i ) = Eαi {(α̂i − αi )(α̂i − αi )
⊤} =

[

σ2
x̂i

σx̂i ŷi
σŷi x̂i σ2

ŷi

]

,

(37)
where Eαi {·} stands for the expectation value, and
the mean square error of the location estimate α̂i is
var(α̂i ) = σ

2
x̂i
+ σ2

ŷi
.

Let f (P |αi ) denote the probability function of
observations P conditioned on parameter αi . The fisher
informationmatrix (FIM) for exponential family f (P |αi )
is defined as:

J(αi ) = −E










∂2 ln f (P |αi )
∂α2

i











=

[

Jxixi (αi ) Jxiyi (αi )
Jyixi (αi ) Jyiyi (αi )

]

.

(38)
By definition, the CRLB is the inverse of FIM, which

is a lower limit for the covariance matrix, i.e., Cov(α̂i ) ≥
{J(αi )}−1. Without loss of generality, the received signal
of CR j at frequency fb can be calculated using the
shadowing path loss model, as follows:

rb(j) = PL(d0) − 10γ log

(

dij
d0

)

+ Xσbj , (39)

where d0 is the reference distance. γ is the path loss
factor, dij is the distance between the transmitted signal
at αi and CR node at βj , and Xσbj ∼ N (0, σ2

bj ) stands
for the shadowing effect. The lower bound of the mean
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square of the location estimate α̂i is given by the
following theorem.

Theorem 3. The lower bound of the mean square error
of the location estimate α̂i is given by:

var(α̂i ) =

∑J
j=1(η1jη2j )

2 +
∑J
j=1(η1jη3j )

2

∑J
j=1(η1jη2j )

2
∑J
j=1(η1jη3j )

2 − (∑J
j=1((η1j )

2η2jη3j )2
,

(40)

where η1j =
10γ

σbj ln 10
, η2j =

cosφij
dij

, and η3j =
sinφij
dij

. φij is

the angle between the PU and CR node as illustrated in
Fig. 2(a).

The CRLB of the location estimate depends on
many factors in the network [29], which can be
classified into three categories: the system resource, the
environmental parameters, and the geographical layout
of the CR nodes. The system resource are the number of
CR nodes that can performance the localization task in
the network. The environmental parameters are σbj and
γ in the path loss propagation model. The geographical
layout of the CR nodes determines the value of the angle
φij and distance dij . A simple illustration is given in Fig.
2. In Fig. 2(a), three CR nodes, A, B and C are evenly
separated around PUO. This configuration achieves the
highest accuracy and called the geographic dilution of
precision [30]. To see the effect of the distance dij on the
CRLB, CR node A is moving towards PU O along line
AO while angle φ is unchanged. The ratio of the new
CRLB while moving A is compared to the original one.
In Fig. 2(b) we can see that the CRLB decreases as the
distance between CR node A and PU O deceases.
By the observation that CRLB of the location

estimation decreases with distance dij , a weighted
modification to (35) can improve the performance of
the localization algorithm. The conditional probability
p(rb |αi ) can be rewritten as follows:

p(rb |αi ) =
J

∏

j=1

1
dξij
p(rb(j)|αi)
∑I
i=1

1
dξij

, (41)

where we assign a weight 1
dξij

to each p(rb(j)|αi ), and
∑I
i=1

1
dξij

is the normalizing factor calculated across all

the possible locations {αi }Ii=1. During the calculation in
(41), the probability p(rb(j)|αi ) provided by a nearer
CR node is assigned to more importance, and thus, the
precision of the localization mechanism is enhanced.

6. Simulation Results

In this section, the numerical simulation results
are presented to demonstrate the performance of
the proposed spectrum sensing and PU localization

(a) An illustration of geographical dilution
of precision
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(b) CRLB will decrease as the distance between the CR
node and PU decrease

Figure 2. Geographical layout of the CR nodes affects the CRLB

approaches. We first describe the simulation setup
and the performance metrics. The performance of our
proposed spectrum sensing mechanism is evaluated
over different scenarios: different numbers of CR nodes,
different numbers of PUs, and different compressed
sampling ratios. Finally, the localization performance is
presented.

6.1. Simulation Setup and Performance Metrics

We assume the operational space is a 1000m × 1000m
square field, which is divided into I = 25 uniformly
distributed grids. K PUs locate randomly on I candidate
points. The wide bandwidth of the PUs’ transmitted
signal is equally divided into B = 64 sub-channels.
The transmitted signals experience frequency selective
fading during transmission. Here, we assume Rayleigh
channel fading in our simulation. J SUs are randomly
deployed in the same field working collaboratively to
implement the spectrum sensing and localization tasks.
Each CR node samples M random projections of the
original signal and the compressed sampling ratio is
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defined as M/B. The SNR is defined as the ratio of the
average received signal power to the noise power over
the entire bandwidth.
We evaluate the performance of our algorithms

using the following metrics. Denote the r̂ as the
recovered sparse vector, and α̂i as the recovered
PU locations. D is the distance between adjacent
grids. For spectrum availability detection, the receiver
operating characteristic (ROC) is considered, where the
true positive rate and false alarm rate are defined,
respectively, as follows:

TPR =
NHit

NHit +NMiss
, FAR =

NFalse
NFalse +NCorrect

, (42)

where NHit is the number of successful detections of
occupied spectrum bands, NMiss is the number of miss
detections, NFalse is the number of false alarms, and
NCorrect is the number of correct reports of unoccupied
spectrum bands.
The spectrum sensing and localization performance

are evaluated by their normalized MSEs, which are
defined as follows, respectively,

rMSE = E

{

‖r − r̂‖2
‖r‖2

}

, LMSE = E











∑K
i=1(‖αi − α̂i‖2
K × D











.

(43)

6.2. Performance v.s. Different Numbers of CR nodes

In this scenario, we set the number of active PUs K = 3
and the compressed sampling ratio M/B = 25%. The
SNR is 10dB and the number of CR nodes J varies
from 3 to 7 to evaluate the performance. The simulation
results are shown in Fig. 3 and Fig. 4.
From Fig. 3, we can see that the increase in

the number of CR nodes can greatly improve the
performance. This may mainly due to two reasons. On
the one hand, the larger number of CR nodes will
provide more measurements for the fusion center using
the l1 minimization algorithm to recover the original
sparse signal, which will enhance the probability of
successful reconstruction. One the other hand, more
CR nodes will better exploits the diversity in the
measurements from different CR nodes, which will
improve the detection correctness and reduce the
reconstruction error. The centralized algorithm with
group sparsity performs best. When the number of CR
nodes is three, the “naive" approach degrades greatly,
which validates the effectiveness of exploiting the joint
sparsity in spectrum sensing problem. When few CR
nodes present in the network, utilizing the joint sparsity
in the received signals can guarantee the performance
of reconstruction.
Fig. 4 shows the ROC curves at different numbers

of CR nodes when sampling rate equals 25%. When
the number of CR nodes is 3, the proposed mechanism

3 4 5 6 7
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Number of CR nodes

N
or

m
al

iz
ed

 M
S

E

Normalized MSE v.s. Number of CR nodes

 

Centralized
Centralized with group sparsity
Distributed with group sparsity

Figure 3. Normalized MSE of spectrum estimation
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3 CR nodes, centralized with group sparsity
3 CR nodes, distributed with group sparsity
5 CR nodes, centralized with group sparsity
5 CR nodes, distributed with group sparsity
7 CR nodes, centralized with group sparsity
7 CR nodes, distributed with group sparsity

Figure 4. ROC curves at different numbers of CR nodes

can still achieve a moderate true positive rate at a low
false positive rate. At the same false alarm rate, the
true positive rate improves as the number of CR nodes
increases. The centralized and distributed algorithms
demonstrate similar performances for the spectrum
occupancy detection task.

6.3. Performance v.s. Different Numbers of PUs

In this scenario, we set the number of CR nodes J = 4
and the compressed sampling ratio M/N = 25%. The
SNR is 10dB and the number of active PUs K varies
from 3 to 7 to evaluate the performance. The simulation
results are shown in Fig. 5 and Fig. 6.
From Fig. 5, we can notice that the reconstruction

errors of spectrum sensing and localization increase
with the number of PUs. More PUs will make the
original signal less spare, which will results in the
requirement of a larger number of measurements.
However, the performances of the proposed mechanism
are still acceptable. In the worst case, the normalized
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Figure 5. Normalized MSE of spectrum estimation
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Figure 6. ROC curves at different numbers of PUs

MSE of spectrum sensing for 7 PUs by the centralized
algorithm with group sparsity is around 0.06.
Fig. 6 shows the ROC curves at different numbers of

PUs when sampling rate equals 50%. The performance
of spectrum holes detection deteriorates as the number
of PUs increases. However, the proposed scheme can
still achieve a satisfied performance for the detection of
spectrum holes when 7 PUs present in the network.

6.4. Performance v.s. Different Compressed Sampling
Ratio

In this scenario, we set the number of CR nodes J = 4
and the number of active PUs K = 3. The SNR is 10dB
and the compressed sampling ratio varies from 25%
to 50% to evaluate the performance. The simulation
results are shown in Fig. 7.
In Fig. 7, the normalized MSE of spectrum sensing

decreases as the sampling ratio increases. A larger
number of samples result in a smaller normalized
MSE. The centralized algorithm with group sparsity
perform best in this case. In a severe environment, the
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Figure 7. Normalized MSE of spectrum estimation
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Figure 8. ROC curves at different sampling rates

reliable performance at the low sampling rate (25%) can
significantly save the energy of the CR nodes.
Fig. 8 depicts the ROC curves of the proposed mech-

anism at different compressed sampling ratios. With
a larger number of measurements, the performance
of detecting occupied frequency band is better. When
the compressed sampling ratio equals 50%, the perfor-
mance is best, at the expense of more measurements
taken by each CR node and processed centrally or
distributively.

6.5. Localization Performance

In this scenario, we set the number of CR nodes J =
5, the compressed sampling ratio M/N = 50%, the
number of active PU K = 3 and the SNR = 10dB.
We first compare the performance of the proposed
algorithms with the method by reconstructing s in (33),
and then the performance improvement of the modified
Bayesian location inference is demonstrated.
Fig. 9 shows the normalized localization error for

different algorithms by varying the number of CR
nodes from 4 to 7. Due to the incoherence requirement
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Figure 9. Comparison of localization algorithms at different
numbers of CR nodes.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized localization error

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

 CDF

 

Bayesian location inference
Modified Bayesian location inference

Figure 10. CDFs of normalized localization error

on Hα→β , (33) results in significant error in location
estimate when fewCR nodes are present in the network.
The performance is enhanced when the number of
CR nodes is larger, which reduces the coherence of
the channel gain matrix Hα→β . However, the proposed
Bayesian location inference approach outperforms (33)
because of exploiting the spectrum sensing results.
Different frequency bands naturally separate the PUs,
and thus, the incoherence requirement on Hα→β is
significantly relaxed. Moreover, the modified algorithm
improves the performance by utilizing the error
characteristics revealing by the CRLB. The cumulative
distribution functions of the normalized localization
errors are shown in Fig. 10 for the case when the
number of CR nodes equals to 7. The simulation results
show that the accuracy of the localization algorithm is
improved.

7. Conclusion

In this paper, we redesign the framework of compres-
sive spectrum sensing and PU localization in CR net-
works. The applicability of CS to cooperative spectrum
sensing is justified, and the spetrum recovery perfor-
mance is guaranteed. We use three different algorithms,
Lasso, group Lasso, and (distributed) group Lasso with
feature splitting, to recover the received signal’s PSD.
The locations of PUs are estimated through a Bayesian
inference approach based on the results of spectrum
sensing. This two-step treatment greatly relaxes the
incoherence requirement of the channel gain matrix,
which is required for PU localization based on spa-
tial sparsity. The error characteristics of localization
are analyzed by computing the CRLB, and the local-
ization algorithm design is improved by exploiting
the revealed error trends associated with the system.
Through numerical simulations, the efficacy and effi-
ciency of the proposed mechanism are validated.

Appendix A. Proof of Theorem 1

Proof. We follow the idea of [31] to prove the Theorem.
Let matrix C = A ⊗ B. Suppose set Ω is of cardinality
K . We denote CΩ as the sub-matrix of C containing the
columns ct , t ∈ Ω. For a column t ∈ Ω of matrix CΩ, we
have ct = at1 ⊗ bt2 , where at1 is column t1 of matrix A,
and bt1 is column t2 of matrix B. t1 ∈ Ω1 and t2 ∈ Ω2.
For each t ∈ Ω, we can find the corresponding t1 ∈ Ω1
and t2 ∈ Ω2. The cardinality product |Ω1||Ω2| ≤ K2. We
haveΩ ⊂ Ω1 ∪Ω2. Since the range of singular values of
a sub-matrix are interlaced inside those of the original
matrix, we have:

σmin(A ⊗ B) = σmin(AΩ1
)σmin(BΩ2

) ≤ σmin(CΩ), (A.1)

σmax(A ⊗ B) = σmax(AΩ1
)σmax(BΩ2

) ≥ σmax(CΩ). (A.2)

By definition of RIP, the δK (AΩ1
), δK (BΩ1

) and δK (CΩ)
are the smallest constants that make the following
inequalities holds:

(1 − δK (AΩ1
)) ≤ σmin(AΩ1

) ≤ σmax(AΩ1
) ≤ (1 + δK (AΩ1

)),
(A.3)

(1 − δK (BΩ1
)) ≤ σmin(BΩ1

) ≤ σmax(BΩ1
) ≤ (1 + δK (BΩ1

)),
(A.4)

(1 − δK (CΩ)) ≤ σmin(CΩ) ≤ σmax(CΩ) ≤ (1 + δK (CΩ)).
(A.5)

Substitute (A.3) and (A.4) into (A.1) and (A.2), we have:

(1 − δK (AΩ1
))(1 − δK (BΩ1

)) ≤ σmin(CΩ),

(1 + δK (AΩ1
))(1 + δK (BΩ1

)) ≥ σmax(CΩ). (A.6)

Note that δK (CΩ) is the smallest constant that satisfies
(A.5)

(1 + δK (C)) ≤ (1 + δK (A))(1 + δK (B)). (A.7)
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A is an orthonormal basis, and δK (A) = 0. So we have
δK (C) ≤ δK (B). By Theorem 3.7 in [32], we have δK (C) ≥
δK (B). Hence, δK (C) = δK (B).

Appendix B. Proof of Theorem 2

The joint probability density distribution f (P |αi ) can be
expressed as,

f (P |αi ) =
J

∏

j=1

1√
2πσbj

× exp



















−
rb(j) − PL(d0) + 10γ log(

dij
d0
)

2σ2
bj



















.

(B.8)

After obtaining the log-likelihood of f (P |αi ), the entries
of the FIM can be calculated according to (38), which
can be expressed as follows:

Jxixi (αi ) =
J

∑

j=1

(

10γ
σbj ln 10

)2 (

cosφij
dij

)2

, (B.9)

Jxiyi (αi ) = Jyixi (αi ) =
J

∑

j=1

(

10γ
σbj ln 10

)2 (

cosφij
dij

) (

sinφij
dij

)

,

(B.10)

Jyiyi (αi ) =
J

∑

j=1

(

10γ
σbj ln 10

)2 (

sinφij
dij

)2

. (B.11)

The definition of the angle φij is illustrated in Fig.
2(a). Since Cov(α̂i ) ≥ {J(αi )}−1, the lower bound of the
location estimation variance var(α̂i ) can be calculated
as:

var(α̂i ) = σ
2
x̂i
+ σ2

ŷi
≥
Jxixi (αi ) + Jyiyi (αi )

|J(αi )|

=
Jxixi (αi ) + Jyiyi (αi )

Jxixi (αi )Jyiyi (αi ) − Jxiyi (αi )Jyixi (αi )
. (B.12)

By Substituting (B.9), (B.10) and (B.11) into (B.12), we
can obtain the lower bound of the mean square error of
the location estimate α̂i .
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