
Towards a Secure Mutual Authentication and Key

Exchange Protocol for Mobile Communications

Yi-Jun He

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Shatin, NT, Hong Kong

yjhe@cse.cuhk.edu.hk

Moon-Chuen Lee

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Shatin, NT, Hong Kong

mclee@cse.cuhk.edu.hk

Abstract—We analyze several mutual authentication and key

exchange protocols (MAKEPs), and present a number of essential

properties of the protocols for secure mobile communications. To

address the weaknesses of existing protocols, we propose an

improved version of MAKEP known as EC-MAKEP. Besides

supporting the essential features present in the existing protocols,

the proposed protocol also provides the user anonymity and

forward secrecy properties that many of the existing protocols do

not support. Further, the proposed protocol compares favorably

with ES-MAKEP, an improved version of the early MAKEPs, in

terms of computation cost and communication bandwidth. In

addition, EC-MAKEP supports an implicit authentication of

server and a dual authentication of client.

Keywords-MAKEP; Elliptic Curve; forward secrecy; user

anonymity.

I. INTRODUCTION

The mutual authentication and key exchange protocol
(MAKEP) presented in [1] aimed to provide secure
authentication between a user and a server, and to enable them
to determine jointly a session key. This session key can then
be used to establish a secure communication channel between
the user and the server. So far, different types of mutual
authentication and key exchange protocols have been
proposed. In general, such protocols could be grouped into
two categories: public key based protocols, and symmetric key
based protocols.

In the public key based protocols [2], each party holds a
pair of private and public keys. The private key is kept by the
owner, and used either for decryption (confidentiality), or
encryption (signature) of messages. The public key is
published to be used for the reverse operation. They provide
arbitrarily high levels of security and do not require an initial
private key exchange. However, when implemented on low-
power wireless devices, these operations can be very
inefficient. Further, these protocols require the support of the
Public-Key Infrastructure (PKI) for authentication purpose;
and the high complexities of the underlying crypto operations
could prevent the public key cryptosystems from being widely
deployed in most of the applications running on low-power
wireless devices.

In symmetric key based protocols [3], a common key is
used by both communication partners for encryption and

decryption. The symmetric key crypto algorithms are much
faster than the public key crypto algorithms when
implemented in wireless devices. However, a symmetric key
based protocol requires the two communication entities to
share a long-lived key before starting their communication. So,
how to securely distribute the long-lived key to each
communication entity is an important issue. If it is not
securely distributed, the attackers could make use of the long-
lived key to break the protocol. Moreover, in order to
communicate with different entities, each entity needs to
possess a set of distinct long-lived keys for communicating
with different partners. Hence key management is another
problem when deploying symmetric key based protocols.

In general, a good mutual authentication and key exchange
protocol should possess the following properties [4,5,6]:

User Anonymity: In mobile communications, most users
require their identity and private information to be kept
confidential. This property assures the anonymity of a mobile
user and prevents an attacker of a malicious entity from
getting hold of confidential information of an individual user.

Forward secrecy: This property ensures that if the long-
term private keys of one or more of the entities are
compromised, the secrecy of previously established session
keys should not be affected.

Data Integrity: A system with this property implies that it
can verify if any data received from the sender has been
modified during transmission.

Known-key security: If one session key has been obtained
by an adversary, the protocol should ensure that neither the
private keys nor other session keys (past or future) would be
compromised as a result.

Key control: The secret session key between any two
entities should be jointly determined; neither entity can
predetermine the session key.

Key-compromise impersonation resilience: If the long-
term private key of an entity A is compromised, the protocol
would allow the adversary to impersonate A; but it should not
allow the adversary to impersonate other entities to A.

Unknown key-share resilience: An entity A cannot be
coerced into sharing a key with any entity C when in fact A

RGC Direct Grant with Project ID 2050347

peri
Typewriter
WIOPT 2008, 1st–3rd Apr 2008, Berlin, Germany.

Copyright © 2011–2012 ICST ISBN 978-963-9799-18-9

DOI 10.4108/wiopt.2008.3402

peri
Typewriter

peri
Typewriter

thinks that it is sharing the key with another entity B.

In addition, based on the considerations for a mobile
communication environment, the protocol should allow for the
limitations of mobile devices, including low wireless
bandwidth, and limited computation power. The list below
could be seen as performance measurement criteria [7].

1. Minimum number of passes: To reduce latency time, the
number of message exchanges required between entities
should be kept minimal.

2. Efficient usage of bandwidth: Due to the low bandwidth
in the mobile communications, the total number of bits
transmitted should be kept as small as possible.

3. Limited computational capability: Since the mobile
device computation capability is generally limited, the
protocol should reduce the number of cryptographic
operations, and employ more offline computations than
online computations as much as possible.

This paper proposes a relatively secure and efficient
MAKEP for mobile communications between individual lower
power wireless devices and a powerful server. The proposed
protocol aims at being equipped with the above mentioned
essential security features.

The organization of this paper is as follows. In section 2,
we first introduce the original MAKEP proposed by D. S.
Wong and A. H. Chan [8]; then we present several improved
MAKEPs proposed in the literature [9,10,11]. Section 3
provides a brief review and the cryptanalysis of ES-MAKEP
[11]; it is the latest improved version of MAKEP and is
relatively more secure and efficient than other improved
MAKEPs. In section 4, we present our proposed improved
MAKEP known as EC-MAKEP which has addressed the
weaknesses of the contemporary MAKEPs [8,9,10,11]. In
section 5, security and performance analysis of EC-MAKEP
are presented. Finally, Section 6 concludes the paper.

II. RELATED WORK

In this section, we analyzed several existing MAKEPs
which are relatively more efficient than those public-key based
protocols, and more secure than the symmetric key protocols.

2.1 Server-specific MAKEP

In 2001, Duncan S. Wong et al. proposed a Server-specific
MAKEP [8] (say, Ss-MAKEP) for secure wireless
communications between a low-power wireless device (client)
and a powerful base station (server). To reduce the high
computation cost incurred in public key based cryptographic
operations, this protocol avoids using any of such operations
on the client side. Instead, it uses efficient symmetric key
based operations. Furthermore, it does not need to maintain a
secure database of the long-lived keys of its clients though
such a database is usually required by a conventional
symmetric key based scheme. So, it lets each client keep a
certified long-lived key and send it securely to the server
whenever the protocol is executed; thus the cost of
maintaining and searching through such a database could be
eliminated. Further, client can change its key anytime by

obtaining a new certificate from CA without involving the
server. Therefore there is no key synchronization problem
between client and server. However, this protocol requires the
client to possess a certificate specific to the server before
communicating with the server. In other words, each
certificate is server-specific. So, a client has to keep a lot of
distinct certificates in order to communicate with different
servers. As a mobile device has limited storage, it may not be
practical to implement the protocol. Moreover, as the protocol
requires the client to send its long-lived symmetric key to
server when executing the protocol, the server could get to
know the long-lived symmetric key of the client; this makes it
possible for a malicious server to impersonate the client.

2.2 Linear MAKEP

Duncan S. Wong et al. also presented another protocol
called Linear MAKEP [7] (say, L-MAKEP) which is an
improved version of Ss-MAKEP. In Ss-MAKEP, client and
server share a symmetric key KA , and client authentication is
no more than a conventional symmetric key based
authentication scheme. So a malicious server is able to
impersonate its own clients. However, in L-MAKEP, the
server does not share any key with the client; thus, it prevents
any server from impersonating its own clients. In addition,
instead of keeping numerous distinct certificates, each client
generates a number of key pairs which are then sent to the
Trusted Authority (TA) to obtain a signature for each key pair.
The client then keeps the signatures for the key pairs. Before
communicating with the server, the client uses one key pair
and its TA signature to compute a certificate to be sent to the
server. The total number of times that the client can run the
protocol would be limited by the total number of key pairs it
possesses unless the client would generate more key pairs and
obtain the signatures from the TA for these keys. Further, both
the L-MAKEP and the Ss-MAKEP schemes cannot resist
unknown key-share attack since the messages transmitted in
the protocol do not include at the time both the sender identity
and the recipient identity. Therefore, attackers can pretend to
be the client or the server to launch the attack.

2.3 Improved Ss-MAKEP and Improved L-MAKEP

Usually, the unknown key-share attack can be prevented
by requiring each entity to show the CA that both the private
key and the public key before issuing the certificate, since the
attacker cannot show the corresponding private key[20].
However, in certain practical situations, the CA may not
require the private key. Kyungah Shim [8] proposed an
improved Ss-MAKEP (say, ISs-MAKEP) and an improved L-
MAKEP (say, IL-MAKEP) to address the problem by
including the identities of the sender and recipient in the
encrypted messages. Thus, after decrypting a message, the
recipient can detect the presence of the attack by checking if
the identity in the certificate matches the identity in the
encrypted message. Further, when compared with the original
protocols, the improved versions did not involve additional
computation cost. However, it is reported in [8] that IL-
MAKEP still cannot resist the man-in-the-middle attack.

2.4 I-MAKEP

Jim-Ke Jan et al. [9] proposed an improved MAKEP (I-
MAKEP) based on Girault’s method [21] to resist the
malicious attacks such as unknown key-share and man-in-the-
middle attacks . In Girault’s method, the computation of the
client public key involves the participation of both the CA and
the user; and the client certificate is “embedded” in the public
key itself. So client certificates are no longer needed; the client
secret key would be computed by the client, and remains
unknown to the CA. I-MAKEP adopted this method; it
requires the client to keep only one secret key instead of a
certificate and many pairs of private keys in the client memory.
So, it is different from IL-MAKEP and ISs-MAKEP, which
use the certificate for authentication. Therefore, I-MAKEP can
resist the man-in-the-middle attack and requires less memory
space. In addition, similar to IL-MAKEP, I-MAKEP employs
the pre-computation technique to reduce the client
computation overhead. However, its online computation cost
and the bandwidth requirement are still high. The computation
cost, bandwidth requirement, and the number of message
exchanges are important considerations when designing key
exchange protocols, especially for wireless communications
with low power mobile devices. So there is a need for
improving the performance of I-MAKEP.

2.5 ES-MAKEP

In 2004, Fuw-Yi Yang et al.[10] proposed a protocol
known as ES-MAKEP for mobile communications, which
involved only 0.1 online modular multiplication on the client
side. Its online computation is around ten times faster than the
computation of conventional protocols. The number of
message exchanges and the message size are smaller than
those of the previous protocols Ss-MAKEP, L-MAKEP, ISs-
MAKEP, IL-MAKEP and the I-MAKEP. In addition, the
proposed protocol can resist not only the unknown key-share
attack mentioned above but also the man-in-the-middle attack
which Ss-MAKEP and ISs-MAKEP could not resist. More
details of the protocol are presented in section 3.

III. CRYPTANALYSIS OF ES-MAKEP

As mentioned above, different approaches have been
proposed for improving MAKEPs, such as ISs-MAKEP, IL-
MAKEP and ES-MAKEP etc.. However, all of them could not
support the security properties forward secrecy, and user
anonymity. There is thus a need to develop a new mutual
authentication and key exchange protocol to support the
foregoing securities features.

In this section, we describe ES-MAKEP in detail, which
outperforms the previous protocols in terms of security,
message round (no. of messages), message size, server
computation cost and client online computation cost. We also
analyze the weaknesses of ES-MAKEP, including lacking
forward secrecy and user anonymity.

3.1 Brief Review of ES-MAKEP

Before presenting the details of ES-MAKEP, we first
introduce the notations and symbols used in [10]:

SKS: server private key

PKS: server public key

K: a secret key of symmetric encryption/decryption
function

εPKS
 (): an asymmetric encryption function

δSKS
 (): an asymmetric decryption function

EK(): a symmetric encryption function

DK(): a symmetric decryption function

h(): a hash function

IDU: the identification of a client

IDS: the identification of a server

σ: session key

p, q: a client private key pair

g, n: a client public key pair

x || y: string x concatenates string y

|n|: bit length of n

rUK, rUF, rUR: three random numbers selected by client

rSK: a random number selected by server

l: length of session key

Figure 1 depicts the message flows of ES-MAKEP.

Figure 1 depicts the message flows of ES-MAKEP.

Client Server

C1=εPKS
(rUK)

CMT=g
rUF||rUR mod n

M1 = {C1, CMT, IDU}

 rUK =δSKS(C1)

σSU= rSK⊕ rUK

C2= EσSU(rUK)

 M2 = {rSK, C2}

σUS= rUK⊕rSK

r’UK= DσUS(C2)?= rUK

C3=EσUS (IDU)

SF = h(rUK, rSK, IDU, IDS)

SR=2|n|(rUF - SF)+ rUR mod λ(n)

 M3 = {C3, SR}

 IDU =DσSU (C3)

 SF = h(rUK, rSK, IDU, IDS)

CMT’= g
SF||SR mod n?=CMT

Figure 1. Original ES-MAKEP

The steps of the protocol are as highlighted below.

Step 1: As an offline initialization step, two large prime
numbers p and q∈{0,1}

k/2
 are randomly chosen such that p =

2 p’ + 1 and q = 2 q’ + 1. Then, the client selects a random
value g of order λ(n) from the multiplicative group g∈Zn

*
,

where n=pq and λ(n)=lcm(p-1, q-1)=2p’q’. Then client
announces the public key pair (n,g) to the public, and keeps its
private key pair (p,q) as a secret.

Step 2: Client encrypts the random number rUK using the

server public key, and computes CMT=g
rUF||rUR

mod n. Then,
client sends server the message M1 including C1, CMT, and
client identity information IDU to ask for initiating a new
session.

Step 3: On receiving M1, server decrypts the ciphertext C1

to obtain rUK, and calculates the session key σSU using rUK and
the random number rSK it selects. Server also encrypts the
random number rUK using the session key. Then, server sends
M2 which includes rSK and C2 to client.

Step 4: Upon receiving the message M2, client calculates

the session key σUS= rUK⊕rSK, and decrypts the ciphertext C2

to obtain r’UK. Client authenticates server by checking if rUK
equals r’UK since only server could compute σSU. Thus, if
messages M1 and M2 are successfully transmitted, σSU and σUS
should have the same value. Accordingly, rUK and r’UK should
be equal. After authenticating server, client computes the
quantities SF = h(rUK, rSK, IDU, IDS) and C3=EσUS (IDU). Then it

solves SR using (1).

2
|n|

rUF + rUR = 2
|n|

SF + SR mod λ(n)

 SR=2
|n|

(rUF - SF)+ rUR mod λ(n) (1)

At last, client sends the response message M3 = {C3, SR} to
server.

Step 5: Server computes the quantities SF = h(rUK, rSK, IDU,

IDS) and CMT’= g
SF||SR

mod n. Then, server checks if CMT is
equal to CMT’. Based on Adi Shamir and Yael Tauman’s
scheme[11], CMT and CMT’ should be equal if all the
messages are correctly transmitted.

At this point, ES-MAKEP should have completed the
mutual authentication and key exchange process. But from the
security perspective, it is not safe enough, as it could not
support the security features forward secrecy and user
anonymity. Further details of these two problems are
presented in the next two subsections.

3.2 Lacking Forward Secrecy

Park, et. al. provide a definition for forward secrecy in [12]
as the following: Even if a long-term private key has been
disclosed to an adversary, the session keys established via the
protocol using the long-term key would not be compromised.
However, ES-MAKEP does not support forward secrecy,
since the session key could be computed if the server secret
key has been disclosed. Further details of the problem are
presented below.

Assume an adversary E is listening to the session of the
ES-MAKEP; the server secret key SKS has been disclosed; and
the adversary could obtain C1. Then it can compute rUK
=δSKS(C1) by using the server secret key SKS. E could also

obtain rSK from M2; thus the session key σSU could then be

computed as rSK⊕rUK. Since the disclosure of the server secret

key SKS would enable an adversary to compute the session key
σSU, ES-MAKEP does not satisfy the requirement for forward
secrecy.

When the above mentioned scenario occurs, the previous

session key could be exposed to the attacker. With this session
key and those previously intercepted transmitted messages, the
attacker can easily get useful information from those messages
encrypted using the session key.

3.3 Lacking User Anonymity

Any system supporting user anonymity means that it keeps
user secrets confidential or avoids disclosing any confidential
user information. Especially in e-business applications, user
anonymity is an important issue since online business
transactions could incur many security problems if user secrets
are disclosed during the process. For instance, an attacker
could make use of the user identity to impersonate the user to
perform online shopping.

ES-MAKEP suffers from lacking the user anonymity
property mentioned above. The user identity IDU is transmitted
in M1 without any encryption. So, an attacker could obtain M1

to figure out the IDU. Thus the user identity could be exposed
to the attacker. The attacker could make use of this IDU to
pretend to be a legitimate user and initiate a session with
server.

IV. THE PROPOSED PROTOCOL EC-MAKEP

In this section, we introduce our mutual authentication and
key exchange protocol known as EC-MAKEP. It possesses the
important security features forward secrecy, user anonymity,
as well as all the good security features of ES-MAKEP. It is
assumed that the server ID has been distributed to its clients
before the protocol execution, and that the server has
maintained a database to legitimate client IDs. The improved
protocol EC-MAKEP is as depicted in Figure 2.

Client Server

CMT=g
rUF||rUR mod n

RC=rC ·G(mod) p1 RS=rS ·G(mod)p1

M1 = {RC, CMT}

 σSU= rS ·RC

 C1= EσSU(RC)

M2 = {RS, C1}

σUS=rC ·RS

RC’= DσUS(C1)?=RC

C2=EσUS(IDU)

SF = h(RC, RS, IDU, IDS)

SR=2|n|(rUF - SF) + rUR mod λ(n)

M3 = {C2, SR}

 IDU =DσSU (C2)

 Check IDU∈ database

 SF’ = h(RC, RS, IDU, IDS)

CMT’= g
SF||SR mod n?=CMT

M4 ={ SF’ }

SF ?= SF’

Figure 2. The proposed protocol EC-MAKEP

1. As an offline initialization step, the ECDH algorithm
has been preset to use a big prime p1 and two other
parameters a and b satisfying the equation y

2
=(x

3
+ax+b)

mod p1, to form an elliptic group Ep1 (a,b). Then, it
chooses the basic point G=(x,y) with order q1, where

q1is the minimum integer satisfying q1 ·G =O, O being a
point at infinity. In addition, two large prime numbers p
and q∈{0,1}

k/2
 are randomly chosen such that p = 2 p’

+ 1 and q = 2 q’ + 1. Then, the client selects a random
value g of order λ(n) from the multiplicative group
g ∈ Zn

*
, where n=pq and λ(n)=lcm(p-1, q-1)=2p’q’.

Then client announces the public key (n,g) to the public,
and keeps its private key pair (p,q).

2. In order to communicate with the server, the client
chooses an integer rC< q1, rUF∈R{0,1}

l
and rUR∈RZλ(n).

Then it computes RC=rC ·G(mod)p1 through an Elliptic
Curve Cryptography (ECC) point multiplication
operation. According to the ECC property, RC is an

ECC point. Then client computes CMT=g
rUF||rUR

mod n,
and sends RC and CMT to server.

3. Server chooses an integer rS< q1, and computes
RS=rS ·B(mod) p1. According to the ECC property, RS is
an ECC point.

4. After receiving RC, server computes session key σSU=
rS ·RC and uses the symmetric encryption algorithm EK()
to encrypt RC with the encryption key σSU. Then server
sends the encrypted value C1 and RS to client.

5. Client computes session key σUS=rC ·RS, and employs
the symmetric decryption algorithm DK() to decrypt C1
with the decryption key σUS to obtain RC’. If RC’ is equal
to RC, σSU and σUS must be equal; otherwise, the values
sent by server to client or the values sent by client to
server could have been changed by an attacker.

6. Client encrypts IDU using session key σUS as the
encryption key, and computes the quantities SF = h(RC,
RS, IDU, IDS), and SR =2

|n|
(rUF - SF) + rUR mod λ(n). Then

client sends C2 and SR to server.

7. Server authenticates the client by checking if the IDU
exists in the client ID database; it then computes the

quantities SF’ = h(RC, RS, IDU, IDS) and CMT’= g
SF||SR

mod n. Server compares CMT’ with CMT it received
from the client, and then sends SF’ to client.

8. Client checks if SF and SF’ equal.

V. ANALYSIS OF EC-MAKEP

The security evaluation of a mutual authentication and key
exchange protocol is normally based on the list of security
features mentioned in section 1. In addition, computation costs
and bandwidth requirements are two other common criteria
used to evaluate the performance of a MAKEP implemented
in a wireless environment. In the following sub-sections, we
analyze our proposed EC-MAKEP based on the above-
mentioned features or criteria.

5.1 Implicit Authentication of Server

The implicit authentication of server is done by the client
without using directly server ID or certificate. The proposed
protocol EC-MAKEP supports an implicit authentication of
server as the following. It is assumed that the server ID has
been distributed safely to client before protocol execution. If

messages M1 and M2 are successfully transmitted, client can
compute SF using RC, RS, IDU and IDS. After obtaining IDU

from client, server computes SF’, and sends it to client. Client
compares SF’ received from server with SF to authenticate the
server indirectly because both SF’ and SF have been computed
using IDS.

5.2 Dual Authentication of Client

Dual authentication here means that besides using client ID
to authenticate the client, the client could also be authenticated
implicitly. In EC-MAKEP, server first authenticates client by
checking if the decrypted client identity IDU is in its client ID
database. After computing SF’=h(RC, RS, IDU, IDS), and

CMT’=g
SF’||SR

mod n, the server can authenticate the client for
the second time by comparing CMT’ and CMT received from
the client. As only client knows the secret key pair (p,q), it can
compute λ(n)=lcm(p-1, q-1) using its secret key pair, and
SR=2

|n|
(rUF - SF) + rUR mod λ(n). Based on Adi Shamir and Yael

Tauman’s scheme[11], when 2
|n|

rUF + rUR = 2
|n|

SF + SR mod

λ(n), CMT= g
rUF||rUR

mod n= g
SF||SR

mod n=CMT’. Thus if
CMT and CMT’, the server could successfully authenticate the
client again since only the client could compute CMT and SR.

5.3 Security Properties

User Anonymity. In EC-MAKEP, IDU is not included in M1
anymore; it is sent in M3 in an encrypted form EσUS(IDU). As

IDU is encrypted using the session key σUS computed as rC ·RS,

only the server could compute the session key and decrypt C2
to obtain the client identity IDU. The server can authenticate
client by checking if IDU is within its client ID database. In
this way, the client identity information could not be made
accessible to an attacker. Thus, the user identity can be kept
confidential, and the requirement for user anonymity can be
met.

Forward Secrecy. In EC-MAKEP, the client sends a pre-
computed ECC point RC to server. Similarly, the server sends a
pre-computed ECC point RS to client. The session key would
then be computed as rS ·RC by the server, and as rC ·RS by the
client. Now, using εPKS

(rUK) instead of RC in message M1 from

client to server, and using rSK instead of RS in message M2
from server to client can help both parties to establish a secret
session key satisfying the requirement for forward secrecy.
Suppose the attacker could somehow get hold of RC, RS and
the server private key; it still cannot successfully obtain the
previous session key because according to the property of the
ECC algorithm, the attacker cannot compute rS or rC using RC
and RS. Therefore, the compromise of the long-term private
key of the server does not lead to the disclosure of the
previous session key. Thus, EC-MAKEP can support forward
secrecy.

Data Integrity. A system supporting data integrity implies
that it can check if the data received from the client are correct;
that is, it can check if the data transmitted to the receiver have
been modified. In EC-MAKEP, client can check RC and RS by
using session key σUS to decrypt C1 to see if RC is equal to RC’,
since RS was used to compute σUS and RC was encrypted using
σSU. If RC and RS were successfully transmitted, the session

keys σSU and σUS should be the same, and RC should be equal to
RC’. The other messages transmitted in the protocol can also
be verified as below. The client first computes SF = h(RC, RS,
IDU, IDS); it then computes SR using SF, which is subsequently
sent to the server. Since the parameters RC, RS, IDU, IDS used
in computing SF have all been transmitted in the network, if
any one of them has been modified during the transmission,
the SF calculated by client would not be equal to the one
calculated by server. As a result, CMT would not be equal to
CMT’. So, all the data transmitted during the execution of EC-
MAKEP can be verified; so the protocol facilitates the
validation of data integrity.

Known-key security. With the proposed protocol EC-
MAKEP, if the current session key has been compromised, the
other session keys (past and future), and the private keys of the
client and the server could still be safe. Since session key
computation uses a random value of client (server) and a pre-
computed value of server (client), and the random value is
different in each session, so the past or future session keys
have no relation with the current one. Further, as the private
keys of the client and server are not involved in the
computation of the session key, they would not be
compromised even if the session key has been disclosed.

Key control. In the protocol EC-MAKEP, both client and
server cannot predetermine the session key being established,
because the establishment of the session key involves both a
random value and a pre-computed value. Each of the values
comes from a different entity, so neither the client nor the
server can determine the session key before the
communication.

Key-compromise impersonation resilience. With the
protocol EC-MAKEP, even if the private key of the client has
been exposed, an attacker can impersonate neither the client
nor the server because the protocol does not use the private
keys of the two entities in the key exchange and authentication
process; it uses the pre-computed value RC and RS instead.

5.4 Computation Cost and Bandwidth

Computation Cost. To simplify the estimation of the
computation cost, we divide the computation cost of the
protocol into two parts: offline computation and online
computation. RC, CMT and RS can be computed before the
client communicates with server via the proposed protocol; so
such computations can be regarded as offline computations.
Moreover, the costs of additions, hash operation h(),
symmetric encryption EK(), and decryption DK() would not be
included since the costs of these operations are much smaller
than the cost of the elliptic curve point multiplication
operation.

Fuw-Yi Yang and Jinn-Ke Jan [10] presented their analysis
of computation cost and bandwidth requirement of ES-
MAKEP. By following their approach, we have carried out a
similar analysis on our proposed protocol EC-MAKEP, and
the results are as presented below. Based on the findings of
[14,15], an ECC with 160-bit key length could offer roughly
the same level of security as RSA with 1024-bit modulus. As
to the modulus exponent function g

x
mod n, we set the length

of modulus n equal to 1024bits, where x is a 160-bit random

integer. The cost of computing such a modulus exponent
function is estimated to be about 1.5|x| modular multiplications
[16], equal to around 240 modular multiplications (|x| indicates
the length of x). When the length of p1 is 160 bits in the
elliptic curve point multiplication function, it would be 8 times
faster than modulus exponent computation. So it can be
deduced that the computation cost of elliptic curve point
multiplication is equivalent to around 29 modular
multiplications [16]. Tables I and II present the comparisons
of computation costs of EC-MAKEP and ES-MAKEP on the
client side and the server side respectively.

Note: MMs denotes the computation cost of a modular
multiplication a*b mod n, where a, b, and n are all set to be
1024 bits.

TABLE I. COMPARISON OF COMPUTATION COSTS ON CLIENT SIDE (MMS)

 EC-MAKEP ES-MAKEP

 Online Offline Online Offline

Message M1 0 1805 a 0 1778

Message M2 0 0 0 0

Message M3 0.1 b 0 0.1 0

Total 0.1 1805 0.1 1778

TABLE II. COMPARISON OF COMPUTATION COSTS ON SERVER SIDE

(MMS)

 EC-MAKEP ES-MAKEP

 Online Offline Online Offline

Message M1 0 29 c 1536 0

Message M2 0 0 0 0

Message M3 1776 d 0 1776 0

Total 1776 29 3312 0

a. Computing RC requires one ECC point multiplication,

with a cost of 29MMs. Computing CMT=g
rUF||rUR

mod n
needs 1.5*(160+1024)=1776MMs[17].

b. Fuw-Yi Yang et al. [10] show that to compute
SR=2

|n|
(rUF - SF)+ rUR mod λ(n) requires 0.1MMs.

c. Computing RS requires one ECC point multiplication,
with a cost of 29MMs.

d. Computing CMT’= g
SF||SR

mod n requires
1.5*(160+1024) = 1776MMs.

On the client side, most of the computation cost in EC-
MAKEP is incurred offline and it requires a similar online
computation cost as ES-MAKEP. Although EC-MAKEP
requires a slightly bigger offline computation cost on client
side, the small additional cost for computing RC and RS are
justifiable since the underlying operations could help to
provide forward secrecy, and enhance the security of the
protocol. Moreover, the offline computation would be
performed only once; so the computation cost can be
considered insignificant.

On the server side, EC-MAKEP requires a much smaller
online computation cost compared with ES-MAKEP, since in
EC-MAKEP, server does not need to do asymmetric
decryption operation any more. As a result, EC-MAKEP

reduces the computation burden of the server when the
protocol runs.

Bandwidth. Table III shows the bandwidth overheads of EC-
MAKEP and ES-MAKEP. As suggested in [18], for practical
cryptographic operations, we set |l| =|IDU|=|rUF|=|SF|=160 bits.

TABLE III. BANDWIDTH OVERHEADS IN EC-MAKEP AND ES-MAKEP

(BITS)

 EC-MAKEP ES-MAKEP

Message M1 1184a 2208

Message M2 480b 320

Message M3 1184c 1184

Message M4 160 0

Total 3008 3712

a. RC is computed by using an ECC point multiplication
modulo p1; so the maximum length of RC would be

|p1|=160bits. CMT is computed as g
rUF||rUR

mod n; thus
the length of CMT is equal to |n|=1024bits.

b. Similar to RC mentioned above, the length of RS could
be 160bits. C1is estimated to have a length equal to the
length of RC, which is 160bits. And we set the length
of IDS to be 160bits, equal to its length in ES-MAKEP.

c. As in ES-MAKEP, it is assumed the lengths of both C2
and IDU are 160bits, and the length of SR is 1024bits.

As shown in Table III, when compared with ES-MAKEP,
EC-MAKEP reduces the bandwidth requirement by 704bits. A
smaller bandwidth requirement is certainly an advantage for
low bandwidth wireless communication.

VI. CONCLUSIONS

It is generally agreed that a good mutual authentication and
key exchange protocol should possess the following security
properties: user anonymity, forward secrecy, data integrity,
known-key security, key control, and key-compromise
impersonation resilience. In addition, for a protocol used in a
wireless environment, its bandwidth requirement and
computation cost should be reduced to a minimal amount. We
studied the early mutual authentication and key exchange
protocol (MAKEP), and the improved MAKEPs; we also
identified their weaknesses. The latest improved protocol
known as ES-MAKEP addresses many of the security
problems of the previous MAKEPs. This paper proposes the
protocol EC-MAKEP which has improved on ES-MAKEP.
Our security analysis of the proposed protocol shows that EC-
MAKEP satisfies all of the major security requirements for a
secured MAKEP. It compares favorably with ES-MAKEP in
terms of the above mentioned security requirements. For
instance, ES-MAKEP does not support forward secrecy and
user anonymity; whereas EC-MAKEP supports both of the
two features. In addition, it provides implicit authentication of
server, and dual authentication of client, making it more
secure than the previous protocols. Moreover, when compared
with ES-MAKEP, EC-MAKEP has a smaller online
computation cost, and requires a smaller bandwidth. The
above advantages make EC-MAKEP more suitable for
practical implementation in a wireless environment.

ACKNOWLEDGMENT

The work reported in this article has been supported in part
by CUHK under RGC Direct Grant with Project ID 2050347.

REFERENCES

[1] Jakobsson, M., & Pointcheval, D, “Mutual Authentication and Key

Exchange Protocol for Low Power Devices,” In Financial Cryptography
(pp. 178–195). Springer-Verlag. 2001.

[2] Harbitter, A.H.&Menase, D.A., “Performance of public-key-enabled
Kerberos authentication in large networks,” In Proceedings of 2001
IEEE Symposium on Security and Privacy, pp. 170-183,2001.

[3] R.M. Needham and M.D. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers,” Commun. of the
ACM, 21(12):993-999, 1978.

[4] L. Chen, Z. Cheng, and N. P. Smart; “Identity based authentication key
agreement protocols from pairings,” Proceedings of the 16th IEEE
Computer Society Foundations Workshop (CSFW’03).

[5] Certicom’s Bulletin of Security and Cryptography. Code and cipher
vol.1, no.2. From www.certicom.com/codeandcipher.

[6] Jaegwan Park, Jaeseung Go, and Kwangjo Kim, “Wireless
Authentication Protocol Preserving User Anonymity,” SCIS 2001, The
2001 Symposium on Cryptography and Information Security. Oiso,
Japan, January 23-26, 2001. The Institute of Electronics, Information
and Communication Engineers.

[7] Kook-Heui Lee, Sang-Jae Moon, Won-Young Jeong, and Tae-Geun
Kim, “A 2-pass authentication and key agreement protocol for mobile
communications,” JooSeok Song(Ed.): ICISC’99, LNCS 1787, pp. 156-
168, 2000.

[8] D. S. Wong and A. H. Chan, “Mutual authentication and key exchange
for low power wireless communications,” Military Communications
Conference, 2001. MILCOM 2001. Communications for Network-
Centric Operations: Creating the Information Force, IEEE, Vol. 1, 2001,
pp. 39-43.

[9] K. Shim, “Cryptanalysis of mutual authentication and key exchange for
low-power wireless communications,” IEEE Communications Letters,
Vol. 7, No. 5, pp.248-250, 2003.

[10] J. K. Jan and Y. H. Chen, “A new efficient MAKEP for wireless
communications,” In Proceedings of the 18th International Conference
on Advanced Information Networking and Application (AINA’04),
IEEE, Volume 2, pp. 347-350, 2004.

[11] Fuw-Yi Yang and Jinn-Ke Jan, “A Secure and Efficient Key Exchange
Protocol for Mobile Communications” Cryptology ePrint Archive
2004/167, July, 2004, http://eprint.iacr.org.

[12] A. Shamir and Y. Tauman, “Improved online/offline signature
schemes,” Advances in Cryptology-CRYPTO’01, LNCS 2139, pp. 355-
367, 2001.

[13] DongGook Park, Colin Boyd and Sang-Jae Moon. “Forward Secrecy
and Its Application to Future Mobile Communications Security”
PKC2000, LNCS1751. Spring-Verlag , 2000. 433-445.

[14] Certicom Research, Standards for efficient cryptography, SEC 1: Elliptic
Curve Cryptography, Version 1.0, September 20, 2000.

[15] Lin Zhuxing, & Li Zhenglong, “Elliptic-Curve Undeniable Signature
Schemes,” The 11th information security conference, 331~338, 2001.

[16] A. Jurisic, & A.J. Menezes. ECC Whitepapers: Elliptic Curves and
Cryptography. Certicom corp. Available:
http://www.certicom.com/research/weccrypt. html.

[17] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of
Computation, 1987. 48(17)：203~209.

[18] Niels Fegruson, Bruce Schneier, “Practical Cryptography,” John Wiley
& Sons, 2003.

[19] A. Lenstra and E. Verheul, “Selecting Cryptographic Key Size,” The
Third International Workshop on Practice and Theory in Public Key
Cryptography, LNCS 1751, 2000. 446~465.

