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Abstract— We propose an adaptive model for the study of
cellular networks called the fluid model, useful to each specific
network environment characterized by the radio propagation
(distance path-loss and shadowing) and by the network con-
figuration. The key idea of the fluid model is to consider the
discrete base stations (BS) entities as a continuum of transmitters
which are spatially distributed in the network. This allows us to
obtain simple analytical expressions of the main characteristics
of the network. We focus on the downlink other-cell interference
factor, f , which is defined here as the ratio of outer cell received
power to the inner cell received power. Taking into account
the shadowing, f is expressed as a lognormal random variable.
Closed-form formulas of the interference factor’s mean mf and
standard deviation σf are provided in this paper. From f , we
are able to derive the global outage probability and the spatial
outage probability, which depends on the location of a mobile
station (MS) initiating a new call. Comparisons to Monte Carlo
simulations are proposed, performed in a traditional hexagonal
network. Although this factor has been firstly defined for CDMA
networks, the analysis presented hereafter is still valid for other
systems using frequency reuse 1, like OFDMA (WiMAX), TDMA
(GSM with frequency hopping), or even ad hoc networks.

I. INTRODUCTION

The estimation of cellular networks capacity is one of
the key points before deployment and mainly depends on
the characterization of interference. As downlink is often
the limited link w.r.t. capacity, we focus on this direction
throughout this paper, although the proposed framework can
easily be extended to the uplink. In cellular networks, an
important parameter for this characterization is the other-cell
interference factor f (OCIF). The precise knowledge of the
OCIF allows the derivation of outage probabilities, capacity
evaluation and then, the definition of Call Admission Control
mechanisms.

In this paper, we define OCIF as the ratio of total other-
cell received power to the total inner-cell received power.
Pioneering works on the subject [1] were mainly focusing on
the uplink. Working on this link, [5] derived the distribution
function of a ratio of path-losses, which is essential for the
evaluation of external interference. For that, authors approxi-
mate the hexagonal cell with a disk of same area. Based on
this result, Liu and Everitt propose in [6] an iterative algorithm
for the computation of the OCIF, also on the uplink.

On the downlink, [2] [3] aimed at computing an average
OCIF over the cell by numerical integration in hexagonal

networks. In [8], Gilhousen et al. provide Monte Carlo simu-
lations and obtain an histogram of f . In [7], other-cell inter-
ference is given as a function of the distance to the BS thanks
to Monte-Carlo simulations. Chan and Hanly [10] precisely
approximate the distribution of the other-cell interference.
They however provide formulas that are difficult to handle
in practice. Considering random networks, Baccelli et al. [9]
provide spatial blocking probabilities in random networks
by using gaussian approximation. OCIF is nevertheless not
their main concern. They were the first ones to consider
blocking probabilities that are evaluated on each location.
Authors of [17] make the choice of considering only the
first ring of interferers. They can then express the first ring
interference by an approximated formula. Although simple,
this approximation is not validated by simulations.

In contrast to previous works in the field, the modelling
key of our approach is to consider the discrete BS entities of
a cellular network as a continuum. Recently, the authors of
[15] described a network in terms of macroscopic quantities
such as the node density. The same idea is used in [16] for
ad hoc networks. They however assumed a very high density
of nodes in both papers and unlimited networks. We show
hereafter that our model is accurate even when the density of
BS is very low and the network size is limited (see section
III-B).

This paper extends the framework proposed in [11] and
[13] that provides a simple closed-form formula for f on the
downlink as a function of the distance to the BS, the path-loss
exponent, the distance between two BS, and the network size.
We validate here the formulas by Monte Carlo simulations
and show that it is possible to get a simple outage probability
approximation by integrating f over a circular cell. As f is
obtained as a function of the distance to the BS, it is possible
to derive a spatial outage probability, which depends on the
location of a newly initiated call. We moreover generalize the
approach developed in [14] by considering the effect of the
shadowing on the outage probability analysis.

We first introduce the interference model and notations.
Then we present the fluid model and its validation, considering
a pathloss only depending on the distance from the transmitter.
And using the fluid model, we derive outage probabilities.

Since in a real network, the power received at any point
of the system also depends on the local environment (terrain,
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buildings, trees), the radio link can be modelled by a term
which depends on the distance r from the transmitter (the line-
of-sight path), and the environment (terrain, buildings, trees).
The first term depends on the type of the global environment,
urban or country, and may moreover depend on the type
of cells: macro or micro. The last term, the shadowing, is
generally modelled as a lognormal distributed [20] function.
We thus propose a refinement of the fluid model taking into
account the shadowing and more generally the effects of each
specific environment (urban, country, streets buildings).

We establish the interference factor’s analytical expressions,
mean value and standard deviation, as a lognormal random
variable (RV) according to the Fenton-Wilkinson approxi-
mation for a sum of lognormal RV [18]. We show the the
environment of the system is characterized by a function
H(σ), and we establish its analytical expression. That function
depends on the topology of the network, the exponential
pathloss parameter and the shadowing. Using the fluid model
network approach, we express the interference factor’s mean
value and standard deviation, and analyze the influence of dif-
ferent network’s parameters: cell radius, exponential pathloss
parameter, distance of the mobile to its serving base station.

II. INTERFERENCE MODEL AND NOTATIONS

We consider a CDMA system and we focus on the down-
link. BS have omni-directional antennas, so that a BS covers a
single cell. If a mobile u is attached to a station b (or serving
BS), we write b = ψ(u).

The propagation path gain gb,u designates the inverse of the
pathloss pl between station b and mobile u, gb,u = 1/plb,u.

The following power quantities are considered:
• Pb,u is the transmitted power from station b towards

mobile u (for user’s traffic);
• Pb = Pcch + ΣuPb,u is the total power transmitted by

station b, Pcch represents the amount of power used to
support broadcast and common control channels.

• pb,u is the power received at mobile u from station b; we
can write pb,u = Pb gb,u;

• Sb,u = Pb,u gb,u is the useful power received at mobile u
from station b (for traffic data); since we do not consider
SHO, we can write Su = Sψ(u),u. [11] [13]

The total amount of power experienced by a mobile station
u in a cellular system can be split up into several terms: useful
signal (Su), interference and noise (Noise). It is common to
split the system power into two terms: Iu = Iint,u + Iext,u,
where Iint,u is the internal (or own-cell) received power and
Iext,u is the external (or other-cell) interference. Notice that
we made the choice of including the useful signal Su in Iint,u,
and, as a consequence, it has to be distinguished from the
commonly considered own-cell interference.

With the above notations, we define the interference factor
in u, as the ratio of total power received from other BS to
the total power received from the serving BS ψ(u): fu =
Iext,u/Iint,u. The quantities fu, Iext,u, and Iint,u are location
dependent and can thus be defined in any location x as long
as the serving BS is known.

In downlink, orthogonality between physical channels may
be approached by Hadamard multiplexing if the delay spread
is much smaller than the chip duration Tc. As a consequence,
a coefficient α, may be introduced to account for the lack of
perfect orthogonality in the own cell.

In this paper, we will use the signal to interference plus
noise ratio (SINR) as the criteria of radio quality: γ∗u is
the SINR target for the service requested by MS u. This
figure is a priori different from the SINR evaluated at mobile
station u. However, we assume perfect power control, so
SINR = γ∗u for all users. With the introduced notations, the
SINR experimented by u can thus be derivated (see e.g. [4]):

γ∗u =
Su

α(Iint,u − Su) + Iext,u +Noise
(1)

From this relation, we can express Su as:

Su =
γ∗u

1 + αγ∗u
Iint,u (α+ Iext,u/Iint,u+Noise/Iint,u) (2)

and the transmitted power for MS u, Pb,u = Su/gb,u, using
relations Iint,u = Pbgb,u and f = Iext/Iint as:

Pb,u =
γ∗u

1 + αγ∗u
(αPb + fuPb +Noise/gb,u). (3)

From this relation, the output power of BS b can be computed
as follows:

Pb = Pcch +
∑
u

Pb,u, (4)

and so, according to Eq.3,

Pb =
Pcch +

∑
u

γ∗u
1+αγ∗u

Noise
gb,u

1−
∑
u

γ∗u
1+αγ∗u

(α+ fu)
. (5)

III. FLUID MODEL

In this section, we first present the model, derive the closed-
form formula for f , and validate it through Monte-Carlo
simulations in a hexagonal network.

A. OCIF formula

The key modelling step of the model we propose consists in
replacing a given fixed finite number of BS by an equivalent
continuum of transmitters which are spatially distributed in
the network. This means that the transmitting power is now
considered as a continuum field all over the network. In this
context, the network is characterised by a MS density ρMS

and a base station density ρBS [11]. We assume that MS and
BS are uniformly distributed in the network, so that ρMS and
ρBS are constant. As the network is homogeneous, all base
stations have the same output power Pb.

We focus on a given cell and consider a round shaped
network around this centre cell with radius Rnw. The half
distance between two base stations is Rc (see Figure 1).

For the assumed omni-directional BS network, we use a
propagation model, where the path gain, gb,u, only depends
on the distance r between the BS b and the MS u. The power,
pb,u, received by a mobile at distance ru can thus be written



2Rc

Continuum
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Fig. 1. Network and cell of interest in the fluid model; the distance between
two BS is 2Rc and the network is made of a continuum of base stations.

pb,u = PbKr
−η
u , where K is a constant and η > 2 is the

path-loss exponent.
Let’s consider a mobile u at a distance ru from its serving

BS b = ψ(u). Each elementary surface zdzdθ at a distance
z from u contains ρBSzdzdθ base stations which contribute
to Iext,u. Their contribution to the external interference is
ρBSzdzdθPbKz

−η. We approximate the integration surface
by a ring with centre u, inner radius 2Rc − ru, and outer
radius Rnw − ru (see Figure 2).

Fig. 2. Integration limits for external interference computation.

Iext,u =
∫ 2π

0

∫ Rnw−ru

2Rc−ru

ρBSPbKz
−ηzdzdθ

=
2πρBSPbK
η − 2

[
(2Rc − ru)2−η − (Rnw − ru)2−η

]
. (6)

Moreover, MS u receives internal power from b, which is
at distance ru: Iint,u = PbKr

−η
u . So, the interference factor

fu = Iext,u/Iint,u can be expressed by:

fu =
2πρBSrηu
η − 2

[
(2Rc − ru)2−η − (Rnw − ru)2−η

]
. (7)

Note that fu does not depend on the BS output power. This
is due to the fact that we assumed an homogeneous network
and so all base stations emit the same power. In our model, f
only depends on the distance r to the BS and can be defined
in each location, so that we can write f as a function of r
and η, f(r, η). Thus, if the network is large, i.e. Rnw is big
in front of Rc, fu can be further approximated by:

f(r, η) =
2πρBSrη

η − 2
(2Rc − r)2−η. (8)

This closed-form formula will allow us to fastly compute
performance parameters of a CDMA network. Moreover, we
notice that the fluid analysis of Iext can be led for different
types of cellular networks like OFDMA. However, before
going ahead, we need to validate the different approximations
we made in this model.

B. Validation of the Fluid Model

In this section, we aim at validating the fluid model pre-
sented above. In this perspective, we will compare the figures
obtained with Eq.7 with those obtained numerically by sim-
ulations. The simulator assumes an homogeneous hexagonal
network made of several rings around a centre cell. Figure 3
shows an example of such a network with the main parameters
involved in the study.

The fluid model and the traditional hexagonal model are two
simplifications of the reality. None is a priori better than the
other but the latter is widely used, especially for dimensioning
purposes. That is the reason why a comparison is useful.

Fig. 3. Hexagonal network and main parameters of the study.

The validation is done numerically by computing f in each
point of the cell and averaging the values at a given distance
from the BS. This computation can be done independently of
the number of MS in the cell and of the BS output power.
Factor f indeed depends only on the path-losses to the BS of
the network.

Figure 4 shows the simulated interference factor as a func-
tion of the distance to the base station. Simulation parameters
are the following: R = 1 Km, α = 0.7, η between 2.7 and
4, ρBS = (3

√
3R2/2)−1, the number of rings is 15, and

the number of snapshots is 1000. Eq.7 is also plotted for
comparison. In all cases, the fluid model matches very well
the simulations on an hexagonal network for various figures
of the path-loss exponent. It allows calculating the influence
of a mobile, whatever its position in a cell.

Note that the considered network size can be finite and cho-
sen to characterize each specific local network’s environment.
Figure 5 shows the influence of the network size. This model
allows thus to develop analyses, adapted to each zone, taking
into account each specific considered zone’s parameters.



Fig. 4. Interference factor vs. distance to the BS; comparison of the fluid
model with simulations on an hexagonal network with η = 2.7, 3, 3.5, and
4.

Fig. 5. Interference factor vs. distance to the BS; comparison of the fluid
model with simulations on a two ring (left) and a five ring (right) hexagonal
network (η = 3).

We notice moreover that our model can be used even for
great distances between the base stations: We validated the
model considering a distance of 2 Km between the BS. We
conclude that our approach is accurate even for a very low
base station’s density.

C. OCIF formula for hexagonal networks

Two frameworks for the study of cellular networks are
considered in this paper: the traditional hexagonal model and
the fluid model. While the former is widely used, the latter is
very simple and allows the derivation of an analytical formula
for f . The last section has shown that both models leads to
comparable results for the OCIF as a function of the distance
to the BS. If we want to go further in the comparison of
both models, in particular with the computation of outage

probabilities, we need however to be more accurate.
Such calculations require indeed the use of the Gaussian

error function Q, which is very sensitive to its arguments. This
point is rarely raised in litterature: analysis and Monte Carlo
simulations can lead to quite different outage probabilities
even if analytical average and variance of the underlying
Gaussian distribution are very close to simulated figures.

In this perspective, this section provides an alternative
formula for f that better matches the simulated figures in
an hexagonal network. Note that this result is not needed if
network designers use the new framework proposed in this
paper. An accurate fitting of analytical and simulated curves
shows that f should simply be multiplied by an affine function
of η to match with Monte Carlo simulations in an hexagonal
network. Eq.9 can then be re-written as follows:

fhexa(r, η) = (1 +Ahexa(η))
2πρBSrη

η − 2
(2Rc − r)2−η, (9)

where Ahexa(η) = 0.15η+ 0.68 is a corrective term obtained
by least-square fitting.

IV. OUTAGE PROBABILITIES

The closed-form formula of f allows to compute the global
outage probability and the spatial outage probability. Since
we provide closed-form formulas for the mean and standard
deviation of f over a cell, we use the gaussian approximation.

A. Global outage probability

For a given number of MS per cell, n, outage probability,
P

(n)
out , is the proportion of configurations, for which the needed

BS output power exceeds the maximum output power: Pb >
Pmax. If noise is neglected and if we assume a single service
network (γ∗u = γ∗ for all u), we deduce from Eq.5 [12]:

P
(n)
out = Pr

[
n−1∑
u=0

(α+ f(ru, η)) >
1− ϕ

β

]
, (10)

where ϕ = Pcch/Pmax and β = γ∗/(1 + αγ∗).

B. Spatial Outage Probability

For a given number n of MS per cell, a spatial outage
probability can also be defined. In this case, it is assumed that
n MS have already been accepted by the system, i.e. the output
power needed to serve them does not exceed the maximum
allowed power. The spatial outage probability at location ru
is the probability that maximum power is exceeded if a new
MS is accepted in ru.

As previously in this paper, we make the approximation that
the spatial outage, P (n)

sout(ru), only depends on the distance to
the BS and thus, can be written:

P
(n)
sout(ru) = Pr

[
(α+ f(ru, η)) +

n−1∑
v=0

(α+ f(rv)) >
1− ϕ

β
|

n−1∑
v=0

(α+ f(rv)) ≤
1− ϕ

β

]
(11)



=
Pr
[

1−ϕ
β − (α+ f(ru, η)) <

∑n−1
v=0 (α+ f(rv)) ≤ 1−ϕ

β

]
Pr
[∑n−1

v=0 (α+ f(rv)) ≤ 1−ϕ
β

]
(12)

C. Gaussian Approximation

In order to compute these probabilities, we rely on the
Central Limit theorem and use a Gaussian approximation.
As a consequence, we need to compute the spatial mean
and standard deviation of f(ru, η). The area of a cell is

1/ρBS = πR2
e with Re = Rc

√
2
√

3/π. So, we integrate
f(r, η) on a disk of radius Re.

As MS are uniformly distributed over the equivalent disk,
the probability density function (pdf) of r is: pr(t) = 2t

R2
e
. Let

µf and σf be respectively the mean and standard deviation
of f(r, η), when r is uniformly distributed over the disk of
radius Re.

µf =
2πρBS
η − 2

∫ Re

0

tη(2Rc − t)2−η
2t
R2
e

dt

=
24−ηπρBSR

2
c

η − 2

(
Re
Rc

)η ∫ 1

0

xη+1

(
1− Rex

2Rc

)2−η

dx

=
24−ηπρBSR

2
c

η2 − 4

(
Re
Rc

)η
×

2F1(η − 2, η + 2, η + 3, Re/2Rc), (13)

where 2F1(a, b, c, z) is the hypergeometric function, whose
integral form is given by:

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt,

and Γ is the gamma function.
Note that for η = 3, we have the simple closed formula:

µf = −2πρBSR2
c

(
ln(1− ν/2)

ν2
+

16
ν

+ 4 +
4ν
3

+
ν2

2

)
,

where ν = Re/Rc. In the same way, the variance of f(r, η)
is given by:

σ2
f = E

[
f2
]
− µ2

f (14)

E
[
f2
]

=
24−2η(2πρBSR2

c)
2

(η + 1)(η − 2)2

(
Re
Rc

)2η

×

2F1(2η − 4, 2η + 2, 2η + 3,
Re
2Rc

).

As a conclusion of this section, the outage probability can be
approximated by:

P
(n)
out = Q

(
1−ϕ
β − nµf − nα

√
nσf

)
, (15)

where Q is the error function. And the spatial outage proba-
bility can be approximated by:

P
(n)
sout(ru) =

Fig. 6. Global outage probability as a function of the number of MS per
cell and for path-loss exponents η = 2.7, 3.5 and 4, simulation (solid lines)
and analysis (dotted lines).

Q

(
1−ϕ

β −nµf−(n+1)α−f(ru,η)√
nσf

)
−Q

(
1−ϕ

β −nµf−nα√
nσf

)
1−Q

(
1−ϕ

β −nµf−nα√
nσf

) , (16)

where f(ru, η) is given by Eq.8. Note that for an accurate
fitting of the analytical formulas presented in this section
to the Monte Carlo simulations performed in an hexagonal
network, µf should be multiplied by (1 + Ahexa(η)), σf by
(1 +Ahexa(η))2 and Eq.8 replaced by Eq.9.

D. Results

Figures 6 and 8 show the kind of results we are able to
obtain instantaneously thanks to the simple formulas derived
in this paper for voice service (γ∗u = −16 dB). Analytical
formulas are compared to Monte Carlo simulations in an
hexagonal cellular network. As a matter of fact, Eq.9 is used.
Figure 6 shows the global outage probabilities as a function
of the number of MS per cell for various values of the path-
loss exponent η. It allows us to easily find the capacity of
the network at any given maximum percentage of outage. For
example, the outage probability when there are 12 users per
cell is about 10% with η = 3.5. Figure 7 shows, as an example,
the capacity with 2% outage as a function of η.

Figure 8 shows the spatial outage probability as a function
of the distance to the BS for η = 3 and for various number
of MS per cell. Given that there are already n, these curves
give the probability that a new user, initiating a new call at a
given distance, implies an outage. As an example, a new user
in a cell with already 16 on-going calls, will cause outage with
probability 0.17 at 900 m from the BS and with probability
0.05 at 650 m from the BS.

With this result, an operator would be able to admit or reject
new connexions according to the location of the entering MS.
Thus, this allows a finer admission control than with the global
outage probability.

Until now, the radio link model only expressed that the
power received at any point of the system depends on its
distance from the transmitter (the line-of-sight path). We show



Fig. 7. Capacity with 2% outage as a function of the path-loss exponent η,
simulations (solid lines) and analysis (dotted lines) are compared.

Fig. 8. Spatial outage probability as a function of the distance to the BS for
various number of users per cell and for η = 3.

that the shadowing has a limited influence, and we express the
interference factor bounds, minimum and maximum.

V. SHADOWING INFLUENCE

A. Propagation

Considering the power Pj transmitted by the BS j, and rA
the pathloss including the shadowing effect, the power pj,u
received by a mobile u belonging to j can be written:

pj,u = PjKr
−η
u A (17)

A = 10
ξ
10 represents the shadowing effect. The term A

characterizes the random variations of the received power
around a mean value. ξ is a Normal distributed random
variable RV, with mean 0 and standard deviation comprised
between 0 and 10 dB. The term PjKr

−η
u represents the

mean value of the received signal at the distance r from the
transmitter (BSj). The probability density function (PDF) of
this slowly varying received signal power is given by

p(s) =
1

aσs
√
π
exp−

(
ln(s)−m√

2aσ

)2

(18)

where and

• a = ln10
10 ,

• m = 1
a ln(KPjr−η) is the (logarithmic) received mean

power expressed in decibels (dB), which is related to the
path loss and

• σ is the (logarithmic) standard deviation of the mean
received signal due to the shadowing in decibels.

Remark

We consider a model proposed in [3]. The Rayleigh fading,
not considered in this model, may be indistinguishable from
shadowing if the fading is sufficiently slow [3], as for example
if the mobile travels through a region of deep fades at a very
slow speed.

B. Interference power

Since the interference factor is defined as fu =
Iext,u/Iint,u, we first need to calculate the other cell in-
terference power. The total interference power due to all
the BS of the network (except the serving one) Iext,u =∑B
i6=b Pjgj,u is the sum of NBS lognormal RV. No exact

expression for the PDF of the sum of lognormal distributed
RV’s is known. It is however accepted that such a sum can be
approximated by another lognormal distribution [20]. Among
the methods developed to find the mean and variance of that
last one, the Schwartz-Yeh approximation [19] is based on
a recursive approach. Some descriptions and comparisons of
these methods are available in [20]. We choose the Fenton-
Wilkinson one [18] for its relative simplicity: the logarithmic
mean and the logarithmic variance of a sum of lognormal RV
can be found by matching the first and second-order moments.
We aim to calculate the interference factor as a lognormal RV
(mean and standard deviation). We first calculate the mean and
the variance of a sum of lognormal RV, according to the FW
method. We afterwards apply the result to the sum of NBS
lognormal identically distributed RV.

C. Sum of lognormal RV

Let X be a lognormal RV. We can write lnX ∝
N(am, a2σ2). Let aY = lnX we write aY ∝ N(am, a2σ2).
The mean M and the variance S2 of a lognormal RV, based
on a FW approximation [18] [21], are expressed as M =
exp(am+a2σ2/2) and S2 = exp(2am+a2σ2)exp(a2σ2−1).
So we can write am = lnM−a2σ2/2 and a2σ2 = ln( S

2

M2 +1).
The sum of lognormal RV Xj(Mj , S

2
j ) is written as a

lognormal RV X(M,S2) where M = Mj and S2 = S2
j .

We can write

am = ln

∑
j

exp

(
amj +

a2σ2
j

2

)− a2σ2

2
(19)

and

a2σ2 = ln

∑
j exp

(
2amj + a2σ2

j

) (
exp(a2σ2

j )− 1
)∑

j exp
(
amj + a2σ2

j

) (20)



D. Interference factor

Our aim is to calculate the interference factor for any
mobile at the distance rb from its serving the BSb. We
can drop the index b: rb = r. Let us consider a network
constituted by cells uniformly distributed and a uniform traffic:
Each BSj transmits a power Pj . The power received by a
mobile is characterized by a lognormal distribution Xj as
lnXj ∝ N(amj , a

2σ2
j ) and we can write amj = ln(Pjrj),

where rj stands for the distance between the mobile and
the BSj of the network. We consider that all the standard
deviations are identical σj = σ: the total power received by
a mobile is a lognormal RV X characterized by its mean and
variance. Expressing the mean interference power received by
a mobile, due to all the other base stations of the network
(annex 1) and since the ratio of two lognormal RV’s is also
expressed as a lognormal RV, the interference factor is also
lognormally distributed with the following mean mf and
logarithmic variance σf . Assuming that all the base stations
have the same transmitting power Pb = Pj = P (uniform
traffic), we introduce

G(η) =

∑
j r
−2η
j(∑

j r
−η
j

)2 (21)

f(η) =

∑
j r
−η
j

r−η
(22)

H(σ) = exp
(
a2σ2/2

) (
G(η)(exp(a2σ2)− 1) + 1

)−1
2 (23)

We can express (see annex 2):

mf = f(η)H(σ) (24)

The standard deviation is given by

a2σ2
f = 2(a2σ2 − lnH(σ)) (25)

We can deduce the interference factor’s limits

f(η) ≤ mf ≤
f(η)

G(η)
1
2

(26)

and

σ2
f ≤ 2σ2 (27)

Remark

We notice that f(η) corresponds to the interference factor
fu without shadowing. From (21), we can write G(η) < 1
whatever η.

VI. TOPOLOGICAL ANALYSIS

A. Topological characterization

The expression (24) means that the effect of the environ-
ment of any mobile of a cell, on the interference factor, is
characterized by a function H(σ). This last one depends on
the shadowing of the received signals coming from the base
stations, and a G factor which depends on the position of the
mobile and the characteristics of the network as

• the exponential pathloss parameter η, which can vary with
the topography and more generally with the geographical
environment as urban or country, micro or macro cells.

• the base stations positions and number.

It can be interpreted as an environmental form factor G of
the network. Its analytical calculation may be complex. Indeed,
its expression depends on the positions of the considered
mobile and the base stations. We notice that the form factor
can be rewritten, generalizing (22), as:

G(η) =
f(2η)
f(η)2

(28)

The shadowing effect consists in increasing the mean value
and the standard deviation of the interference factor (26 and
(27). This increase is however limited (fig. 10 and Table 2). In
a realistic network, σj is generally comprised between 6 and
12 dB.

B. Fluid model approach

In our fluid model approach of the network, using the
interference factor expression of f(r, η) (7), we focus on the
dependency with η (dropping r) and denote it f(η). Thus, to go
further on our analysis, it appears interesting to express f(η)
and G(η) using the fluid model approach. Since the expression
of f also depends on the distance between two neighbors BS
2Rc and the size of the network R, it enables to explore these
network parameters influences.

We notice the fluid model is thus adaptable to each specific
network’s zone or environment. Using this model, we can
express the form factor G limits, using (28) .

From the expressions (7) and (8) of f we can write,
dropping the dependency with the distance r:

f(η) =
2πρbsr

η

η − 2
[
(2Rc − r)2−η − (Rnw − r)2−η

]
. (29)

When the considered zone’s radius is great compared to the
cell’s one, i.e. Rnw >> Rc, since we have 0 < r < Rc we
can write:

− (−η + 2)2

16(−η + 1)
≤ G(η) ≤ − (−η + 2)2

4(−η + 1)
(30)

Table I indicates the limits of the form factor G as a function
of η. They allow to determine the limits of the interference
factors parameters mf and σf



η 3 3.5 4 4.5 5
Gmin 0.03 0.06 0.08 0.11 0.14
Gmax 0.12 0.22 0.33 0.45 0.56

TABLE I

FORM FACTOR G LIMITS

C. Interference factor distance dependency

The figure (9) shows the influence of the distance between
the mobile and its serving BS, for different standard deviations
and η = 3: the mean value of the interference factor increases
when the standard deviation increases. Compared to a case
without shadowing, and for a mobile located at the edge of
the cell (1000m), that increase is about 30% when σ = 4dB
and reaches about 100% when σ = 12dB. We observe that the
shadowing seems to ”increase” the distances from the BS: with
a shadowing σ = 12dB, a mobile at 800m from its serving
BS has the same mean interference factor as a mobile at 1000
m without shadowing. This effect explains the importance of
considering shadowing margins during the planning process.

D. Interference factor standard deviation dependency

For low variances, i.e. a2σ2 ≈ 1, we can express from (23)
and (24)
mf ≈ f(η)exp(a2 σ2

2 ) and a2σ2
f → a2σ2 .

And for high variances, i.e. exp(a2σ2) >> 1 orσ2 >> 1
a2 ,

we can write
mf ≈ f(η)

G
1
2

and a2σ2
f ≈ 2a2σ2 + ln(G) .

For low standard deviations (less then 4 or 5 dB), these
expressions show a low dependency of the mean value of f
with σ, and the total standard deviation σf is very close to σ
(Table II).

These expressions show another interesting result: for high
variances (higher than 5 dB), the interference factor’s mean
tends towards a value which does not depend on the variance.
Considering the extreme G values (Table I), with η = 3, the
figure (10) confirms that the mean value of the interference
factor increases with the variance BS, until a standard devia-
tion of about 10 dB. For higher values, the interference factor
stays constant: we observe the mean interference factor does
no more depend on them. Moreover, the form factor compen-
sates the standard deviation influence: it increases with the
distance r, and also with the exponential pathloss parameterη.
It means that a high value of that parameter, characterizing
a given type of cells or environment, may compensate the
shadowing effects(see also Fig. 10). Considering the range
of variations of σ, for a realistic network σ is generally
comprised between 6 and 12 dB, Table II shows that the
standard deviation of the interference factor is close to the
BS ones σ (with η = 3).

E. Interference factor environmental dependency

The exponential pathloss parameter η can characterize the
environment type, urban or country, and the cell dimensions

σ 0 1 2 3 4 5 8 10 12
σf 0 1.1 2.2 3.3 4.5 5.8 10.1 13.1 16.1

TABLE II

STANDARD DEVIATION OF THE INTERFERENCE FACTOR VS σ

(pico, micro, macro). The figure (10) confirms that the in-
fluence of the shadowing on the mean interference factor
decreases when η increases. For η ≥ 5 we observe the
shadowing has almost no influence.

F. Interference factor cell radius dependency

Fig. (12) shows the mean interference factor for a mobile at
a given relative position r/Rc in the cell from its serving base
station. When the cell radius Rc increases (i.e. the distance
between two BS increases) the influence of the shadowing
decreases, and becomes very low for a cell’s radius higher
than 1700 m.

Fig. 9. Influence of the standard deviation on the mean interference factor
mf for each distance.

Fig. 10. Mean interference factor mf vs deviation σ (distance = 1000 m).

Fig. 11. Mean interference factor vs η (edge of the cell).

VII. OUTAGE PROBABILITY: SHADOWING INFLUENCE

We write the expression (10), considering the fluid model
approach and a mobile density ρMS in the cell. The outage
probability is expressed as:



Fig. 12. Mean Interference factor for Identical relative positions (edge of
the cell) and η= 3.

Pout = Pr

[∫ 2π

0

∫ R

0

ρMS(α+ f(r, η))rdrdθ >
1− ϕ

β

]
,

(31)
Let’s introduce

C(f) =
∫ 2π

0

∫ R

0

ρMS(α+ f(r, η))rdrdθ, (32)

where f(r, η) is a lognormal random variable with mean
mf and standard deviation σf . Considering the PDF pC(f) of
C(f) we can write:

Pout = Pr

[
C(f) >

1− ϕ

β

]
=
∫ ∞

1−ϕ
β

pC(f)(x)dx, (33)

A mobile asking for admission in the cell at the distance r
from the serving BS, which already manages mobiles with a
density ρMS , induces a load β(α+ f(r, η)). So we can write

C2(f) = β(α+f(r, η))+
∫ 2π

0

∫ R

0

βρMS(α+f(r, η))rdrdθ,

(34)
The blocking probability of this mobile is thus given by

1− Pr [C2(f) ≤ 1− ϕ] (35)

Analogue expressions can be derived for the spatial outage
probability. Since the interference factor depends on the mo-
bile location and on the environment (expressions 24 and 25)
i.e.

• the shadowing,
• the exponential pathloss parameter η : It depends on dif-

ferent characteristics and particularly the cell dimensions
and the type of environment (urban or country),

• the number and positions of the base stations,

it becomes possible to analyze the outage taking into account
the mobile’s location and each specific environment. More-
over, in our model, the expression of f(r, η) is characterized
by the zone (or network) size R. It thus can be adapted and
applied to each zone of a network.

VIII. CONCLUSION

We developed an adaptive model of cellular networks, useful
to each specific network environment characterized by the
radio propagation (distance path-loss and shadowing) and the
network configuration.

We first proposed and validated by Monte Carlo simulations
a fluid model for the estimation of the OCIF in cellular
networks. This approach considers BS as a continuum of
transmitters and provides a simple formula for the other-
cell interference factor as a function of the distance to the
BS, the path-loss exponent, the distance between BS and
the network size. Simulations show that the obtained closed-
form formula is a very good approximation, even for the
traditional hexagonal network. The simplicity of the result
allows a spatial integration of f leading to closed-form formula
for the global outage probability and for the spatial outage
probability. The proposed framework is not only a powerful
tool to study admission control in CDMA networks and design
fine algorithms taking into account the distance to the BS. It
can also easily be extended to other cellular networks, e.g. to
study frequency reuse schemes in OFDMA systems.

Considering the shadowing, we established the OCIF ana-
lytical expression, mean mf and standard deviation σf , as a
lognormal random variable. We expressed them using the fluid
model approach, and showed they depend on a function of the
shadowing H(σ) and a form factor G. This last one depends
on the mobile’s location, the exponential pathloss parameter,
the number and the positions of the base stations. We finally
analyzed different environmental parameters influences, and
show the form factor, the exponential pathloss parameter
and the cell radius may limit the shadowing effects. We
finally expressed the outage probability of mobiles, taking into
account the shadowing influence.

ANNEX 1: INTERFERENCE POWER

Each BS transmits a power Pj = P so the power received
by a mobile is characterized by a lognormal distribution Xj as
ln(Xj) ∝ N(amj , a

2σ2
j ) and we can write mj = 1

a ln(Pjr
−η
j )

(to simplify the calculation we consider K=1). So the total
power received by a mobile is a lognormal RV X characterized
by its mean and variance ln(X) ∝ N(am, a2σ2

t ) and we can
write:

am = ln

 B∑
j=1,j 6=b

exp(lnPj − ηlnrj +
a2σ2

j

2
)

− a2σ2
t

2

(36)
We assume identical variance, σj = σ, ∀j. Since moreover
Pj = P whatever the base station j:

am = (lnP +
a2σ2

2
) + ln(

B∑
j=1,j 6=b

exp(−ηln(rj)))−
a2σ2

t

2
(37)



So we can express the mean interference power Iext re-
ceived by a mobile coming from all the other base stations of
the network as:

ln(Iext) = (lnP +
a2σ2

2
) + ln(

B∑
j=1,j 6=b

r−ηj )− a2σ2
t

2
(38)

and the variance a2σ2
t of the sum of interferences is written

as

a2σ2
t = ln

(∑
j exp(2amj + a2σ2)(exp(a2σ2)− 1)

(
∑
j exp(amj + a2σ2

2 ))2
+ 1

)
(39)

Introducing

G(η) =

∑B
j=1,j 6=b r

−2η
j(∑B

j=1,j 6=b r
−η
j

)2 (40)

the mean value of the total interference received by a mobile
is given by

Iext = P

B∑
j=1,j 6=b

r−η
j exp

(
a2σ2

2

)(
(exp(a2σ2)− 1)G(η) + 1

)−1/2

(41)
and

a2σ2 = ln
(
(exp(a2σ2)− 1)G(η) + 1

)
+ ln

(
exp(a2σ2)

)
(42)

ANNEX 2: INTERFERENCE FACTOR

Since the ratio of two lognormal RV’s is also a lognormal
RV, the interference factor is also lognormally distributed with
the following mean and logarithmic variance:

mf =
Iext

Iint
(43)

and thus, if we consider that all the base stations have the
same transmitting power: Pb = P , we can write, dropping the
index b:

mf =

∑
j r
−η
j

r−η
exp

(
a2σ2

2

)(
(exp(a2σ2)− 1)G(η) + 1

)−1/2

(44)
and finally, denoting:

H(σ) = exp

(
a2σ2

2

)(
(exp(a2σ2)− 1)G(η) + 1

)−1/2

(45)
we have

mf = f(η)exp
(
a2σ2

2

)(
(exp(a2σ2)− 1)G(η) + 1

)−1/2

(46)

In a analogue analysis, the standard deviation is given by
a2σ2

f = a2σ2
f + a2σ2

j so we have

a2σ2
f = 2(a2σ2 − ln(H(σ))) (47)
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