

TCP with Adaptive Delay and Loss Response for
Heterogeneous Networks

Modupe Omueti and Ljiljana Trajković
Simon Fraser University

Vancouver, British Columbia, Canada
{momueti, ljilja}@cs.sfu.ca

ABSTRACT
Long propagation delays and high bit error rates in heterogeneous
networks with geostationary earth orbit (GEO) satellite links have
negative impact on the performance of Transmission Control
Protocol (TCP). In this paper, we propose modifications to TCP
by introducing adaptive delay and loss response (TCP-ADaLR) to
mitigate the adverse effects of satellite link characteristics. The
proposed modifications incorporate delayed acknowledgment
(ACK) recommended for Internet hosts. TCP-ADaLR introduces
adaptive window increase and loss recovery mechanisms to
address TCP performance degradation in satellite networks. We
evaluate and compare the performance of TCP-ADaLR, TCP
SACK, and TCP NewReno, with delayed ACK enabled and
disabled. In the absence of losses, TCP-ADaLR exhibits the
shortest user-perceived latency for HTTP and FTP applications. In
the presence of only congestion losses, TCP-ADaLR shows
comparable performance to TCP SACK and TCP NewReno. In
the presence of only error losses, TCP-ADaLR exhibits
improvements up to 61% and 76% in throughput and utilization,
respectively. In the presence of both congestion and error losses,
TCP-ADaLR exhibits goodput and throughput improvements up
to 43%. TCP-ADaLR exhibits the best performance in the absence
of losses and in the presence of losses due to both congestion and
errors. It also friendly to TCP NewReno, exhibits better fairness,
and maintains TCP end-to-end semantics.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols – Protocol Verification.

General Terms
Algorithm, Performance

Keywords
Heterogeneous networks, GEO satellite networks, TCP, network
simulation, performance evaluation.

1. INTRODUCTION
Transmission Control Protocol (TCP) provides connection-

oriented byte-stream delivery services for Internet applications
and carries up to 90% of Internet traffic [1]. The volume of
Internet traffic has increased due to bandwidth-intensive
multimedia and data applications that require high data rates [2].
These high data rates are offered through high-bandwidth
geostationary earth orbit (GEO) satellite links. Through their
easily scalable architecture and multicast capabilities [3],
heterogeneous broadband GEO satellite networks provide global
Internet access and coverage to areas with limited or no terrestrial
cable infrastructure. Heterogeneous networks with GEO satellite
links are more attractive for continuous coverage than networks
employing non-GEO (NGEO) satellite links because of lower
development risks compared to large number of satellite
constellations required by NGEO satellites [4].

TCP was originally designed for wired networks with the
underlying assumption that packet losses indicate congestion.
Hence, TCP was enhanced by the congestion control algorithms
[5], [6] to address congestion losses thus enabling TCP to perform
well in wired networks. GEO satellite links are characterized by
high bit error rate (BER), long propagation delay, and bandwidth
asymmetry (different uplink and downlink bandwidth). TCP
performs poorly in heterogeneous networks with GEO satellite
links because of these characteristics. TCP misinterprets packet
losses as an indication of congestion and reduces the transmission
rate thus leading to TCP throughput degradation. In the absence
of error losses, the long propagation delays of GEO satellite links
result in large round trip times (RTTs), which negatively impact
TCP performance. These large RTTs prevent a TCP sender from
transmitting segments at the maximum rate causing reduced
throughput and, hence, poor utilization of GEO satellite links.

In this paper, we propose TCP with adaptive delay and loss
response (TCP-ADaLR) for improving TCP performance in
heterogeneous networks with GEO satellite links. TCP-ADaLR is
an end-to-end algorithm implemented as an extension to TCP
SACK. It may also be applied to TCP NewReno. TCP SACK and
TCP NewReno are prevalent TCP variants [7]. More than 50% of
Internet servers are SACK-capable and majority of those that do
not use SACK employ TCP NewReno for loss recovery [8]. The
TCP-ADaLR algorithm is designed for the case when the TCP
delayed acknowledgment (ACK) option is enabled. This TCP
option [9] allows a TCP receiver to send an ACK for every
second consecutive full-size packet received from the sender. (A
full-size packet is equivalent to the sender maximum segment size
(SMSS) packet.) TCP delayed ACK option is recommended for
Internet hosts [9]. This option has been enabled by many current
TCP implementations [10].

The paper is organized as follows: An overview of TCP and its
congestion control algorithms is given in Section 2. In Section 3,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WICON 2007, October 22-24, 2007, Austin, Texas, USA.
Copyright 2007 ACM 987-963-9799-04-2…$5.00.

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
WICON 2007, October 22-24, Austin, USA
Copyright © 2007 978-963-9799-12-7
DOI 10.4108/wicon.2007.2300

we present an overview of satellite links, the impact of their
characteristics on TCP, and a survey of related work. In Section 4,
we describe the TCP-ADaLR algorithm and its mechanisms for
improving the end-to-end performance of TCP in heterogeneous
networks with GEO satellite links. Simulation scenarios, results of
the performance evaluation, and comparison of TCP-ADaLR,
TCP SACK, and TCP NewReno are presented in Section 5. We
conclude with Section 6.

2. OVERVIEW OF THE TRANSMISSION
CONTROL PROTOCOL
A TCP connection is established after the three-way handshake.
To manage the volume and rate of data transmitted between a
sender and a receiver, TCP employs four congestion control
algorithms [5], [6]: slow start, congestion avoidance, fast
retransmit, and fast recovery. A TCP sender transmits segments
based on ACKs from a receiver. When a TCP sender receives an
ACK, it increases the congestion window cwnd based on the
number of acknowledged bytes and the receiver's advertised
window rwnd. TCP increments the cwnd exponentially during the
slow start phase and linearly during the congestion avoidance
phase. The slow start threshold ssthresh determines the end of the
slow start phase and the onset of the congestion avoidance phase.
A TCP sender enters the fast retransmit phase when a segment
loss is detected by three duplicate ACKs. After it receives an ACK
of a new segment, a TCP sender then enters the fast recovery
phase and resumes the congestion avoidance phase. When a
segment loss is detected by retransmission timeout (RTO), a TCP
sender retransmits the lost segment, resets the ssthresh value, and
reverts to slow start.

A TCP receiver may increase efficiency by sending less than one
ACK segment per data segment [9]. This TCP option is known as
delayed ACK. If a TCP receiver does not enable the delayed ACK
option, separate ACKs will be required for acknowledging data
segments and sending window updates. If there is two-way data
transfer, a delayed ACK may also be sent along with the data
segment (ACK piggybacks with data). Hence, the delayed ACK
option reduces protocol processing overhead [11]. The default
interval before sending an ACK is 200 ms. However, a TCP
receiver may not delay an ACK for more than 500 ms. Most TCP
implementations use the default interval of 200 ms [9].

3. GEO SATELLITE LINKS
A satellite in a geostationary earth orbit (GEO) is circular in shape
and lies in the plane of the equator. A GEO satellite orbits at an
altitude of ~36,000 km above the earth surface with a period of 24
hours (earth rotation period). Hence, a GEO satellite appears to be
stationary to observers from the earth. A single GEO satellite has
a large footprint (satellite signal coverage area of the earth
surface). Hence, receiving antennas positioned within this
footprint of the satellite require no tracking capabilities.

3.1 Characteristics of GEO Satellite Links
GEO satellite links have characteristics that differ from terrestrial
links [12]. These characteristics contribute to the degradation of
TCP performance in satellite networks. GEO satellite links have
long one-way propagation delays (~250 ms) due to high satellite
altitudes. The RTT of a GEO satellite link is at least 500 ms and it
depends on the satellite inclination. The bandwidth delay product

(BDP) defines the amount of data a protocol should have
unacknowledged (in–flight) in order to fully utilize the available
link capacity. For a satellite link, the BDP is the product of the
satellite link capacity and the RTT. GEO satellite links have a
large BDP due to their long propagation delays and large
bandwidth. Satellite links have different downlink and uplink
channel capacities and, hence, exhibit bandwidth asymmetry [7].
Losses occur in GEO satellite networks due to high BERs (~10-6)
[12] in satellite links.

3.2 Impact of GEO Satellite Link
Characteristics on TCP Performance
During the slow start phase, TCP needs to receive an ACK of a
sent segment in order to increase the cwnd. TCP is unable to reach
the maximum achievable throughput during the slow start phase
due to the long propagation delays of GEO satellite links. Large
BDP values require the presence of large amount of
unacknowledged data in flight for TCP to maximally utilize the
available network capacity. For a maximum rwnd value of 64 KB,
a GEO satellite link with standard E1 rate (2,048 kb/s) and RTT
value of 500 ms may achieve only ~1,048 kb/s. Bandwidth
asymmetry in satellite networks results in traffic burstiness [13].

A major cause of the poor performance of TCP in heterogeneous
networks characterized by high BERs is the assumption of
segment loss as an indication of congestion. The congestion
control algorithms respond to segment loss by deflating the cwnd,
resulting in degraded throughput if losses are not due to
congestion. TCP throughput is also degraded when the delay or
loss of an ACK on a downlink path having low bandwidth is
misinterpreted as an indication of congestion. Hence, the data
transmission rate is reduced accordingly.

3.3 Related Work
Various solutions that have been proposed for improving TCP
performance in GEO satellite networks are classified as end-to-
end, split-connection, and link-layer.

End-to-end solutions usually require modifications only at the
TCP sender and/or receiver. They may also require that
intermediate routers in the network support priority mechanisms.
End-to-end solutions maintain the end-to-end semantics of TCP.
The SACK [14] option allows a receiver to only indicate
segments that were received. Hence, the sender may explicitly
retransmit only the lost segments. TCP-Peach [15] requires
priority mechanisms that will enable every intermediate router in
the network path to discard low priority segments in the case of
congestion. TCP Westwood [16] and TCP-Star [17] utilize
bandwidth estimation mechanisms for adjusting the cwnd size.
TCP Hybla [18] employs a time-scale modification algorithm to
increment cwnd independent of RTTs during slow start and
congestion avoidance. The algorithm assumes that transmission
rate does not depend on the rwnd. TCP New Vegas [19]
implements packet pairing to reduce the negative impact of
delayed ACK on networks with large RTT such as GEO satellite
networks.

In heterogeneous networks, TCP connections are split at
intermediate nodes such as gateways. Split connections shield the
satellite link characteristics from the terrestrial segment. In the
satellite segment, satellite-optimized transport protocols are

utilized. Examples of intermediate nodes with split TCP
connections are performance enhancing proxies (PEPs) [20] such
as PEPsal [21]. However, split connections violate the end-to-end
semantics of TCP.

Link layer solutions are classified as TCP-aware and TCP-
unaware [22]. TCP-aware link layer solutions modify TCP header
information and are incompatible with applications that require IP
security. Snoop protocol [23] is an example of a TCP-aware link
layer protocol applicable to GEO satellite networks. TCP-unaware
solutions employ forward error correction (FEC) and automatic
repeat request techniques.

4. TCP WITH ADAPTIVE DELAY AND
LOSS RESPONSE ALGORITHM
We propose TCP with adaptive delay and loss response (TCP-
ADaLR) algorithm for use in heterogeneous networks employing
GEO satellite links. It is designed to improve TCP performance in
the presence of long propagation delays, high BERs, and delayed
ACK. We implement TCP-ADaLR algorithm as an extension to
TCP SACK. It may also be used with TCP NewReno. The
algorithm requires modifications only at the sender. The TCP-
ADaLR algorithm modifications comprise of a scaling component
ρ and mechanisms for adaptive window (cwnd and rwnd) increase
and loss recovery. The scaling component ρ depends on
measurements taken from sample RTT segments (sampleRTT).
The TCP sender requires no a priori knowledge of satellite links
present in the network. Hence, the proposed modifications may be
applicable to any network with large RTT. We normalize the
sampleRTT by 1 s (a common value of the minimum RTO in TCP
implementations with a coarse grained timer [24]). The scaling
component is computed as:

ρ = (sampleRTT s/1 s) × 60. (1)

The value of 60 is the minimum recommended value for the
maximum RTO [9] normalized by 1 s. The lower bound of ρ is set
to 1 to ensure that TCP employs the default algorithm for
connections with extremely short RTTs. An upper bound of ρ is
set to 60 to ensure that the value of ρ is not too large.

TCP-ADaLR improves TCP performance because it takes into
account the effect of RTT on the cwnd by computing the scaling
component and adaptively changing the cwnd based on measured
RTTs. This allows faster transmission of additional segments.

4.1 Adaptive CWND Increase Mechanism
We divide the slow start phase into four sub-phases based on
current cwnd size and the flightsize (total outstanding
unacknowledged data in the network). We select four sub-phases
based on the ratio of the initial value of the ssthresh (64 KB) and
the largest value of the initial cwnd (16 KB) employed by TCP
implementations. In each sub-phase, the increment in cwnd
depends on the value of ρ and the presence or absence of losses
during transmission. The breakpoint value (ρ = 15) corresponds to
a sampleRTT of 250 ms. It was selected based on observing
values of RTTs in simulations of 50 MB FTP file downloads in an
ideal channel with TCP SACK, as shown in Table 1. If
sampleRTT ≥ 250 ms, the simulated FTP download response time
increases significantly. Hence, when ρ ≥ 15 the cwnd is
incremented using the adaptive increase mechanism. Its sub-
phases are described in Algorithm 1.

Table 1. FTP download response time for 50 MB file.

RTT (ms) Download response time (s)
25 251.9
50 252.1
100 252.5
200 253.5
250 272.7
500 470.1

snd_max = maximum send sequence number (newest
unacknowledged sequence number)
snd_una = sequence number of first unacknowledged
segment (oldest unacknowledged sequence number)
snd_recover = sequence number denoting end of fast
recovery (initialized to 0 at the beginning of the connection)
acked_bytes = number of bytes acknowledged by an ACK
flightsize = snd_max - snd_una;

// slow start phase
if (cwnd < ssthresh)

 {
if ((cwnd ≤ ssthresh/4) && (flightsize < rwnd/4))

set sub-phase = slow start sub-phase 1
if ((cwnd > ssthresh/4) && (cwnd ≤ ssthresh/2)
&& (flightsize < rwnd/4))

 set sub-phase = slow start sub-phase 2
if ((cwnd > ssthresh/4) && (flightsize ≥ rwnd/4)
&& (flightsize < rwnd/2))

 set sub-phase = slow start sub-phase 3
if ((cwnd > ssthresh/2) && (flightsize ≥ rwnd/4)
&& (flightsize < rwnd/2))

set sub-phase = slow start sub-phase 4
 }

Algorithm 1. Pseudo-code that describes the four sub-phases
introduced by the adaptive cwnd increase mechanism.

The cwnd is incremented exponentially for ρ < 15, as in the
default TCP slow start phase. For ρ ≥ 15, we increase the cwnd by
(√ρ/4) × SMSS when no losses have occurred. A delayed ACK of
two outstanding segments will cause the transmission of four
back-to-back segments that may result in micro-burstiness [25].
The value (√ρ/4) is selected to accommodate the nonlinear
increase of the FTP download response times (shown in Table 1)
and micro-burstiness that may occur with delayed ACK enabled.
Note that (√ρ/4) × SMSS lies in the range (1 – 2) × SMSS. A
value of up to 2 × SMSS is recommended to accommodate the
delayed ACK option enabled [25]. If losses occur or if the
conditions of the four sub-phases do not hold, the cwnd is
increased as in the conventional TCP slow start phase. During the
congestion avoidance phase, the cwnd is linearly incremented
immediately after fast recovery or when the flightsize is larger
than rwnd/2. When the flightsize is less than rwnd/2, the cwnd is
incremented by (√ρ/2) × SMSS.

4.2 Adaptive RWND Increase Mechanism
The minimum of the cwnd or the rwnd determines the amount of
data to be transmitted. The proposed algorithm adjusts the rwnd
advertised by the TCP receiver to the sender using an adaptive
rwnd increase mechanism that compensates for the long
propagation delays when no losses occur. It allows at least one

additional segment to be transmitted when losses occur and a
partial ACK is received. The modification to the rwnd is shown in
Algorithm 2.

rtt_dev_gain = RTT deviation gain
if (ρ ≥ 15)
{

if (flightsize > rwnd)
do nothing

 // slow start phase or congestion avoidance phase
if ((cwnd < ssthresh) | | (cwnd > ssthresh))

{
// no losses have occurred
if (snd_recover = = 0)

set rwnd to rwnd + rtt_dev_gain × ρ × SMSS
//losses have occurred and in fast recovery phase
else if ((snd_una ≤ snd_recover) && (snd_recover
!= 0))

set rwnd to rwnd + SMSS
else

do nothing
}

}
Algorithm 2. Pseudo-code that describes the rwnd modification

introduced by the adaptive rwnd increase mechanism.

4.3 Loss Recovery Mechanism
During the fast recovery phase, the minimum value of cwnd is set
to 2 × SMSS rather than 1 × SMSS when the number of
acknowledged bytes is greater than the current value of cwnd.
This prevents the cwnd from being reduced to zero. By adjusting
the value of cwnd, at least two segments may be transmitted back-
to-back during the fast recovery phase to ensure that the TCP
sender is able to receive ACKs in time when the delayed ACK
option is enabled. If an RTO occurs, 200 ms is added to the
current time to prevent premature expiration of the RTO timer,
which may lead to false retransmissions when the delayed ACK
option is enabled. The setting of the cwnd during the fast recovery
phase is shown in Algorithm 3.
 // fast recovery phase
 if (snd_una > snd_recover)
 {
 if (cwnd ≤ acked_bytes)
 set cwnd to 2 × SMSS
 else

 set cwnd to cwnd - acked_bytes + (2 × SMSS)
 }

Algorithm 3. Pseudo-code that describes the loss recovery
mechanism for setting cwnd during the fast recovery phase.

5. PERFORMANCE EVALUATION
We model the GEO satellite link as an additive white Gaussian
noise (AWGN) channel with the satellite client being a fixed user
that has a line of sight to the GEO satellite [18]. The packet error
rate (PER) was calculated as:

PER = 1 - (1 - BER)n, (2)
where n is the number of bits in each packet. We use Ethernet
packets of 1,500 bytes (n = 12,000 bits). For satellite links, typical

average BER ranges from 10-5 to 10-8 [26]. The network topology
used for performance evaluation of TCP-ADaLR is shown in
Figure 1. The shown link propagation delays are one-way and
remain unchanged during simulation, unless otherwise stated. The
GEO satellite link between the client and the gateway is bi-
directional with data rates of 2,048 kb/s in the downlink direction
(satellite to client) and 256 kb/s in the uplink direction (client to
satellite). This difference in the downlink and uplink capacity
models bandwidth asymmetry.

server
gateway

client

12
5 m

s 125 ms

GEO satellite

10 ms

Figure 1. Heterogeneous network topology.

We evaluate the performance of TCP-ADaLR in various scenarios
using the OPNET network simulator [27]. We consider an ideal
case with no losses and cases with only congestion losses, with
losses only due to satellite link errors, and, finally, with losses due
to both congestion and satellite link errors. For the congestion
scenario, we set gateway buffer size to 15 and 25 packets for
HTTP and FTP applications, respectively. The simulation
parameters for the HTTP [28] and FTP applications are shown in
Tables 2 and 3. All TCP variants have constant parameters. We
evaluate the performance of TCP-ADaLR without delayed ACK
to investigate possible negative effects if the delayed ACK option
is disabled. TCP parameters used for simulation are shown in
Table 4. Identical set of parameters are used when the delayed
ACK option is enabled, with the exception of the maximum ACK
delay and the maximum number of ACK segments that are set to
recommended values of 0.2 s and 2 [9], respectively. In this study,
we have not compared performance of TCP-ADaLR with other
TCP variants (TCP Westwood and TCP Jersey) and those
specifically designed for satellite networks (TCP-Peach, TCP
Hybla, TCP NewVegas, and TCP-Star). These protocols, unlike
TPC NewReno, TCP Reno, and TCP SACK, are not currently
available in the OPNET network simulator.

Table 2. HTTP application parameters.

Attribute Value
HTTP specification HTTP 1.1
Page inter-arrival time (s) 30
Main page object size (bytes) 10,710
Number of embedded page objects 15
Embedded object size (bytes) 7,758
Simulated time (s) 1,000

Table 3. FTP application parameters.

Attribute Value
File inter-request time (s) 18,000
File size (MB) 50
Simulated time (hours) 5

Table 4. TCP simulation parameters when the delayed ACK
option is disabled. Values in parentheses indicate when the

delayed ACK option is enabled.

TCP Parameters Value
Sender maximum segment size (SMSS) 1,460 bytes
Slow start initial count 2 SMSS
Receiver’s advertised window 65,535 bytes
Timer granularity 0.5 s
Maximum ACK delay 0.0 s (0.2 s)
Maximum number of ACK segments 1 (2)
Duplicate ACK threshold 3
Initial RTO 3.0 s
Minimum RTO 1.0 s
Maximum RTO 64.0 s
Retransmission threshold 6
RTT gain 0.125
RTT deviation coefficient 4
Deviation gain 0.25

5.1 Ideal Lossless Satellite Channel
The HTTP page response time for a single webpage is shown in
Table 5. The main page object and the 15 embedded objects are
completely downloaded and the entire web page is open before
the HTTP page response statistic is collected. TCP-ADaLR
exhibits better performance compared to TCP SACK and TCP
NewReno. TCP-ADaLR exhibits the shortest HTTP page
response time that is 10% and 9% smaller with delayed ACK
enabled and disabled, respectively. Hence, TCP-ADaLR exhibits
reduced user-perceived latency of short-lived flows such as in the
case of HTTP applications. The download response time for the
FTP application is shown in Table 6. TCP-ADaLR exhibits 23%
and 28% shorter FTP download response time with delayed ACK
enabled and disabled, respectively. The TCP throughput of TCP-
ADaLR for the ideal channel is shown in Figure 2. TCP-ADaLR
shows up to 53% and 63% higher TCP throughput with delayed
ACK enabled and disabled, respectively. The higher TCP-ADaLR
throughput and goodput imply the higher satellite downlink
utilization, as shown in Figure 3. TCP-ADaLR exhibits up to 28%
and 34% higher satellite link utilization with delayed ACK
enabled and disabled, respectively. TCP-ADaLR does not have
negative impact on connections with delayed ACK disabled. TCP-
ADaLR outperforms TCP SACK and TCP NewReno because the
adaptive cwnd and rwnd window increase mechanisms enable
faster transmission of additional segments when there are no
losses.

Table 5. HTTP page response time for the four TCP variants

in the scenario with an ideal lossless satellite channel.

 Page response time (s)
Delayed ACK option Enabled Disabled

TCP-ADaLR SACK 4.4 3.9
TCP-ADaLR NewReno 4.4 3.9
TCP SACK 4.9 4.3
TCP NewReno 4.9 4.3

Table 6. FTP download response time the four TCP variants

in the scenario with an ideal lossless satellite channel.

 Download response time (s)
Delayed ACK option Enabled Disabled

TCP-ADaLR SACK 360.6 333.4
TCP-ADaLR NewReno 360.6 333.4
TCP SACK 470.1 463.5
TCP NewReno 470.1 463.5

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

x 105

Simulation time (s)

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 2. Scenario with an ideal lossless satellite channel.

TCP-ADaLR shows up to 63% higher throughput than TCP
SACK and TCP NewReno with delayed ACK disabled.

0 50 100 150 200 250 300
0

20

40

60

80

100

Simulation time (s)

U
til

iz
at

io
n

(%
)

TCP-ADaLR without delayed ACK
TCP-ADaLR with delayed ACK
TCP SACK and TCP NewReno without delayed ACK
TCP SACK and TCP NewReno with delayed ACK

Figure 3. Scenario with an ideal lossless satellite channel. With
delayed ACK disabled, TCP-ADaLR reaches 80% utilization

of the satellite link capacity while TCP SACK and TCP
NewReno attain only 50% satellite link utilization.

5.2 Ideal Satellite Channel with only
Congestion Losses
We consider two variants of the proposed TCP-ADaLR algorithm:
with SACK and with NewReno. The increased HTTP page
response time indicates the impact of congestion losses (compared
to the ideal case), as shown in Table 7. TCP-ADaLR SACK
shows the best performance in both cases with delayed ACK

enabled and disabled. The FTP download response time is
comparable for all four TCP variants, as shown in Table 8. The
TCP throughput, TCP goodput, and satellite link utilization for
the case with delayed ACK enabled are shown in Figures 4–6.
The received segment sequence number at the receiver indicates
the goodput. TCP-ADaLR performs comparably to both TCP
SACK and TCP NewReno because the adaptive cwnd and rwnd
increase mechanisms lead to cwnd increments void of large bursts
that may degrade performance during congestion. In the case with
delayed ACK disabled, the four TCP variants exhibit similar
patterns as those with delayed ACK enabled [29]. Hence, TCP-
ADaLR variants show no significant performance degradation in
the presence of congestion.

Table 6. HTTP page response time for the four TCP variants

in the scenario with only congestion losses.

 Download response time (s)
Delayed ACK option Enabled Disabled

TCP-ADaLR SACK 11.0 10.3
TCP-ADaLR NewReno 11.0 11.1
TCP SACK 13.8 11.7
TCP NewReno 16.6 11.7

Table 7. FTP download response time for the four TCP

variants in the scenario with only congestion losses.

 Download response time (s)
Delayed ACK option Enabled Disabled

TCP-ADaLR SACK 1,212.7 1,226.7
TCP-ADaLR NewReno 1,228.0 1,232.4
TCP SACK 1,224.8 1,226.7
TCP NewReno 1,216.6 1,226.7

0 200 400 600 800 1000 1200
0

1

2

3

4

5

x 104

Simulation time (s)

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 4. Scenario with only congestion losses and delayed
ACK enabled. TCP throughput degrades for the four TCP

variants when congestion losses are detected.

5.3 Satellite Channel with only Error Losses
We evaluate the performance of TCP-ADaLR in the presence of
losses due to only satellite link errors. For each BER value, we
use different random seed numbers and compute the average
values using 95% confidence intervals. The average HTTP page

response times for the case with delayed ACK enabled are shown
in Figure 7. Both TCP-ADaLR variants exhibit similar HTTP
page response times and outperform both TCP SACK and TCP
NewReno. The average FTP download response time is shown in
Figure 8. For the four TCP variants, the FTP download response
time increases with higher BER values. TCP-ADaLR SACK is the
most robust variant in the presence of losses and shows 13%–37%
shorter FTP download response time than TCP SACK. The TCP
goodput, TCP throughput, and satellite link utilization for the case
with delayed ACK enabled are shown in Figures 9–11. TCP-
ADaLR SACK shows 16%–61% higher TCP throughput than
TCP SACK. The case with delayed ACK disabled exhibits the
same pattern as with delayed ACK enabled [29]. TCP-ADaLR
variants outperform TCP SACK and TCP NewReno because the
adaptive cwnd increase mechanism causes additional segments to
be rapidly sent after losses have occurred. Furthermore, the
adaptive rwnd increase and loss recovery mechanisms allow at
least two segments to be transmitted back-to-back when losses are
detected in order to compensate for delayed ACKs. Hence, these
mechanisms enable TCP-ADaLR to recover more quickly than
TCP SACK and TCP NewReno.

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

x 107

Simulation time (s)

R
ec

ei
ve

d
se

gm
en

t s
eq

ue
nc

e
nu

m
be

r
TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 5. Scenario with only congestion losses and delayed
ACK enabled. TCP-ADaLR variants exhibit TCP goodput

comparable to TCP SACK and TCP NewReno.

0 200 400 600 800 1000 1200
0

5

10

15

20

Simulation time (s)

U
til

iz
at

io
n

(%
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 6. Scenario with only congestion losses and delayed

ACK enabled. Satellite link utilization decreases when
congestion losses are detected.

10-9 10-8 10-7 10-6 10-50

5

10

15

20

25

BER

Pa
ge

 re
sp

on
se

 ti
m

e
(s

)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 7. Scenario with only satellite link error losses and

delayed ACK enabled. TCP-ADaLR SACK and TCP-ADaLR
NewReno exhibit 2%–12% shorter HTTP page response time

than TCP SACK and TCP NewReno.

10-9 10-8 10-7 10-6 10-50

2,000

4,000

6,000

8,000

10,000

12,000

14,000

BER

D
ow

nl
oa

d
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 8. Scenario with only satellite link error losses and
delayed ACK enabled. TCP-ADaLR SACK exhibits up to

37% shorter FTP download response time than TCP SACK.

10-9 10-8 10-7 10-6 10-50

2

4

6

8

10

12

14

16x 104

BER

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 9. Scenario with only satellite link error losses and
delayed ACK enabled. TCP-ADaLR variants show higher

TCP throughput than TCP SACK and TCP NewReno.

10-9 10-8 10-7 10-6 10-50

2

4

6

8

10

12

14x 105

BER

G
oo

dp
ut

 (b
/s

)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 10. Scenario with only satellite link error losses and
delayed ACK enabled. TCP-ADaLR SACK exhibits up to

27% higher TCP goodput than TCP SACK.

10-9 10-8 10-7 10-6 10-50

10

20

30

40

50

60

70

80

BER

U
til

iz
at

io
n

(%
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 11. Scenario with only satellite link error losses and

delayed ACK enabled. TCP-ADaLR SACK and TCP-ADaLR
NewReno exhibit up to 76% higher satellite link utilization

than TCP SACK and TCP NewReno.

5.4 Satellite Channel with both Congestion
and Error Losses
The increased HTTP page response time reflects the effect of both
congestion and error losses, as shown in Figure 12. TCP-ADaLR
SACK shows the best performance in both cases with delayed
ACK enabled and disabled. TCP-ADaLR SACK exhibits up to
32% shorter HTTP page response time than TCP SACK with
delayed ACK enabled. The short and bursty nature of HTTP
transfers ensures small number of outstanding unacknowledged
bytes. Hence, when losses occur, the adaptive cwnd increase and
loss recovery mechanisms enable faster completion of the HTTP
transfers than with conventional TCP SACK and TCP NewReno.
However, TCP-ADaLR NewReno performs worse than TCP
NewReno with delayed ACK enabled. The higher HTTP page
response time exhibited by TCP-ADaLR NewReno may be caused
by its initial high transmission rate and, hence, the loss of several
original and retransmitted segments. This is the only simulation
scenario where TCP-ADaLR NewReno performs worse than TCP
NewReno.

10-9 10-8 10-7 10-6 10-56

8

10

12

14

16

18

20

22

24

26

BER

Pa
ge

 re
sp

on
se

 ti
m

e
(s

)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 12. HTTP page response time for the four TCP

variants in the scenario with congestion losses, satellite link
error losses, and delayed ACK enabled.

In the presence of error and congestion losses, the two TCP-
ADaLR variants show comparable FTP download response time
with TCP SACK and TCP NewReno when BER values are 10-7
and lower, as shown in Figure 13. At these lower BER values, the
more prevalent cause of losses is congestion. Hence, TCP SACK
and TCP NewReno exhibit 1%–4% shorter FTP download
response times than the TCP-ADaLR variants. For BER ≥ 10-6 in
the case with delayed ACK enabled, TCP-ADaLR SACK exhibits
28%–29% shorter FTP download response time than TCP SACK.
The case with delayed ACK enabled exhibits similar performance
[29]. At higher BER values, the link error is the more prevalent
cause of losses. Hence, the adaptive cwnd increase mechanism
enables quick recovery from segment losses when all outstanding
segments have been acknowledged. The adaptive rwnd increase
and loss recovery mechanisms enable TCP-ADaLR SACK to
recover more quickly from losses than TCP SACK and TCP
NewReno. The TCP goodput, TCP throughput, and satellite link
utilization exhibit similar performance to the FTP download
response time, as shown in Figures 14–16. TCP-ADaLR variants
outperform TCP SACK and TCP NewReno when the BER value
of the GEO satellite link exceeds 10-7.

10-9 10-8 10-7 10-6 10-50

2,000

4,000

6,000

8,000

10,000

12,000

14,000

BER

D
ow

nl
oa

d
re

sp
on

se
 ti

m
e

(s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 13. FTP download response time for the four TCP

variants in the scenario with congestion losses, satellite link
error losses, and delayed ACK enabled.

10-9 10-8 10-7 10-6 10-50

1

2

3

4

5x 104

BER

Th
ro

ug
hp

ut
 (b

yt
es

/s
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 14. Scenario congestion losses, satellite link error

losses, and delayed ACK enabled. For BER values higher than
10-7, TCP-ADaLR SACK exhibits 42%–43% higher TCP
throughput than TCP SACK with delayed ACK enabled.

10-9 10-8 10-7 10-6 10-50

0.5

1

1.5

2

2.5

3

3.5

x 105

BER

G
oo

dp
ut

 (b
/s

)
TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 15. Scenario congestion losses, satellite link error

losses, and delayed ACK enabled. For BER values higher than
10-7, TCP-ADaLR SACK exhibits 36%–43% higher TCP

goodput than TCP SACK with delayed ACK enabled.

10-9 10-8 10-7 10-6 10-56

8

10

12

14

16

18

20

BER

U
til

iz
at

io
n

(%
)

TCP-ADaLR SACK
TCP-ADaLR NewReno
TCP SACK
TCP NewReno

Figure 16. Satellite link utilization for the four TCP variants

in the scenario with congestion losses, satellite link error
losses, and delayed ACK enabled.

5.5 Fairness and Friendliness
An important feature of TCP is its ability to ensure a fair division
among multiple competing connections. A TCP variant is fair if
coexisting connections achieve equal bandwidth allocation.
Friendliness refers to coexisting TCP connections with distinct
TCP variants having a fair share of the available bandwidth. We
employ the Jain’s metric of fairness [30] defined as:

∑
∑

=

=

×
= n

j j

n

j j

tn

t
Fairness

1
2

2
1

)(

)(, (3)

where n is the number of competing connections and tj is the
average throughput of the jth connection. The fairness metric has
a value between 1/n and 1, where 1/n corresponds to unfair and 1
to fair (equal) bandwidth allocation for all n connections.
Common TCP variants such as TCP SACK and TCP NewReno
are known to be fair when the competing connections have similar
RTTs [18]. However, if the competing connections have different
RTTs, the connections with shorter RTTs consume a larger
fraction of the available bottleneck link bandwidth and starve
connections with longer RTTs.

TCP variants in deployed networks are expected to coexist and
share bottleneck links among connections of distinct RTTs. We
evaluate the fairness and friendliness of TCP-ADaLR in the
absence of losses for an FTP application. The network topology is
shown in Figure 17. All links are bi-directional with 10 Mb/s data
rates. Shown are one-way link propagation delays. We test six
TCP connections with different RTTs using two fairness scenarios
where TCP connections employ TCP-ADaLR or TCP NewReno.
In the friendliness scenario, we test six connections with identical
RTTs (25 ms). Three connections employ TCP-ADaLR and the
remaining three connections employ TCP NewReno.

The average throughput values of the six TCP NewReno and six
TCP-ADaLR connections are shown in Table 9. The 500 ms RTT
connection using TCP-ADaLR has average throughput ~47%
higher than the corresponding TCP NewReno 500 ms RTT
connection. Conversely, the average throughput of the shortest
RTT connection using TCP-ADaLR reduces by ~12%. The
fairness values are shown in Table 10. TCP-ADaLR reduces the
penalty caused by long RTT connections and exhibits better
fairness than TCP NewReno. In the friendliness scenario, the
average throughput of each competing connection is shown in
Table 11. The friendliness value, shown in Table 12, confirms that
TCP-ADaLR is TCP-friendly. Hence, the six coexisting TCP-
ADaLR and TCP NewReno connections have a fair share of the
bottleneck link’s available bandwidth.

Figure 17. Network topology used to evaluate fairness and

friendliness.

Table 9. Average throughput achieved by six competing TCP-
ADaLR and TCP NewReno connections.

Average throughput (bytes/s) RTT (ms)
TCP ADaLR TCP NewReno

25 283,404.6 322,418.0
50 281,750.6 300,629.1

100 268,984.6 263,129.2
300 195,099.8 158,601.5
400 175,343.8 129,560.8
500 160,897.4 109,239.5

Table 10. TCP fairness values of TCP-ADaLR and TCP
NewReno using the Jain's fairness index.

TCP variant Fairness
TCP-ADaLR 0.9510
TCP NewReno 0.8650

Table 11. Average throughput achieved by six competing
connections using distinct TCP variants. RTT is set to 25 ms.

TCP variant Average throughput (bytes/s)
TCP-ADaLR 354,451.6
TCP-ADaLR 356,565.9
TCP-ADaLR 356,906.8

TCP NewReno 352,012.7
TCP NewReno 351,913.3
TCP NewReno 351,748.1

Table 12. TCP friendliness of TCP-ADaLR and TCP
NewReno competing connections.

TCP variant mix Friendliness
TCP-ADaLR and TCP NewReno 0.99996

6. CONCLUSIONS
We proposed the TCP-ADaLR algorithm (TCP with adaptive
delay and loss response) to reduce the adverse impact of the long
propagation delays and high BERs on TCP performance in
heterogeneous networks with GEO satellite links. We considered
cases with both delayed ACK enabled and disabled. The TCP-
ADaLR algorithm was implemented as an extension to TCP
SACK. We also evaluated the algorithm performance when
implemented as an extension to TCP NewReno. Simulation
results indicated that TCP-ADaLR improves the end-to-end
performance of TCP for HTTP and FTP applications in the
absence of losses with both delayed ACK enabled and disabled.
The TCP-ADaLR algorithm reduced the response times for
downloading HTTP web pages and FTP files. In the presence of
only congestion losses, TCP-ADaLR variants show comparable
performance to TCP SACK and TCP NewReno. In the presence
of only error losses, TCP-ADaLR SACK outperforms TCP SACK
and TCP NewReno and improves the average TCP throughput,
TCP goodput, and satellite link utilization. TCP-ADaLR SACK
also shows better performance than TCP SACK and TCP
NewReno in the presence of both congestion and error losses. In
each scenario, TCP-ADaLR with delayed ACK disabled
outperforms TCP-ADaLR with delayed ACK enabled. Hence,
TCP-ADaLR does not degrade performance of TCP connections
with delayed ACK disabled and yields better performance.

The deployment of TCP-ADaLR in heterogeneous networks
requires modifications only at the TCP sender. These
modifications place additional albeit minimal processing and
memory overheads at the TCP sender. The TCP-ADaLR
algorithm does not require modifications or introduction of packet
prioritization mechanisms at intermediate routers. No
modifications are required at the TCP receiver. TCP-ADaLR is
fair to competing connections with different RTTs. It is also
friendly to TCP NewReno connections. Hence, it is deployable in
networks with other TCP variants. Finally, TCP-ADaLR
maintains the end-to-end semantics of TCP.

7. ACKNOWLEDGMENTS
The authors would like to thank S. Lau, R. Narayanan, B. Vujičić,
S. Vujičić, and W. Zeng from the Communication Networks
Laboratory at SFU for constructive suggestions and comments.

8. REFERENCES
[1] M. Fomenkov, K. Keys, D. Moore, and K. Claffy,

“Longitudinal study of Internet traffic in 1998–2003,” in
Proc. ACM Winter Int. Symp. Inf. and Commun. Technol.,
Cancun, Mexico, Jan. 2004, pp. 1–6.

[2] A. Jamalipour, M. Marchese, H. Cruickshank, J. Neal, and S.
Verma, “Broadband IP Networks via satellites-part II,” IEEE
J. Select. Areas Commun., vol. 22, no. 3, pp. 433–437, Apr.
2004.

[3] A. Jamalipour, M. Marchese, H. Cruickshank, J. Neal, and S.
Verma, “Broadband IP Networks via satellites-part I,” IEEE
J. Select. Areas Commun., vol. 22, no. 2, pp. 213–217, Feb.
2004.

[4] R. A. Peters and M. Farrell, “Comparison of LEO and GEO
satellite systems to provide broadband services,” in Proc.
21st AIAA Int. Commun. Satellite Syst. Conf. and Exhibit,
Yokohama, Japan, Apr. 2003, AIAA–2003–2246.

[5] M. Allman, V. Paxson, and W. Stevens, “TCP congestion
control,” RFC 2581, Apr. 1999.

[6] V. Jacobson, “Congestion avoidance and control,” in Proc.
ACM SIGCOMM Symp. on Commun. Archit. and Protocols,
Stanford, CA, Aug. 1988, pp. 314–329.

[7] A. Gurtov and S. Floyd, “Modeling wireless links for
transport protocols,” ACM SIGCOMM Comput. Commun.
Rev., vol. 34, no. 2, pp. 85–96, Apr. 2004.

[8] A. Medina, M. Allman, and S. Floyd, “Measuring the
evolution of transport protocols in the Internet,” ACM
SIGCOMM Comput. Commun. Rev., vol. 35, no. 2, pp. 37–
52, Apr. 2005.

[9] R. Braden, “Requirements for Internet hosts–communication
layers,” RFC 1122, Oct. 1989.

[10] V. Paxson, “Automated packet trace analysis of TCP
implementations,” in Proc. ACM SIGCOMM Conf. on Appl.,
Technol., Archit., and Protocols for Comput. Commun.,
Cannes, France, Sept. 1997, pp. 167–179.

[11] W. Stevens, TCP Illustrated Volume 1: The Protocols.
Reading, MA: Addison-Wesley, 1994.

[12] Y. Shang and M. Hadjitheodosiou, “TCP splitting protocol
for broadband and aeronautical satellite network,” in Proc.
23rd IEEE Digital Avionics Syst. Conf., Salt Lake City, UT,
Oct. 2004, vol. 2, pp. 11.C.3-1–11.C.3-9.

[13] I. F. Akyildiz, G. Morabito, and S. Palazzo, “Research issues
for transport protocols in satellite IP networks,” IEEE Pers.
Commun. Mag., vol. 8, no. 3, pp. 44–48, June 2001.

[14] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanov, “TCP
selective acknowledgement options,” RFC 2018, Oct. 1996.

[15] I. F. Akyildiz, G. Morabito, and S. Palazzo, “TCP-Peach: a
new congestion control scheme for satellite IP networks,”
IEEE/ACM Trans. Netw., vol. 9, no. 3, pp. 307–321, June
2001.

[16] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R.
Wang, “TCP Westwood: end-to-end congestion control for
wired/wireless networks,” Wireless Netw., vol. 8, no. 5, pp.
467–479, Sept. 2002.

[17] H. Obata, K. Ishida, S. Takeuchi, and S. Hanasaki, “TCP-
STAR: TCP Congestion Control Method for Satellite
Internet” IEICE Trans. Commun., vol. E89-B, no. 6, pp.
1766–1773, June 2006.

[18] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement
for heterogeneous networks,” Int. J. Satellite Commun.
Netw., vol. 22, no. 5, pp. 547–566, Sept. 2004.

[19] J. Sing and B. Soh, “TCP New Vegas: improving the
performance of TCP Vegas over high latency links,” in Proc.
Fourth IEEE Int. Symp. on Netw. Comput. and Appl.,
Cambridge, MA, July 2005, pp. 73–82.

[20] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,
“Performance enhancing proxies intended to mitigate link-
related degradations,” RFC 3135, June 2001.

[21] C. Caini, R. Firrincieli, and D. Lacamera, “PEPsal: a
performance enhancing proxy designed for TCP satellite
connections,” in Proc. 63rd IEEE Veh. Technol. Conf.,
Melbourne, Australia, Feb. 2006, vol. 6, pp. 2607–2611.

[22] E. A. Faulkner, A. P. Worthen, J. B. Schodorf, and J. D.
Choi, “Interactions between TCP and link layer protocols on
mobile satellite links,” in Proc. IEEE MILCOM, Monterey,
CA, Nov. 2004, vol. 1, pp. 535–541.

[23] J. Sing and B. Soh, “On the use of snoop with geostationary
satellite links,” in Proc. Third IEEE Int. Conf. on Inf.
Technol. and Appl. (ICITA 2005), Sydney, Australia, July
2005, vol. 2, pp. 689–694.

[24] V. Paxson and M. Allman, “Computing TCP’s
retransmission timer,” RFC 2988, Nov. 2000.

[25] M. Allman, “TCP congestion control with appropriate byte
counting (ABC),” RFC 3465, Feb. 2003.

[26] J. Zhu, S. Roy, and J. H. Kim, “Performance modeling of
TCP enhancements in terrestrial-satellite hybrid networks,”
IEEE/ACM Trans. Netw., vol. 14, no. 4, pp. 753–766, Aug.
2006.

[27] OPNET Modeler software [Online]. Available:
http://www.opnet.com/products/ modeler/home.html.

[28] 3GPP/TSG-C.R1002, “1xEV-DV evaluation methodology
(v14),” June 2003.

[29] M. Omueti and Lj. Trajković, “OPNET model of TCP with
adaptive delay and loss response for broadband GEO satellite
networks,” OPNETWORK 2007, Washington, DC, Aug.
2007.

[30] D. Chiu and R. Jain, “Analysis of the increase/decrease
algorithms for congestion avoidance in computer networks,”
J. of Comput. Netw. ISDN Syst., vol. 17, no. 1, pp. 1–14,
June 1989.

