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ABSTRACT 
Long propagation delays and high bit error rates in heterogeneous 
networks with geostationary earth orbit (GEO) satellite links have 
negative impact on the performance of Transmission Control 
Protocol (TCP). In this paper, we propose modifications to TCP 
by introducing adaptive delay and loss response (TCP-ADaLR) to 
mitigate the adverse effects of satellite link characteristics. The 
proposed modifications incorporate delayed acknowledgment 
(ACK) recommended for Internet hosts. TCP-ADaLR introduces 
adaptive window increase and loss recovery mechanisms to 
address TCP performance degradation in satellite networks. We 
evaluate and compare the performance of TCP-ADaLR, TCP 
SACK, and TCP NewReno, with delayed ACK enabled and 
disabled. In the absence of losses, TCP-ADaLR exhibits the 
shortest user-perceived latency for HTTP and FTP applications. In 
the presence of only congestion losses, TCP-ADaLR shows 
comparable performance to TCP SACK and TCP NewReno. In 
the presence of only error losses, TCP-ADaLR exhibits 
improvements up to 61% and 76% in throughput and utilization, 
respectively. In the presence of both congestion and error losses, 
TCP-ADaLR exhibits goodput and throughput improvements up 
to 43%. TCP-ADaLR exhibits the best performance in the absence 
of losses and in the presence of losses due to both congestion and 
errors. It also friendly to TCP NewReno, exhibits better fairness, 
and maintains TCP end-to-end semantics. 

Categories and Subject Descriptors 
C.2.2 [Computer-Communication Networks]: Network 
Protocols – Protocol Verification. 

General Terms 
Algorithm, Performance 

Keywords 
Heterogeneous networks, GEO satellite networks, TCP, network 
simulation, performance evaluation. 

1. INTRODUCTION 
Transmission Control Protocol (TCP) provides connection-

oriented byte-stream delivery services for Internet applications 
and carries up to 90% of Internet traffic [1]. The volume of 
Internet traffic has increased due to bandwidth-intensive 
multimedia and data applications that require high data rates [2]. 
These high data rates are offered through high-bandwidth 
geostationary earth orbit (GEO) satellite links. Through their 
easily scalable architecture and multicast capabilities [3], 
heterogeneous broadband GEO satellite networks provide global 
Internet access and coverage to areas with limited or no terrestrial 
cable infrastructure. Heterogeneous networks with GEO satellite 
links are more attractive for continuous coverage than networks 
employing non-GEO (NGEO) satellite links because of lower 
development risks compared to large number of satellite 
constellations required by NGEO satellites [4]. 

TCP was originally designed for wired networks with the 
underlying assumption that packet losses indicate congestion. 
Hence, TCP was enhanced by the congestion control algorithms 
[5], [6] to address congestion losses thus enabling TCP to perform 
well in wired networks. GEO satellite links are characterized by 
high bit error rate (BER), long propagation delay, and bandwidth 
asymmetry (different uplink and downlink bandwidth). TCP 
performs poorly in heterogeneous networks with GEO satellite 
links because of these characteristics. TCP misinterprets packet 
losses as an indication of congestion and reduces the transmission 
rate thus leading to TCP throughput degradation. In the absence 
of error losses, the long propagation delays of GEO satellite links 
result in large round trip times (RTTs), which negatively impact 
TCP performance. These large RTTs prevent a TCP sender from 
transmitting segments at the maximum rate causing reduced 
throughput and, hence, poor utilization of GEO satellite links. 

In this paper, we propose TCP with adaptive delay and loss 
response (TCP-ADaLR) for improving TCP performance in 
heterogeneous networks with GEO satellite links. TCP-ADaLR is 
an end-to-end algorithm implemented as an extension to TCP 
SACK. It may also be applied to TCP NewReno. TCP SACK and 
TCP NewReno are prevalent TCP variants [7]. More than 50% of 
Internet servers are SACK-capable and majority of those that do 
not use SACK employ TCP NewReno for loss recovery [8]. The 
TCP-ADaLR algorithm is designed for the case when the TCP 
delayed acknowledgment (ACK) option is enabled. This TCP 
option [9] allows a TCP receiver to send an ACK for every 
second consecutive full-size packet received from the sender. (A 
full-size packet is equivalent to the sender maximum segment size 
(SMSS) packet.) TCP delayed ACK option is recommended for 
Internet hosts [9]. This option has been enabled by many current 
TCP implementations [10].  

The paper is organized as follows: An overview of TCP and its 
congestion control algorithms is given in Section 2. In Section 3, 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
WICON 2007, October 22-24, 2007, Austin, Texas, USA. 
Copyright 2007 ACM 987-963-9799-04-2…$5.00. 
 

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice 
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
WICON 2007, October 22-24, Austin, USA
Copyright © 2007 978-963-9799-12-7
DOI 10.4108/wicon.2007.2300



 

we present an overview of satellite links, the impact of their 
characteristics on TCP, and a survey of related work. In Section 4, 
we describe the TCP-ADaLR algorithm and its mechanisms for 
improving the end-to-end performance of TCP in heterogeneous 
networks with GEO satellite links. Simulation scenarios, results of 
the performance evaluation, and comparison of TCP-ADaLR, 
TCP SACK, and TCP NewReno are presented in Section 5. We 
conclude with Section 6. 

2. OVERVIEW OF THE TRANSMISSION 
CONTROL PROTOCOL 
A TCP connection is established after the three-way handshake. 
To manage the volume and rate of data transmitted between a 
sender and a receiver, TCP employs four congestion control 
algorithms [5], [6]: slow start, congestion avoidance, fast 
retransmit, and fast recovery. A TCP sender transmits segments 
based on ACKs from a receiver. When a TCP sender receives an 
ACK, it increases the congestion window cwnd based on the 
number of acknowledged bytes and the receiver's advertised 
window rwnd. TCP increments the cwnd exponentially during the 
slow start phase and linearly during the congestion avoidance 
phase. The slow start threshold ssthresh determines the end of the 
slow start phase and the onset of the congestion avoidance phase. 
A TCP sender enters the fast retransmit phase when a segment 
loss is detected by three duplicate ACKs. After it receives an ACK 
of a new segment, a TCP sender then enters the fast recovery 
phase and resumes the congestion avoidance phase. When a 
segment loss is detected by retransmission timeout (RTO), a TCP 
sender retransmits the lost segment, resets the ssthresh value, and 
reverts to slow start. 

A TCP receiver may increase efficiency by sending less than one 
ACK segment per data segment [9]. This TCP option is known as 
delayed ACK. If a TCP receiver does not enable the delayed ACK 
option, separate ACKs will be required for acknowledging data 
segments and sending window updates. If there is two-way data 
transfer, a delayed ACK may also be sent along with the data 
segment (ACK piggybacks with data). Hence, the delayed ACK 
option reduces protocol processing overhead [11]. The default 
interval before sending an ACK is 200 ms. However, a TCP 
receiver may not delay an ACK for more than 500 ms. Most TCP 
implementations use the default interval of 200 ms [9]. 

3. GEO SATELLITE LINKS 
A satellite in a geostationary earth orbit (GEO) is circular in shape 
and lies in the plane of the equator. A GEO satellite orbits at an 
altitude of ~36,000 km above the earth surface with a period of 24 
hours (earth rotation period). Hence, a GEO satellite appears to be 
stationary to observers from the earth. A single GEO satellite has 
a large footprint (satellite signal coverage area of the earth 
surface). Hence, receiving antennas positioned within this 
footprint of the satellite require no tracking capabilities. 

3.1 Characteristics of GEO Satellite Links 
GEO satellite links have characteristics that differ from terrestrial 
links [12]. These characteristics contribute to the degradation of 
TCP performance in satellite networks. GEO satellite links have 
long one-way propagation delays (~250 ms) due to high satellite 
altitudes. The RTT of a GEO satellite link is at least 500 ms and it 
depends on the satellite inclination. The bandwidth delay product 

(BDP) defines the amount of data a protocol should have 
unacknowledged (in–flight) in order to fully utilize the available 
link capacity. For a satellite link, the BDP is the product of the 
satellite link capacity and the RTT. GEO satellite links have a 
large BDP due to their long propagation delays and large 
bandwidth. Satellite links have different downlink and uplink 
channel capacities and, hence, exhibit bandwidth asymmetry [7]. 
Losses occur in GEO satellite networks due to high BERs (~10-6) 
[12] in satellite links. 

3.2 Impact of GEO Satellite Link 
Characteristics on TCP Performance 
During the slow start phase, TCP needs to receive an ACK of a 
sent segment in order to increase the cwnd. TCP is unable to reach 
the maximum achievable throughput during the slow start phase 
due to the long propagation delays of GEO satellite links. Large 
BDP values require the presence of large amount of 
unacknowledged data in flight for TCP to maximally utilize the 
available network capacity. For a maximum rwnd value of 64 KB, 
a GEO satellite link with standard E1 rate (2,048 kb/s) and RTT 
value of 500 ms may achieve only ~1,048 kb/s. Bandwidth 
asymmetry in satellite networks results in traffic burstiness [13]. 

A major cause of the poor performance of TCP in heterogeneous 
networks characterized by high BERs is the assumption of 
segment loss as an indication of congestion. The congestion 
control algorithms respond to segment loss by deflating the cwnd, 
resulting in degraded throughput if losses are not due to 
congestion. TCP throughput is also degraded when the delay or 
loss of an ACK on a downlink path having low bandwidth is 
misinterpreted as an indication of congestion. Hence, the data 
transmission rate is reduced accordingly. 

3.3 Related Work 
Various solutions that have been proposed for improving TCP 
performance in GEO satellite networks are classified as end-to-
end, split-connection, and link-layer. 

End-to-end solutions usually require modifications only at the 
TCP sender and/or receiver. They may also require that 
intermediate routers in the network support priority mechanisms. 
End-to-end solutions maintain the end-to-end semantics of TCP. 
The SACK [14] option allows a receiver to only indicate 
segments that were received. Hence, the sender may explicitly 
retransmit only the lost segments. TCP-Peach [15] requires 
priority mechanisms that will enable every intermediate router in 
the network path to discard low priority segments in the case of 
congestion. TCP Westwood [16] and TCP-Star [17] utilize 
bandwidth estimation mechanisms for adjusting the cwnd size. 
TCP Hybla [18] employs a time-scale modification algorithm to 
increment cwnd independent of RTTs during slow start and 
congestion avoidance. The algorithm assumes that transmission 
rate does not depend on the rwnd. TCP New Vegas [19] 
implements packet pairing to reduce the negative impact of 
delayed ACK on networks with large RTT such as GEO satellite 
networks. 

In heterogeneous networks, TCP connections are split at 
intermediate nodes such as gateways. Split connections shield the 
satellite link characteristics from the terrestrial segment. In the 
satellite segment, satellite-optimized transport protocols are 



 

utilized. Examples of intermediate nodes with split TCP 
connections are performance enhancing proxies (PEPs) [20] such 
as PEPsal [21]. However, split connections violate the end-to-end 
semantics of TCP. 

Link layer solutions are classified as TCP-aware and TCP-
unaware [22]. TCP-aware link layer solutions modify TCP header 
information and are incompatible with applications that require IP 
security. Snoop protocol [23] is an example of a TCP-aware link 
layer protocol applicable to GEO satellite networks. TCP-unaware 
solutions employ forward error correction (FEC) and automatic 
repeat request techniques. 

4. TCP WITH ADAPTIVE DELAY AND 
LOSS RESPONSE ALGORITHM 
We propose TCP with adaptive delay and loss response (TCP-
ADaLR) algorithm for use in heterogeneous networks employing 
GEO satellite links. It is designed to improve TCP performance in 
the presence of long propagation delays, high BERs, and delayed 
ACK. We implement TCP-ADaLR algorithm as an extension to 
TCP SACK. It may also be used with TCP NewReno. The 
algorithm requires modifications only at the sender. The TCP-
ADaLR algorithm modifications comprise of a scaling component 
ρ and mechanisms for adaptive window (cwnd and rwnd) increase 
and loss recovery. The scaling component ρ depends on 
measurements taken from sample RTT segments (sampleRTT). 
The TCP sender requires no a priori knowledge of satellite links 
present in the network. Hence, the proposed modifications may be 
applicable to any network with large RTT. We normalize the 
sampleRTT by 1 s (a common value of the minimum RTO in TCP 
implementations with a coarse grained timer [24]). The scaling 
component is computed as: 

ρ = (sampleRTT s/1 s) × 60.                              (1) 

The value of 60 is the minimum recommended value for the 
maximum RTO [9] normalized by 1 s. The lower bound of ρ is set 
to 1 to ensure that TCP employs the default algorithm for 
connections with extremely short RTTs. An upper bound of ρ is 
set to 60 to ensure that the value of ρ is not too large. 

TCP-ADaLR improves TCP performance because it takes into 
account the effect of RTT on the cwnd by computing the scaling 
component and adaptively changing the cwnd based on measured 
RTTs. This allows faster transmission of additional segments. 

4.1 Adaptive CWND Increase Mechanism 
We divide the slow start phase into four sub-phases based on 
current cwnd size and the flightsize (total outstanding 
unacknowledged data in the network). We select four sub-phases 
based on the ratio of the initial value of the ssthresh (64 KB) and 
the largest value of the initial cwnd  (16 KB) employed by TCP 
implementations. In each sub-phase, the increment in cwnd 
depends on the value of ρ and the presence or absence of losses 
during transmission. The breakpoint value (ρ = 15) corresponds to 
a sampleRTT of 250 ms. It was selected based on observing 
values of RTTs in simulations of 50 MB FTP file downloads in an 
ideal channel with TCP SACK, as shown in Table 1. If 
sampleRTT ≥ 250 ms, the simulated FTP download response time 
increases significantly. Hence, when ρ ≥ 15 the cwnd is 
incremented using the adaptive increase mechanism. Its sub-
phases are described in Algorithm 1. 

Table 1. FTP download response time for 50 MB file. 
 

RTT (ms) Download response time (s) 
25 251.9 
50 252.1 
100 252.5 
200 253.5 
250 272.7 
500 470.1 

 
snd_max = maximum send sequence number (newest 
unacknowledged sequence number)  
snd_una = sequence number of first unacknowledged 
segment (oldest unacknowledged sequence number) 
snd_recover = sequence number denoting end of fast 
recovery (initialized to 0 at the beginning of the connection) 
acked_bytes = number of bytes acknowledged by an ACK 
flightsize = snd_max - snd_una; 

// slow start phase 
if (cwnd < ssthresh) 

    { 
if ((cwnd ≤ ssthresh/4) && (flightsize < rwnd/4)) 

set sub-phase = slow start sub-phase 1 
if ((cwnd > ssthresh/4) && (cwnd ≤ ssthresh/2) 
&& (flightsize < rwnd/4)) 

          set sub-phase = slow start sub-phase 2 
if ((cwnd > ssthresh/4) && (flightsize ≥ rwnd/4) 
&& (flightsize < rwnd/2)) 

          set sub-phase = slow start sub-phase 3 
if ((cwnd > ssthresh/2) && (flightsize ≥ rwnd/4) 
&& (flightsize < rwnd/2)) 

set sub-phase = slow start sub-phase 4 
    } 

Algorithm 1. Pseudo-code that describes the four sub-phases 
introduced by the adaptive cwnd increase mechanism. 

 
The cwnd is incremented exponentially for ρ < 15, as in the 
default TCP slow start phase. For ρ ≥ 15, we increase the cwnd by 
(√ρ/4) × SMSS when no losses have occurred. A delayed ACK of 
two outstanding segments will cause the transmission of four 
back-to-back segments that may result in micro-burstiness [25]. 
The value (√ρ/4) is selected to accommodate the nonlinear 
increase of the FTP download response times (shown in Table 1) 
and micro-burstiness that may occur with delayed ACK enabled. 
Note that (√ρ/4) × SMSS lies in the range (1 – 2) × SMSS. A 
value of up to 2 × SMSS is recommended to accommodate the 
delayed ACK option enabled [25]. If losses occur or if the 
conditions of the four sub-phases do not hold, the cwnd is 
increased as in the conventional TCP slow start phase. During the 
congestion avoidance phase, the cwnd is linearly incremented 
immediately after fast recovery or when the flightsize is larger 
than rwnd/2. When the flightsize is less than rwnd/2, the cwnd is 
incremented by (√ρ/2) × SMSS. 

4.2 Adaptive RWND Increase Mechanism 
The minimum of the cwnd or the rwnd determines the amount of 
data to be transmitted. The proposed algorithm adjusts the rwnd 
advertised by the TCP receiver to the sender using an adaptive 
rwnd increase mechanism that compensates for the long 
propagation delays when no losses occur. It allows at least one 



 

additional segment to be transmitted when losses occur and a 
partial ACK is received. The modification to the rwnd is shown in 
Algorithm 2. 
 

rtt_dev_gain = RTT deviation gain 
if (ρ ≥ 15) 
{ 

if (flightsize > rwnd) 
do nothing 

     // slow start phase or congestion avoidance phase 
if ((cwnd < ssthresh) | | (cwnd > ssthresh)) 

{ 
// no losses have occurred 
if (snd_recover = = 0) 

set rwnd to rwnd + rtt_dev_gain × ρ × SMSS 
//losses have occurred and in fast recovery phase 
else if ((snd_una  ≤ snd_recover) && (snd_recover  
!= 0)) 

set rwnd to rwnd + SMSS 
else 

do nothing  
} 

} 
Algorithm 2. Pseudo-code that describes the rwnd modification 

introduced by the adaptive rwnd increase mechanism. 

4.3 Loss Recovery Mechanism 
During the fast recovery phase, the minimum value of cwnd is set 
to 2 × SMSS rather than 1 × SMSS when the number of 
acknowledged bytes is greater than the current value of cwnd. 
This prevents the cwnd from being reduced to zero. By adjusting 
the value of cwnd, at least two segments may be transmitted back-
to-back during the fast recovery phase to ensure that the TCP 
sender is able to receive ACKs in time when the delayed ACK 
option is enabled. If an RTO occurs, 200 ms is added to the 
current time to prevent premature expiration of the RTO timer, 
which may lead to false retransmissions when the delayed ACK 
option is enabled. The setting of the cwnd during the fast recovery 
phase is shown in Algorithm 3. 
 // fast recovery phase 
 if (snd_una > snd_recover) 
    { 
     if (cwnd ≤ acked_bytes) 
         set  cwnd  to 2 × SMSS 
     else  

        set cwnd to cwnd - acked_bytes + (2 × SMSS) 
    } 

Algorithm 3. Pseudo-code that describes the loss recovery 
mechanism for setting cwnd during the fast recovery phase. 

5. PERFORMANCE EVALUATION 
We model the GEO satellite link as an additive white Gaussian 
noise (AWGN) channel with the satellite client being a fixed user 
that has a line of sight to the GEO satellite [18]. The packet error 
rate (PER) was calculated as: 

PER = 1 - (1 - BER)n,                                (2) 
where n is the number of bits in each packet. We use Ethernet 
packets of 1,500 bytes (n = 12,000 bits). For satellite links, typical 

average BER ranges from 10-5 to 10-8 [26]. The network topology 
used for performance evaluation of TCP-ADaLR is shown in 
Figure 1. The shown link propagation delays are one-way and 
remain unchanged during simulation, unless otherwise stated. The 
GEO satellite link between the client and the gateway is bi-
directional with data rates of 2,048 kb/s in the downlink direction 
(satellite to client) and 256 kb/s in the uplink direction (client to 
satellite). This difference in the downlink and uplink capacity 
models bandwidth asymmetry. 

server
gateway

client

12
5 m

s 125 ms

GEO satellite

10 ms

 
Figure 1. Heterogeneous network topology. 

 

We evaluate the performance of TCP-ADaLR in various scenarios 
using the OPNET network simulator [27]. We consider an ideal 
case with no losses and cases with only congestion losses, with 
losses only due to satellite link errors, and, finally, with losses due 
to both congestion and satellite link errors. For the congestion 
scenario, we set gateway buffer size to 15 and 25 packets for 
HTTP and FTP applications, respectively. The simulation 
parameters for the HTTP [28] and FTP applications are shown in 
Tables 2 and 3. All TCP variants have constant parameters. We 
evaluate the performance of TCP-ADaLR without delayed ACK 
to investigate possible negative effects if the delayed ACK option 
is disabled. TCP parameters used for simulation are shown in 
Table 4. Identical set of parameters are used when the delayed 
ACK option is enabled, with the exception of the maximum ACK 
delay and the maximum number of ACK segments that are set to 
recommended values of 0.2 s and 2 [9], respectively. In this study, 
we have not compared performance of TCP-ADaLR with other 
TCP variants (TCP Westwood and TCP Jersey) and those 
specifically designed for satellite networks (TCP-Peach, TCP 
Hybla, TCP NewVegas, and TCP-Star). These protocols, unlike 
TPC NewReno, TCP Reno, and TCP SACK, are not currently 
available in the OPNET network simulator. 

 
Table 2. HTTP application parameters. 

 

Attribute Value 
HTTP specification HTTP 1.1 
Page inter-arrival time (s) 30 
Main page object size (bytes) 10,710 
Number of embedded page objects 15 
Embedded object size (bytes) 7,758 
Simulated time (s) 1,000 

 
Table 3. FTP application parameters. 

 

Attribute Value 
File inter-request time (s) 18,000  
File size (MB) 50 
Simulated time (hours) 5 



 

Table 4. TCP simulation parameters when the delayed ACK 
option is disabled. Values in parentheses indicate when the 

delayed ACK option is enabled. 
 

TCP Parameters Value 
Sender maximum segment size (SMSS) 1,460 bytes 
Slow start initial count 2 SMSS 
Receiver’s advertised window 65,535 bytes 
Timer granularity 0.5 s 
Maximum ACK delay 0.0 s (0.2 s) 
Maximum number of ACK segments 1 (2) 
Duplicate ACK threshold 3 
Initial RTO 3.0 s 
Minimum RTO 1.0 s 
Maximum RTO 64.0 s 
Retransmission threshold 6 
RTT gain 0.125 
RTT deviation coefficient 4 
Deviation gain 0.25 

5.1 Ideal Lossless Satellite Channel 
The HTTP page response time for a single webpage is shown in 
Table 5. The main page object and the 15 embedded objects are 
completely downloaded and the entire web page is open before 
the HTTP page response statistic is collected. TCP-ADaLR 
exhibits better performance compared to TCP SACK and TCP 
NewReno. TCP-ADaLR exhibits the shortest HTTP page 
response time that is 10% and 9% smaller with delayed ACK 
enabled and disabled, respectively. Hence, TCP-ADaLR exhibits 
reduced user-perceived latency of short-lived flows such as in the 
case of HTTP applications. The download response time for the 
FTP application is shown in Table 6. TCP-ADaLR exhibits 23% 
and 28% shorter FTP download response time with delayed ACK 
enabled and disabled, respectively. The TCP throughput of TCP-
ADaLR for the ideal channel is shown in Figure 2. TCP-ADaLR 
shows up to 53% and 63% higher TCP throughput with delayed 
ACK enabled and disabled, respectively. The higher TCP-ADaLR 
throughput and goodput imply the higher satellite downlink 
utilization, as shown in Figure 3. TCP-ADaLR exhibits up to 28% 
and 34% higher satellite link utilization with delayed ACK 
enabled and disabled, respectively. TCP-ADaLR does not have 
negative impact on connections with delayed ACK disabled. TCP-
ADaLR outperforms TCP SACK and TCP NewReno because the 
adaptive cwnd and rwnd window increase mechanisms enable 
faster transmission of additional segments when there are no 
losses. 

 
Table 5. HTTP page response time for the four TCP variants 

in the scenario with an ideal lossless satellite channel. 
 

 Page response time (s) 
Delayed ACK option Enabled Disabled 

TCP-ADaLR SACK 4.4 3.9 
TCP-ADaLR NewReno 4.4 3.9 
TCP SACK 4.9 4.3 
TCP NewReno 4.9 4.3 

 
Table 6. FTP download response time the four TCP variants 

in the scenario with an ideal lossless satellite channel. 
 

 Download response time (s) 
Delayed ACK option Enabled Disabled 

TCP-ADaLR SACK 360.6 333.4 
TCP-ADaLR NewReno 360.6 333.4 
TCP SACK 470.1 463.5 
TCP NewReno 470.1 463.5 
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Figure 2. Scenario with an ideal lossless satellite channel. 

TCP-ADaLR shows up to 63% higher throughput than TCP 
SACK and TCP NewReno with delayed ACK disabled. 
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Figure 3. Scenario with an ideal lossless satellite channel. With 
delayed ACK disabled, TCP-ADaLR reaches 80% utilization 

of the satellite link capacity while TCP SACK and TCP 
NewReno attain only 50% satellite link utilization. 

5.2 Ideal Satellite Channel with only 
Congestion Losses 
We consider two variants of the proposed TCP-ADaLR algorithm: 
with SACK and with NewReno. The increased HTTP page 
response time indicates the impact of congestion losses (compared 
to the ideal case), as shown in Table 7. TCP-ADaLR SACK 
shows the best performance in both cases with delayed ACK 



 

enabled and disabled. The FTP download response time is 
comparable for all four TCP variants, as shown in Table 8. The 
TCP throughput, TCP goodput, and satellite link utilization for 
the case with delayed ACK enabled are shown in Figures 4–6. 
The received segment sequence number at the receiver indicates 
the goodput. TCP-ADaLR performs comparably to both TCP 
SACK and TCP NewReno because the adaptive cwnd and rwnd 
increase mechanisms lead to cwnd increments void of large bursts 
that may degrade performance during congestion. In the case with 
delayed ACK disabled, the four TCP variants exhibit similar 
patterns as those with delayed ACK enabled [29]. Hence, TCP-
ADaLR variants show no significant performance degradation in 
the presence of congestion. 
 
Table 6. HTTP page response time for the four TCP variants 

in the scenario with only congestion losses. 
 

 Download response time (s) 
Delayed ACK option Enabled Disabled 

TCP-ADaLR SACK 11.0 10.3 
TCP-ADaLR NewReno 11.0 11.1 
TCP SACK 13.8 11.7 
TCP NewReno 16.6 11.7 

 
Table 7. FTP download response time for the four TCP 

variants in the scenario with only congestion losses. 
 

 Download response time (s) 
Delayed ACK option Enabled Disabled 

TCP-ADaLR SACK 1,212.7 1,226.7 
TCP-ADaLR NewReno 1,228.0 1,232.4 
TCP SACK 1,224.8 1,226.7 
TCP NewReno 1,216.6 1,226.7 
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Figure 4. Scenario with only congestion losses and delayed 
ACK enabled. TCP throughput degrades for the four TCP 

variants when congestion losses are detected. 

5.3 Satellite Channel with only Error Losses 
We evaluate the performance of TCP-ADaLR in the presence of 
losses due to only satellite link errors. For each BER value, we 
use different random seed numbers and compute the average 
values using 95% confidence intervals. The average HTTP page 

response times for the case with delayed ACK enabled are shown 
in Figure 7. Both TCP-ADaLR variants exhibit similar HTTP 
page response times and outperform both TCP SACK and TCP 
NewReno. The average FTP download response time is shown in 
Figure 8. For the four TCP variants, the FTP download response 
time increases with higher BER values. TCP-ADaLR SACK is the 
most robust variant in the presence of losses and shows 13%–37% 
shorter FTP download response time than TCP SACK. The TCP 
goodput, TCP throughput, and satellite link utilization for the case 
with delayed ACK enabled are shown in Figures 9–11. TCP-
ADaLR SACK shows 16%–61% higher TCP throughput than 
TCP SACK. The case with delayed ACK disabled exhibits the 
same pattern as with delayed ACK enabled [29]. TCP-ADaLR 
variants outperform TCP SACK and TCP NewReno because the 
adaptive cwnd increase mechanism causes additional segments to 
be rapidly sent after losses have occurred. Furthermore, the 
adaptive rwnd increase and loss recovery mechanisms allow at 
least two segments to be transmitted back-to-back when losses are 
detected in order to compensate for delayed ACKs. Hence, these 
mechanisms enable TCP-ADaLR to recover more quickly than 
TCP SACK and TCP NewReno. 
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Figure 5. Scenario with only congestion losses and delayed 
ACK enabled. TCP-ADaLR variants exhibit TCP goodput 

comparable to TCP SACK and TCP NewReno. 
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Figure 6. Scenario with only congestion losses and delayed 

ACK enabled. Satellite link utilization decreases when 
congestion losses are detected. 
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Figure 7. Scenario with only satellite link error losses and 

delayed ACK enabled. TCP-ADaLR SACK and TCP-ADaLR 
NewReno exhibit 2%–12% shorter HTTP page response time 

than TCP SACK and TCP NewReno. 
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Figure 8. Scenario with only satellite link error losses and 
delayed ACK enabled. TCP-ADaLR SACK exhibits up to 

37% shorter FTP download response time than TCP SACK. 
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Figure 9. Scenario with only satellite link error losses and 
delayed ACK enabled. TCP-ADaLR variants show higher 

TCP throughput than TCP SACK and TCP NewReno. 
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Figure 10. Scenario with only satellite link error losses and 
delayed ACK enabled. TCP-ADaLR SACK exhibits up to 

27% higher TCP goodput than TCP SACK. 
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Figure 11. Scenario with only satellite link error losses and 

delayed ACK enabled. TCP-ADaLR SACK and TCP-ADaLR 
NewReno exhibit up to 76% higher satellite link utilization 

than TCP SACK and TCP NewReno. 

5.4 Satellite Channel with both Congestion 
and Error Losses 
The increased HTTP page response time reflects the effect of both 
congestion and error losses, as shown in Figure 12. TCP-ADaLR 
SACK shows the best performance in both cases with delayed 
ACK enabled and disabled. TCP-ADaLR SACK exhibits up to 
32% shorter HTTP page response time than TCP SACK with 
delayed ACK enabled. The short and bursty nature of HTTP 
transfers ensures small number of outstanding unacknowledged 
bytes. Hence, when losses occur, the adaptive cwnd increase and 
loss recovery mechanisms enable faster completion of the HTTP 
transfers than with conventional TCP SACK and TCP NewReno. 
However, TCP-ADaLR NewReno performs worse than TCP 
NewReno with delayed ACK enabled. The higher HTTP page 
response time exhibited by TCP-ADaLR NewReno may be caused 
by its initial high transmission rate and, hence, the loss of several 
original and retransmitted segments. This is the only simulation 
scenario where TCP-ADaLR NewReno performs worse than TCP 
NewReno. 
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Figure 12. HTTP page response time for the four TCP 

variants in the scenario with congestion losses, satellite link 
error losses, and delayed ACK enabled. 

In the presence of error and congestion losses, the two TCP-
ADaLR variants show comparable FTP download response time 
with TCP SACK and TCP NewReno when BER values are 10-7 
and lower, as shown in Figure 13. At these lower BER values, the 
more prevalent cause of losses is congestion. Hence, TCP SACK 
and TCP NewReno exhibit 1%–4% shorter FTP download 
response times than the TCP-ADaLR variants. For BER ≥ 10-6 in 
the case with delayed ACK enabled, TCP-ADaLR SACK exhibits 
28%–29% shorter FTP download response time than TCP SACK. 
The case with delayed ACK enabled exhibits similar performance 
[29]. At higher BER values, the link error is the more prevalent 
cause of losses. Hence, the adaptive cwnd increase mechanism 
enables quick recovery from segment losses when all outstanding 
segments have been acknowledged. The adaptive rwnd increase 
and loss recovery mechanisms enable TCP-ADaLR SACK to 
recover more quickly from losses than TCP SACK and TCP 
NewReno. The TCP goodput, TCP throughput, and satellite link 
utilization exhibit similar performance to the FTP download 
response time, as shown in Figures 14–16. TCP-ADaLR variants 
outperform TCP SACK and TCP NewReno when the BER value 
of the GEO satellite link exceeds 10-7. 
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Figure 13. FTP download response time for the four TCP 

variants in the scenario with congestion losses, satellite link 
error losses, and delayed ACK enabled. 
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Figure 14. Scenario congestion losses, satellite link error 

losses, and delayed ACK enabled. For BER values higher than 
10-7, TCP-ADaLR SACK exhibits 42%–43% higher TCP 
throughput than TCP SACK with delayed ACK enabled. 
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Figure 15. Scenario congestion losses, satellite link error 

losses, and delayed ACK enabled. For BER values higher than 
10-7, TCP-ADaLR SACK exhibits 36%–43% higher TCP 

goodput than TCP SACK with delayed ACK enabled. 
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Figure 16. Satellite link utilization for the four TCP variants 

in the scenario with congestion losses, satellite link error 
losses, and delayed ACK enabled. 



 

5.5 Fairness and Friendliness 
An important feature of TCP is its ability to ensure a fair division 
among multiple competing connections. A TCP variant is fair if 
coexisting connections achieve equal bandwidth allocation. 
Friendliness refers to coexisting TCP connections with distinct 
TCP variants having a fair share of the available bandwidth. We 
employ the Jain’s metric of fairness [30] defined as: 
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where n is the number of competing connections and tj is the 
average throughput of the jth connection. The fairness metric has 
a value between 1/n and 1, where 1/n corresponds to unfair and 1 
to fair (equal) bandwidth allocation for all n connections. 
Common TCP variants such as TCP SACK and TCP NewReno 
are known to be fair when the competing connections have similar 
RTTs [18]. However, if the competing connections have different 
RTTs, the connections with shorter RTTs consume a larger 
fraction of the available bottleneck link bandwidth and starve 
connections with longer RTTs. 

TCP variants in deployed networks are expected to coexist and 
share bottleneck links among connections of distinct RTTs. We 
evaluate the fairness and friendliness of TCP-ADaLR in the 
absence of losses for an FTP application. The network topology is 
shown in Figure 17. All links are bi-directional with 10 Mb/s data 
rates. Shown are one-way link propagation delays. We test six 
TCP connections with different RTTs using two fairness scenarios 
where TCP connections employ TCP-ADaLR or TCP NewReno. 
In the friendliness scenario, we test six connections with identical 
RTTs (25 ms). Three connections employ TCP-ADaLR and the 
remaining three connections employ TCP NewReno. 

The average throughput values of the six TCP NewReno and six 
TCP-ADaLR connections are shown in Table 9. The 500 ms RTT 
connection using TCP-ADaLR has average throughput ~47% 
higher than the corresponding TCP NewReno 500 ms RTT 
connection. Conversely, the average throughput of the shortest 
RTT connection using TCP-ADaLR reduces by ~12%. The 
fairness values are shown in Table 10. TCP-ADaLR reduces the 
penalty caused by long RTT connections and exhibits better 
fairness than TCP NewReno. In the friendliness scenario, the 
average throughput of each competing connection is shown in 
Table 11. The friendliness value, shown in Table 12, confirms that 
TCP-ADaLR is TCP-friendly. Hence, the six coexisting TCP-
ADaLR and TCP NewReno connections have a fair share of the 
bottleneck link’s available bandwidth. 
 

 
Figure 17. Network topology used to evaluate fairness and 

friendliness. 

Table 9. Average throughput achieved by six competing TCP-
ADaLR and TCP NewReno connections. 

 

Average throughput (bytes/s) RTT (ms) 
TCP ADaLR TCP NewReno 

25 283,404.6 322,418.0 
50 281,750.6 300,629.1 

100 268,984.6 263,129.2 
300 195,099.8 158,601.5 
400 175,343.8 129,560.8 
500 160,897.4 109,239.5 

 

Table 10. TCP fairness values of TCP-ADaLR and TCP 
NewReno using the Jain's fairness index. 

 

TCP variant Fairness 
TCP-ADaLR 0.9510 
TCP NewReno 0.8650 

 

Table 11. Average throughput achieved by six competing 
connections using distinct TCP variants. RTT is set to 25 ms. 

 

TCP variant Average throughput (bytes/s) 
TCP-ADaLR 354,451.6 
TCP-ADaLR 356,565.9 
TCP-ADaLR 356,906.8 

TCP NewReno 352,012.7 
TCP NewReno 351,913.3 
TCP NewReno 351,748.1 

 

Table 12. TCP friendliness of TCP-ADaLR and TCP 
NewReno competing connections. 

 

TCP variant mix Friendliness 
TCP-ADaLR and TCP NewReno 0.99996 

6. CONCLUSIONS 
We proposed the TCP-ADaLR algorithm (TCP with adaptive 
delay and loss response) to reduce the adverse impact of the long 
propagation delays and high BERs on TCP performance in 
heterogeneous networks with GEO satellite links. We considered 
cases with both delayed ACK enabled and disabled. The TCP-
ADaLR algorithm was implemented as an extension to TCP 
SACK. We also evaluated the algorithm performance when 
implemented as an extension to TCP NewReno. Simulation 
results indicated that TCP-ADaLR improves the end-to-end 
performance of TCP for HTTP and FTP applications in the 
absence of losses with both delayed ACK enabled and disabled. 
The TCP-ADaLR algorithm reduced the response times for 
downloading HTTP web pages and FTP files. In the presence of 
only congestion losses, TCP-ADaLR variants show comparable 
performance to TCP SACK and TCP NewReno. In the presence 
of only error losses, TCP-ADaLR SACK outperforms TCP SACK 
and TCP NewReno and improves the average TCP throughput, 
TCP goodput, and satellite link utilization. TCP-ADaLR SACK 
also shows better performance than TCP SACK and TCP 
NewReno in the presence of both congestion and error losses. In 
each scenario, TCP-ADaLR with delayed ACK disabled 
outperforms TCP-ADaLR with delayed ACK enabled. Hence, 
TCP-ADaLR does not degrade performance of TCP connections 
with delayed ACK disabled and yields better performance. 



 

The deployment of TCP-ADaLR in heterogeneous networks 
requires modifications only at the TCP sender. These 
modifications place additional albeit minimal processing and 
memory overheads at the TCP sender. The TCP-ADaLR 
algorithm does not require modifications or introduction of packet 
prioritization mechanisms at intermediate routers. No 
modifications are required at the TCP receiver. TCP-ADaLR is 
fair to competing connections with different RTTs. It is also 
friendly to TCP NewReno connections. Hence, it is deployable in 
networks with other TCP variants. Finally, TCP-ADaLR 
maintains the end-to-end semantics of TCP. 
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