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ABSTRACT 

To support energy-efficient routing, accurate state information 
about energy level should be available. But due to bandwidth 
constraints, communication costs, high loss rate and the dynamic 
topology of MANETs, collecting and maintaining up-to-date state 
information is a very complex task. In this work, we use 
Optimized Link State Routing (OLSR) as the underlying routing 
protocol. We report the quantification of state information 
accuracy under different traffic rates. We are focusing on energy 
level as QoS metric, which has been used for routing decisions in 
many energy-efficient routing protocol proposals. State 
information accuracy is defined as the average difference between 
perceived energy level (by the node making a routing decision) 
and its actual value. The results show that state information is 
inaccurate, especially under high traffic rates. Tuning the OLSR 
protocol parameters has no noticeable impact on inaccuracy 
levels. Based on our inaccuracy level analysis, we propose three 
additional techniques as an attempt to reduce inaccuracies. We 
compare the different techniques against each other and against 
the basic OLSR protocol. Two of our proposed techniques show 
significant improvements in inaccuracy levels. In particular, a 
technique we call smart prediction achieves highly accurate 
perceived energy levels under all traffic loads.  

Categories and Subject Descriptors 

C.2.2 [Network Protocols]: Routing protocols 

General Terms 

Algorithms, Measurement, Performance, Design, 
Experimentation. 

Keywords 

MANETs, state information accuracy, energy level, Quality of 
service (QoS). 

1. INTRODUCTION 
Optimized Link State Routing (OLSR) is a routing protocol used 
for Mobile Ad-Hoc Networks (MANET) [3]. It is a best-effort 
proactive protocol. Proactive protocols are characterized by all 
nodes maintaining routes to all destinations at all times through 
the periodic exchange of protocol messages. This gives them the 
advantage of having pre-computed routes available when needed 
and to propagate topology changes in bulk updates to many 
nodes. OLSR performs hop-by-hop routing, where each node uses 
its most recent topology information for routing. 

OLSR is highly focused on reducing the protocol overhead. 
As a result, information about QoS-related state is not propagated 
throughout the network. But with the rising popularity of 
multimedia applications and the potential commercial usage of 
MANETs, QoS support in ad-hoc networks has become a very 
critical issue and a range of QoS singaling and routing protocols 
have been proposed. 

To support QoS routing, state information such as energy 
level, bandwidth or queue length should be available when maing 
routing decisions at a node. But because the quality of wireless 
links changes quite frequently due to mobility and changes in 
surroundings, coupled with the limited wireless bandwidth, 
collecting and updating such knowledge is a nontrivial task.  

Since OLSR works on periodic exchange of messages, QoS-
related state information might not be up to date at any instance of 
time. Therefore, nodes might have inaccurate information about 
other nodes in the network, which might have a negative impact 
on the performance of the network. The motivation of this 
research is to quantify the accuracy of the QoS-related state 
information in ad-hoc networks under different conditions and if 
possible, devise techniques to reduce inaccuracies. 

State information represents a QoS-related state. It could be 
a node attribute such as energy level and queue length, or a link 
attribute such as bandwidth, delay, or error rate. In this study, we 
are interested in node attributes, and specifically energy level. 
Due to energy constraints, a number of energy-aware routing 
protocols have been proposed [2][13][14]. Our work investigates 
the possibility of making OLSR an energy-aware routing protocol 
by evaluating how accurately individual nodes learn about the 
current energy levels for other nodes when piggybacking this 
information onto OLSR control messages. 

State information accuracy specifies how accurate is the 
available QoS-related state information relative to their actual 
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values. Througout this paper, we refer to the latter as the actual 
value and the former as the perceived value. 
The main contributions of this work are: 

• Quantification of the inaccuracy of energy level information 
in ad-hoc networks under different traffic loads, using OLSR 
as the underlying routing protocol. 

• Studying the impact of tuning the OLSR protocol parameters 
on the inaccuracy level of the energy level metric. 

• Suggesting and developing techniques to reduce 
inaccuracies. 

• Evaluating the performance of the proposed techniques and 
comparing them to the basic OLSR protocol performance. 

The paper is organized as follows: A review of the state of the art 
is presented in Section 2. Section 3 summarizes the core 
functionality of the Optimized Link State Routing Protocol 
(OLSR). Section 4 describes how we propagate QoS state 
information in OLSR and Section 5 shows, using simulation, the 
inaccuracy level we achieve with OLSR under different traffic 
loads. This section also analyzes the effect of varying various 
protocol parameters on the inaccuracy level and suggests ways to 
improve on the inaccuracy problem for energy level. Section 6 
discusses three techniques for improving the overall energy 
inaccuracy level and evaluates their performance through 
simulations. The final section concludes our work and suggests 
possible future work. 

2. RELATED WORK 
OLSR is a well-known routing protocol for ad hoc networks. It 
has been broadly examined [4][11], implemented and deployed 
[9][15]. [11] provides performance measurements in a real test-
bed and concludes that OLSR suffers from high variability of 
performance depending on how far apart are the nodes, and from 
unfairness depending on the topology and on the nature of the 
traffic. It suggests that QoS features could complement the 
performance of the OLSR protocol.  

[6] develops a QoS version of the OLSR protocol, based on 
link bandwidth as QoS metric. This QoS OLSR protocol attempts 
to find paths with maximum bottleneck bandwidth. In order to 
support QoS (provide optimal bandwidth path), changes in the 
link bandwidth must be propagated for the correct computation of 
the best bandwidth route. [6] evaluates the performance of this 
QoS OLSR model under different bandwidth change threshold 
values and compares it to the basic OLSR protocol performance. 
These threshold values define a tradeoff between the accuracy of 
link-bandwidth information and the additional overhead the 
routing protocol introduces. Three threshold values (20%, 40% 
and 80%) are used. The results show that amongst the proposed 
QoS OLSR algorithms, 20% QoS OLSR calculates the routes that 
are closest to the optimal routes compared to the 40% and 80% 
QoS OLSR. This is due to the fact that 20% QoS OLSR updates 
the bandwidth condition most frequently and consequently gets 
the most accurate bandwidth information. [6] demonstrates that 
OLSR has a potential for QoS routing. It also shows that the 
availability of more accurate state information throughout the 
network, via more frequent updates, improves the performance of 
QoS routing. However, their work does not investigate 
quantitatively the level of accuracy of the QoS metric (link 
bandwidth). 

[4] investigates the impact of extending topology knowledge 
on the OLSR protocol performance. In an OLSR network, nodes 
have partial topology knowledge in which only a subset of the 

links are known to the node to reduce the protocol overhead. 
Increasing the partial topology information provides a more 
robust and accurate topology view. It is achieved by increasing 
the number of links advertised and number of nodes advertising 
links. In OLSR this can be done by varying two protocol 
parameters (named MPR-coverage and TC-redundancy). In order 
to determine the effect of advertising redundant and more accurate 
topology information on the performance of the OLSR routing 
protocol, [4] studies the impact of increasing the MPR-coverage 
parameter. Their results show higher packet delivery rates under 
moderate node mobility when increasing the redundancy of 
topological information and retransmissions provided by a higher 
MPR-coverage.  

The research in [16] expands the work done in [4] and 
entirely focuses on understanding the trade-offs of increasing 
accurate topology knowledge. It investigates the impact of tuning 
the MPR-coverage and TC-redundancy parameters on the OLSR 
performance. It shows that delivery rates are not affected by the 
overhead resulting from advertising redundant information. Both 
[4] and [16] focus on having more accurate information at the 
topology (network) level and how it affects the routing protocol 
performance. In other words, they study the effect of tuning the 
OLSR protocol parameters on accuracy in terms of network status 
(existing nodes and links) and not in terms of state information 
available at nodes and links. 

The most relevant body of work to the problem of QoS 
routing in the presence of inaccurate information is a set of papers 
aimed at exploring state-aggregation issues and their impact on 
routing performance in large networks. They emphasize on 
developing good aggregation techniques that minimize inaccuracy 
in network state information, while allowing substantial 
reductions in the amount of state data. In particular the work in 
[8] addresses the information collection problem for QoS-based 
services in mobile environments. Specifically, it proposes a family 
of information collection policies that vary in the granularity at 
which system state information is represented and maintained. It 
evaluates the impact of information collection algorithms on the 
performance of QoS-based resource provisioning. The work in [8] 
proposes two approaches to collecting location information for 
mobile applications. Fine-grained approaches maintain current 
location of each individual mobile client, while coarse-grained 
collection captures information at an aggregate level of multiple 
clients. [8] concludes that coarse-grained mobility information is 
sufficient for effective resource provisioning, whereas fine-
grained mobility information introduces a very high overhead. 
The work in [8] however does not evaluate the impact of fine-
grained mobility information on resource provisioning and how it 
compares to coarse-grained mobility information. Since we are 
dealing with relatively smaller networks, our work investigates the 
impact of collecting fine-grained data on the accuracy of state 
information as an upper bound on achievable accuracy. 

[1], [7] and [12] investigate the impact of inaccuracies, in the 
available network state and metric information, on the path 
selection process for flows which require QoS guarantees. In 
particular [12] evaluates the impact of inaccurate state 
information on the performance and overheads of QoS routing by 
evaluating periodic and triggered updates. They use connection 
blocking as their performance measure. Connection blocking 
defines the percentage of times a connection request from a 
source to a destination fails. They draw a distinction between 
routing failures and setup failures. Routing failures occurs when 



the source cannot compute a feasible path for the new connection. 
In contrast, setup failures occur when the source selects a 
seemingly feasible path that ultimately cannot support the new 
connection. With a periodic update policy, larger periods 
substantially increase connection blocking, ultimately 
outweighing the benefits of QoS routing. The results show that a 
periodic update policy alone cannot meet the dual goals of low 
blocking probability and low overhead in realistic networks. In 
contrast, experiments with triggered updates show that coarse-
grained triggers do not have a significant impact on the overall 
blocking probability, although larger triggers shift the type of 
blocking from routing failures to more expensive setup failures. 

In summary, none of the prior works fully address the 
problem of quantifying the inaccuracy in state information. On the 
other hand, our work focuses on understanding the impact of how 
the QoS-related state is collected and how it is updated. 

3. DESCRIPTION OF OLSR 
The IETF Working Group introduced the Optimized Link State 
Routing Protocol (OLSR) for mobile ad hoc networks [3]. The 
protocol is an optimization of the pure link state algorithm. The 
key concept used in the protocol is that of multipoint relays 
(MPRs). Each node selects a set of its neighbor nodes as MPRs. 
Only nodes selected as MPRs are responsible for forwarding 
control traffic, intended for diffusion into the entire network. 
MPRs provide an efficient mechanism for flooding control traffic 
by reducing the number of (re-)transmissions required. 

Nodes selected as MPRs also have a special responsibility 
when declaring link state information in the network.  Indeed, the 
only requirement for OLSR to provide shortest path routes to all 
destinations is that MPR nodes declare link-state information for 
their MPR selectors. 

Nodes which have been selected as multipoint relays by 
some neighbor node(s) announce this information periodically in 
their control messages.  Thereby a node announces to the network 
that it has reachability to the nodes which have selected it as an 
MPR.  In route calculation, the MPRs are used to form the route 
from a given node to any destination in the network.  
Furthermore, the protocol uses the MPRs to facilitate efficient 
flooding of control messages in the network. 

Due to its proactive nature, OLSR works with a periodic 
exchange of messages. The key messages are Hello and TC 
messages. Hello messages are periodically exchanged to inform 
nodes about their neighbors and their neighbors’ neighbors and 
are 1-hop broadcast messages. The 2-hop neighborhood 
information is then used locally by each node to determine MPRs. 
In contrast, TC messages are flooded through the network to 
inform all nodes about the (partial) network topology. At a 
minimum, TC messages contain information about MPRs and 
their MPR selectors.  

To control the protocol overhead, OLSR defines a few 
parameters. The Hello-interval parameter (default: 2 seconds) 
represents the frequency of generating a Hello message. 
Increasing the frequency of generating Hello messages leads to 
more frequent updates about the neighborhood and hence a more 
accurate view of the network. 

The TC-interval parameter (default: 5 seconds) represents the 
frequency of generating a TC message. TC messages are one of 
the major sources of overhead in MANETS, as they are flooded 
throughout the network, but they facilitate the topology discovery 
process. Since nodes learn about the whole topology by 

exchanging TC messages, the more frequently nodes generate TC 
messages, the more recent the knowledge nodes have about the 
topology.  

The MPR-coverage parameter (default: 1) allows a node to 
select redundant MPRs. The criterion for selecting MPRs is that 
all 2-hop neighbors must be reachable through at least one MPR 
node. Nodes should select their MPR set to be as small as 
possible in order to reduce protocol overhead. Redundancy of the 
MPR set affects the overhead through affecting the amount of 
links being advertised, since a node will be selected by more 
neighbor nodes as an MPR, the amount of nodes advertising 
links, since more nodes will be selected as MPRs, and the 
efficiency of the MPR flooding mechanism. On the other hand, 
redundancy in the MPR set ensures that reachability for a node is 
advertised by more nodes. 

The TC-redundancy parameter (default: 0) specifies, for the 
local node, the amount of information that may be included in the 
TC message. A TC-redundancy of 0 specifies that the advertised 
link set of the node is limited to links to its MPR selectors. A TC-
redundancy of 1 specifies that the advertised link set of the node 
is the union of links to its MPR selectors and to other MPRs. A 
TC-redundancy of 2 specifies that the advertised link set of the 
node is the full neighbor link set. The TC-redundancy parameter 
affects the overhead through affecting the amount of links being 
advertised as well as the amount of nodes advertising links. 

4. OLSR MODIFICATIONS 
In order to quantify the accuracy of state information, the QoS-
related state needs to be propagated throughout the network. 
There are two ways in which QoS-related state can be propagated 
throughout the network. Either we define a new message type to 
carry the QoS-related state information, or we include it in the 
OLSR protocol messages (Hello and TC messages) to be available 
to other nodes in the network. With the first approach, a new 
message type has to be defined and exchanged. This will incur a 
potentially large overhead in the network since more messages 
will be exchanged. In addition, these messages will include a lot 
of redundant information and the same gain can be obtained by 
including the QoS-related state information in the OLSR protocol 
messages. Therefore, the second approach was taken to propagate 
the QoS-related state information to be available to other nodes in 
the network. 

Through the exchange of OLSR control messages, each node 
accumulates information about the network.  This information is 
stored according to the OLSR specifications. However, to store 
the QoS-related state associated with a node, a new field was 
added to the neighborhood information base and to the topology 
information base maintained by the protocol. To populate these 
fields, the message format of Hello and TC messages was 
extended as well.  

Extended Hello messages are broadcast to all one-hop 
neighbors. They contain not only a list of addresses of neighbors, 
but also the most recent QoS-related state associated with those 
neighbors from the sender node’s perspective. In addition to that, 
the message also contains the QoS-related state of the sender node 
itself at the time the message is generated. The other fields are 
loaded according to the OLSR specifications.  

Extended TC messages are broadcast and retransmitted by 
the MPRs in order to diffuse topology information into the entire 
network. TC messages contain not only a list of addresses of a 
node’s MPR selectors, but also the QoS-related state associated 



with those nodes from the originator node’s perspective. In 
addition to that, the message also contains the QoS-related state of 
the originator node at the time the message is generated.  

Moreover, a timestamp of when the data was sent out 
(created) is collected along with the QoS-related state. Hello and 
TC messages were extended to carry timestamp information. 
Timestamps will be used to analyze delays and “knowledge age”. 
This implies that the network nodes are time-synchronized. Since 
there are many clock synchronization solutions available such as 
Network Time Protocol (NTP), we will assume that the network is 
synchronized. As our analysis deals with delays in the order of 
seconds, no particularly tight clock synchronization (i.e. at the 
level of micro seconds) is required. 

5. SIMULATION RESULTS 
To quantify the accuracy of state information in different 
conditions, we ran extensive simulations using the NS2 simulator 
with the OOLSR implementation of OLSR provided by the 
Hipercom project (NS2 version 2.27 with OOLSR version 
0.99.15) [9]. 

For each sample point, 10 random network snapshots are 
generated. The simulation results presented are an average over 
these 10 scenarios. The same set of 10 scenarios are used for all 
simulations for a given sample point, hence the different 
parameters are evaluated under identical conditions. 

 

Table 1: Simulation Parameters 

Simulator Parameters 

Propagation model TwoRayGround 

Network Type IEEE 802.11 

Transmission Range 250 m 

Mobility Model Static Network 

Scenario Parameters 

Topology area 1000*1000 

Number of nodes 50 

Simulation time (secs) 200 seconds 

Energy Model Specifications 

Initial Energy (Joules) 1000 

Transmission Power (Watt) 1.4 

Receiving Power (Watt) 1.0 

Idle Power (Watt) 0.83 
 
In the following, we describe the simulation conditions that we 
generally used in our simulation experiments. Unless otherwise 
specified, while discussing a certain experiment, these are the 
conditions under which the experiment was conducted. In each 
run, we have 20 communication pairs. Each source sends 128 
bytes CBR packets at different intervals. The simulations are done 
with 5 different intervals to study the effect of low, medium and 
high traffic rates on the QoS metric. The intervals are 0.2, 0.14, 
0.09, 0.04 and 0.02 seconds – an interval of 0.2 means a node will 
send a packet every 0.2 of a second (i.e. 5 packets per second). At 
the lower intervals, significant number of packets (data and 
control packets) will be lost due to network congestion, testing 
the performance under stressful overload scenarios. These may 
not be representative of long-term sustained traffic, but often 
occur in MANETs due to the link bandwidth limitations and the 

bursty nature of data traffic. The energy model values are based 
on the study conducted in [5].  
During the simulation, a snapshot for the whole topology is taken 
every second. It contains information such as: 

• Which other nodes a node can hear and what it believes to be 
their energy levels. Node n2 is said to be heard by node n1 if 
there exists a route from n1 to n2.  

• If a node n2 is heard by node n1, how many hops away is it 
from node n1.  

• The actual energy level for each node. 
Also during the simulation, we keep records of all Hello and TC 
messages sent and received. We are interested in determining the 
average overall inaccuracy level. We define this as the average 
difference between a node’s actual energy level and what other 
nodes believe its energy level is. More formally, overall 
inaccuracy level is calculated as: for each pair of nodes (n1, n2) in 
the network such that n1 can hear n2, the sum of the absolute 
difference between the actual energy level of n2 and what n1 
believes to be the energy level of n2, for all time points (every 
second of the simulation) divided by the total number of pairs. 
This is done for 10 scenarios and the overall inaccuracy level is 
the average over the 10 scenarios. We ignore the first 50 seconds 
of the simulation to have the network stabilized and to ignore 
transient startup conditions. We also are only considering pairs of 
nodes (n1, n2) such that n1 can hear n2. During the simulation 
and due to message loss and delays, some nodes get temporarily 
disconnected from other nodes. Therefore they are not considered 
part of the network as they are not used for routing. For overall 
inaccuracy level calculation, only visible nodes are considered. 
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Figure 1 shows the overall inaccuracy level under low, medium 
and high traffic rates using the default OLSR parameters (i.e. 
Hello-interval 2, TC-interval 5, MPR-coverage 1 and TC-
redundancy 0). As expected, traffic does introduce a considerable 
level of inaccuracy to the network. And as traffic rate increases, 
the level of overall inaccuracy increases. As traffic rate increases, 
the network becomes more congested. Since network buffers have 
limited capacity in terms of storage and processing of arriving 
packets, this affects significantly the performance of the network, 
causing long delays and packet loss as packets will be waiting in 
the queues for processing or will be dropped due to overflow. 

Figure 1: Energy Overall Inaccuracy Level under Different 

Traffic Rates with Default OLSR Parameters 



And as nodes send/receive traffic at a higher rate, they consume 
energy at a higher rate. Consequently, information available to the 
nodes in the network becomes outdated and no longer accurate. 

These observations are confirmed by our experiments. Table 
2 shows the average nodal energy consumption, Hello/TC 
message delay and Hello/TC message loss as well as average 
knowledge age under the different traffic rates. Hello/TC message 

loss is calculated as the percentage of Hello/TC messages received 
compared to the number of received messages using traffic 
interval 0.2 as base case (assuming that no messages are lost in 
this case). Average knowledge age is calculated as: for all pairs of 
nodes (n1, n2) in the network, the average of how old is the 
information n1 has about n2. 

 

Table 2: Hello/TC Message Delay and Loss, Average Knowledge Age and Nodal Energy Consumption 

Table 3: Overall Inaccuracy Level (in Joules)  under Different Traffic Rates with Different OLSR Parameters 

 

OLSR is very focused on overhead reduction. Therefore OLSR 
default parameters are set to achieve an acceptable performance 
(without intensions for QoS support) while keeping the overhead 
as low as possible. We therefore investigated if it is possible to 
trade off cost (overhead) to gain better performance (more 
accurate state information). We analyzed the impact of sending 
more frequent Hello and TC messages (by reducing Hello and TC 
intervals) as well as more redundant topology information (by 
increasing TC-redundancy and MPR-coverage parameters). 

As shown in Table 3, a 95% confidence interval is calculated 
for each parameter under the different traffic rates. Increasing the 
number of protocol messages, including both Hello and TC 
messages, or increasing the amount of information advertised 

improves the overall inaccuracy level under low traffic rate. 
Under medium to high traffic rate, a 95% confidence interval test 
shows that the difference between the overall accuracy levels 
under the different OLSR parameters is not statistically 
significant. Under medium traffic rates (traffic intervals 0.14 and 
0.09) we observe a trend towards better inaccuracy levels when 
varying the OLSR parameters. On the other hand, under high 
traffic rates (traffic interval of 0.04 and 0.02), the trend is towards 
less accurate energy levels when varying the OLSR parameters. 

The results observed here are a direct consequence of the 
increased level of congestion in the network which results in high 
message loss and delay and hence less accurate state information. 

Traffic 
Interval 

Nodal Energy 
Consumption 
(Joules/ Sec) 

Hello Message 
Delay (secs) 

TC Message 
 Delay (secs) 

Hello Message 
 Loss (%) 

TC Message 
 Loss (%) 

Average 
Knowledge 
Age (secs) 

0.2 0.926 0.016 0.114 - - 2.94 

0.14 0.948 0.12 0.542 4% 3% 3.68 

0.09 0.956 0.478 1.586 9% 17% 5.46 

0.04 0.965 0.866 2.127 15% 36% 7.03 

0.02 0.971 1.046 2.143 18% 45% 7.06 

              Traffic Interval 
OLSR Parameters 

0.2 0.14 0.09 0.04 0.02 

2 
2.6225 

[2.37,2.87] 
3.4287 

[2.96,3.9] 
5.1793 

[4.8,5.56] 
6.7602 

[5.94,7.58] 
6.839 

[5.88,7.81] 
Hello-interval 

1 
2.213 

[1.99,2.43] 
2.956 

[2.47,3.44] 
4.846 

[4.36,5.33] 
6.992 

[6.16,7.82] 
7.366 

[6.37,8.36] 

5 
2.6225 

[2.37,2.87] 
3.4287 

[2.96,3.9] 
5.1793 

[4.8,5.56] 
6.7602 

[5.94,7.58] 
6.839 

[5.88,7.81] 

4 
2.196 

[1.95,2.43] 
2.978 

[2.49,3.46] 
5.014 

[4.59,5.44] 
6.774 

[5.9,7.64] 
6.896 

[5.76,8.03] 
TC-interval 

3 
1.981 

[1.76,2.2] 
2.865 

[2.38,3.35] 
5.097 

[4.66,5.53] 
7.004 

[6.2,7.8] 
7.273 

[6.15,8.39] 

1 
2.6225 

[2.37,2.87] 
3.4287 

[2.96,3.9] 
5.1793 

[4.8,5.56] 
6.7602 

[5.94,7.58] 
6.839 

[5.88,7.81] 
MPR-coverage 

2 
2.241 

[2.05,2.43] 
2.888 

[2.47,3.31] 
4.718 

[4.22,5.21] 
6.925 

[5.99,7.86] 
6.927 

[5.89,7.96] 

0 
2.6225 

[2.37,2.87] 
3.4287 

[2.96,3.9] 
5.1793 

[4.8,5.56] 
6.7602 

[5.94,7.58] 
6.839 

[5.88,7.81] 

1 
2.283 

[2.06,2.5] 
3.062 

[2.6,3.52] 
5.014 

[4.51,5.52] 
6.81 

[5.98,7.64] 
6.832 

[5.9,7.77] 
TC-redundancy 

2 
2.143 

[1.98,2.3] 
3.005 

[2.51,3.5] 
4.89 

[4.47,5.31] 
6.79 

[6.01,7.57] 
7.257 

[6.18,8.33] 



Table 3 shows that among the different OLSR parameters, 
under low traffic rates, improvement in inaccuracy level is best 
achieved by a TC-interval of 3 with some improvement achieved 
by lowering the Hello-interval from 2 to 1. According to the 
OLSR specifications, the ratio between Hello-interval and TC-
interval is 2 to 5. Therefore using a combination of TC-interval of 
3 and Hello-interval of 1 seems appropriate. Figure 2 compares 
the overall inaccuracy level using the default parameters for 
OLSR, called default OLSR, versus using a combination of Hello-
interval 1 and TC-interval 3, keeping the other parameters 
unchanged (MPR-coverage 1 and TC-redundancy 0), called 
Hello1TC3 OLSR. 

Hello1TC3 OLSR improves the overall inaccuracy level 
under low traffic rates. As we move towards high traffic rates, 
Default OLSR starts to outperform Hello1TC3 OLSR due to the 
overhead added to the network (more frequent HELLO and TC 
messages). 

The obvious approach of increasing the frequency of 
protocol messages or the amount of information advertised 
improves the energy overall inaccuracy level under low traffic 
rates only. Therefore, we further analyzed the results based on 
knowledge age to obtain better insights of what can be done to 
improve inaccuracies under higher traffic rates or even improve it 
further under low traffic rates. 
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Figure 2: Overall Inaccuracy Level of default OLSR vs. 

Hello1TC3 OLSR 

As a first step, we correlated knowledge and inaccuracy level. 
Knowledge age inaccuracy level represents the average difference 
between a node’s actual energy level and what other nodes 
believe its energy level is, categorized by how old the knowledge 
is. The knowledge between all pairs of connected nodes is 
categorized into 22 different groups based on how old the data is. 
The 1st group has all pairs with knowledge that is 0 (inclusive) to 
1 second old (exclusive). And the 2nd group has all pairs with 
knowledge that is 1 (inclusive) to 2 seconds old (exclusive) and 
so on. All nodes that have data which is above 21 seconds old are 
put in the last group since we observed that it is very rare to have 
data that is older than 21 seconds. According to the OLSR 
implementation with default parameter values, it is typical to have 
data that is up to 6 seconds old which is the TC-interval default 
(every 5 seconds) plus 1 second to propagate the message. Each 
tuple in a node’s topology database will be expired after 15 

seconds (or 3 times the TC-interval), so a reasonable upper bound 
on knowledge age under not heavily congested network 
conditions is therefore 21 seconds . 

Figure 3 illustrates the results of knowledge age inaccuracy 
level under the five different traffic rates and using the default 
OLSR parameters. It can be clearly seen from this figure that the 
older the knowledge about other nodes is, the less accurate their 
knowledge about the node’s energy levels are. This trend is easily 
explained by the fact that the energy level is a monotonically 
decreasing metric. Based on these observations, we will explore 
ways to increase energy level accuracy. 
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Figure 3: Knowledge Age Inaccuracy Level under Different 

Traffic Rates and Default OLSR Parameters 

6. IMPROVING ACCURACY 
Before exploring how to improve the accuracy levels, we first 
consider whether it is worthwhile propagating the energy level 
information at all. 

 

0

1

2

3

4

5

6

7

8

0.2 0.14 0.09 0.04 0.02

Traffic Interval

O
v

e
ra

ll
 I

n
a

c
c

u
ra

c
y

 L
e

v
e

l 
(J

o
u

le
s

)

Default OLSR Guessing

 

Figure 4: Guessing vs. Default OLSR 

We “implemented” a Guessing mechanism in which, rather than 
propagating energy level information, each node will guess the 
energy level of the other nodes based on its own energy 
consumption. For this approach to work, we assume that the 



networks under consideration are homogeneous: all nodes are 
configured with the same wireless card and therefore use the same 
energy model (same transmitting, receiving and idle power 
consumption) and they start with the same initial energy level. In 
this case every node trivially assumes that the energy level of the 
other nodes in the network is the same as its own energy level.  

As shown in Figure 4, at first glance it seems that 
propagating the energy level information is better than Guessing 
under low traffic rate, whereas under higher traffic rates, Guessing 
outperforms the default OLSR. However, under the Guessing 
technique a node assumes that the energy level of all the other 
nodes is the same as its own energy level, leading to increased 
inaccuracies over time. A node in the centre of the network will 
frequently receive and relay many other packets, overestimating 
the energy consumption of nodes at the network edge and vice 
versa. Figures 5 and 6 plot the overall inaccuracy level as a 
function of time under traffic intervals of 0.2, and 0.02 
(respectively). It is clear that the overall inaccuracy level increases 
linearly with time for Guessing. And as the traffic rate increases, 
the crossover point (at which point Guessing becomes less 
accurate than Default OLSR) will occur later. This means that the 
results in Figure 4 are somewhat oversimplified. If we ran the 
simulations a little longer under the higher traffic rates, Default 
OLSR will outperform Guessing and as a result the trend would 
be that Default OLSR outperforms Guessing under all traffic 
rates.    

0

1

2

3

4

5

6

50 58 66 74 82 90 98
10

6
114 122

130
138

14
6

15
4

162 170 178
186

194

Time (secs)

O
ve
ra
ll
 I
n
a
c
c
u
ra
c
y
 L
e
ve
l

Default OLSR Guessing

 

Figure 5: Overall Inaccuracy Level as a Function of Time 

under 0.2 Traffic Interval 

Based on the energy level knowledge age inaccuracy level 
analysis in the previous section, the results show that the main 
source of inaccuracies is the existence of old data. A first 
approach to address this problem would be for a node to selective 
probe nodes for which it holds old information (above a certain 
threshold, say), hopefully obtaining more recent (and therefore 
more accurate) state information. In parallel work reported 
elsewhere [10], we experimented with such an approach and 
found that it, in general, is not capable of achieving significant 
reductions in inaccuracy. 

Alternatively, as energy level is a monotonically decreasing 
metric, we can adjust “old” information and predict the current 
value. Our idea is therefore to have every node locally adjusts 
nodes’ old energy levels based on their “behavior pattern”. We 

propose a Prediction mechanism in which each node locally 
extrapolates an expected energy level based on old (reported) 
energy levels and energy consumption rate pattern for all other 
nodes. Every second of the simulation, instead of having every 
node report its perceived knowledge for every other node in the 
network as is, a node’s perceived value is first adjusted based on 
its past behavior (consumption rate) and then the adjusted value is 
reported. For example, at second 51 of the simulation, node 0 has 
an energy level of 958.581 associated with node 1 and this 
knowledge is timestamped 47.5916. At time 52, the perceived 
energy level for node 1 (from node 0 perspective) is 954.998, 
timestamped 49.5884. Node 0 computes the consumption rate of 
node 1 as: (958.581-954.998)/(49.5884-47.5916) = 1.7943. Then 
it adjusts the estimated energy level of node 1 to be: 954.998-
(1.7943*(52-49.5884)) = 950.6707 (at time 52). If no prediction 
is possible, as no consumption rate is known yet, the last reported 
energy level will be used without adjustment. 
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Figure 6: Overall Inaccuracy Level as a Function of Time 

under 0.02 Traffic Interval 

The only drawback of the Prediction algorithm is the need to wait 
for two different perceived value readings, so a consumption rate 
can be calculated and used to adjust the perceived values. Table 4 
shows the percentage of number of times an adjustment takes 
place under different traffic rates. Under high traffic loads, 
adjustments happen less rarely. Protocol control messages are 
lost/delayed, and as a result nodes will not “hear” other nodes. 
After a node is deemed unreachable, we go through the startup 
phase again, where we need at least two successive reports to be 
able to calculate a consumption rate. We therefore propose the 
Smart Prediction algorithm which is an enhanced version of the 
prediction algorithm so that adjustments take place almost all the 
time.  

Table 4: Percentage of Times Adjustments Take Place under 

Different Traffic Rates 

Traffic Interval Number of Adjustments (in %) 

0.2 97% 

0.14 95% 

0.09 91% 

0.04 82% 

0.02 78% 



In the Smart Prediction algorithm, for every pair of nodes (n1, 
n2), if n2’s consumption rate is not yet known, n1 adjusts the 
perceived value of n2 based on the average of all known 
consumption rates for other nodes. If n1 knows not a single 
consumption rate for other nodes, it adjusts n2’s perceived energy 
level based on its (n1’s) consumption rate. 

Using all known nodes’ consumption rates eliminates the 
domination of outliers and ensures closeness to the actual 
consumption rate, assuming again that nodes are somewhat 
homogeneous in their wireless cards. Unlike the Guessing 
approach, we do not assume or require that all nodes have the 
same initial energy level. 
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Figure 7: Overall Inaccuracy Level using Default OLSR vs. 

Prediction vs. Smart Prediction 

According to Figure 7, our Prediction algorithms improve the 
overall inaccuracy level under different traffic rates. The 
improvement under higher traffic rates is not as high as it is under 
lower traffic rates. For an adjustment to take place, a node must 
wait for two different perceived values. But under high traffic 
rates, due to message loss and delays, the percentage of times 
adjustments take place is much lower, as shown in Table 4. Since 
the Smart Prediction algorithm takes care of the problem of not 
being able to adjust the perceived energy level value all the time, 
it achieves much better performance in terms of overall 
inaccuracy level, especially under higher traffic rates. Both the 
Prediction and the Smart Prediction algorithms outperform the 
Default OLSR protocol. At the same time, the Smart Prediction 
algorithm outperforms the Prediction algorithm in improving the 
overall inaccuracy level. 

7. CONCLUSIONS AND FUTURE WORK 
In this work, we used the Optimized Link State Routing (OLSR) 
protocol as the underlying wireless network routing protocol. We 
explored the quantification of state information accuracy (energy 
level) under different traffic rates. We showed that as traffic rate 
increases, the overall inaccuracy level increases. Tuning the 
OLSR protocol parameters did not have a noticeable impact on 
overall inaccuracy level. 

A Guessing technique, in which a node simply guesses the 
energy level of other nodes based on its own energy level, shows 
that propagating the energy level information is indeed beneficial. 
Using Default OLSR, this does provide the nodes in the network 
with more accurate energy level information. Overall inaccuracy 
level using Guessing tends to drift linearly with time, increasing 
the gap between the guessed and actual energy level values. 

We proposed two other techniques to reduce energy level 
inaccuracies, Prediction and Smart Prediction. Under the 
Prediction technique, a node’s energy level is adjusted based on 
its past behavior (its own consumption rate). Smart Prediction is a 
modified version of the Prediction technique such that, if no 
behavioral pattern was known for a node, its energy level is 
adjusted based on the average of all known consumption rates for 
other nodes. The results show that both Prediction and Smart 
Prediction outperform the Default OLSR (OLSR with QoS-
related state propagated, and using default parameters). Moreover, 
Smart Prediction outperforms Prediction since energy level 
adjustments take place all the time. In addition, the overheads 
associated with Prediction and Smart Prediction are exactly the 
same as the Default OLSR since no extra messages or fields are 
required. 

The only restriction under the Smart Prediction technique is 
that nodes are assumed to be homogeneous in their wireless cards. 
As part of our future work, Smart Prediction could be evaluated 
when nodes have heterogeneous wireless interfaces. In other 
words, nodes are not required to have similar transmitting, 
receiving or idle power. 

As the first step towards supporting QoS routing, our work 
reports the quantification of state information accuracy and 
proposes new techniques to reduce inaccuracies. But how 
effective is providing this more accurate information on the 
routing decision? Will providing more accurate energy level 
information help making better routing decisions compared to the 
Default OLSR solution? For example, will Prediction and Smart 
Prediction calculate the routes that are closest to the optimal 
routes, the routes with the highest remaining energy, compared to 
the Default OLSR? While the work in [6] showed that more 
accurate QoS state information leads to more accurate routing 
decisions, the authors only focused on available bandwidth as 
routing metric. Applying our techniques to energy-efficient 
variants of OLSR to quantify protocol performance impacts is 
therefore the main next step in our work. 
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