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Abstract—Non-functional properties evaluation in Service Ori-
ented Architecture (SOA) is still mostly an open challenge. Al-
though this is a problem that has been already partially explored
with some success, there is lack of consolidated results for
more complex SOA applications based on services composition.
This paper presents a contribution to performance evaluation
of SOA-based applications integrated by BPEL. The evaluation
technique is based on a performance-oriented reinterpretation
of the BPEL specification as a performance modeling language
within a multiformalism framework. The approach is based on
automatic translation of PerfBPEL into Markov chains and it is
implemented by means of SIMTHESys modeling and analysis
framework to enable the interaction with other performance
oriented formalisms.

I. I NTRODUCTION

Performance evaluation of complex systems is a key issue
for the development of QoS aware applications and systems.
The field of business oriented services requires a high degree
of flexibility and the ability to react timely to changes: this mo-
tivation has led to methodological and technological solutions
based on the Service Oriented Architecture (SOA) paradigm.
SOA provides the means to encapsulate and publish worldwide
atomic functionalities as services. The given abstractionallows
automatic integration of services in wider applications, de-
scribed as business processes and automatically implemented
by means of languages like BPEL. This approach enables
designers: i) to rapidly compose the applications needed bythe
customers, ii) to easily reconfigure them by changing the setof
involved services and iii) to add the required integration logic.
The availability of complex distributed architectures, such as
the ones exploiting cloud computing technologies, complicates
scenarios but amplifies the benefits of the approach, maximiz-
ing reuse possibility, scalability, competition on the market and
cost optimization.

The involvement of third-party, geographically distributed
services in an application complicates the design. While
standard tools have been implemented to support the auto-
matic inclusion of services and significant research results are
available for the verification of correctness of the resulting
application, a little has been done for the prediction of the
performances of such applications. The possibility of evalu-
ating overall performances of a SOA based application since
the early phases of the design cycle covers an important role.

Firstly, it simplifies the choice between different solutions with
different costs and secondly it allows the implementation of
QoS policies. Moreover, the transformations that can derive by
the exploitation of cloud technologies require the analysis to
be performed on a timescale that must be proportional to the
rapidity of the changes. The evaluation should be performed
automatically on demand, by exploiting the description of the
workflow, freeing the developer from the burden of manually
generating the models.

This paper presents an automatic performance oriented
modeling approach aiming to minimize the paradigm shift
from designing and modeling SOA applications, by directly
using BPEL workflows to generate performance models. The
approach is based on the development of a modeling for-
malism, namely PerfBPEL, that mimics BPEL constructs and
execution semantics, enriching it with performance oriented
attributes.

The main contributions of this approach are: minimal syn-
tactical difference from BPEL workflows to lower the cultural
gap between modelers and designers; automatic generation of
PerfBPEL models from BPEL workflows; possibility of use
of different formalisms to model the execution architecture,
according to modelers’ needs; faithful representation of the
effects of BPEL semantic details.

After this introduction, Section 2 gives the reader references
about SOA and related modeling approaches relevant for this
work; Section 3 motivates the work by presenting PerfBPEL
methodological perspective; Section 4 presents PerfBPEL de-
tails and the related model solution process, applied to a cloud-
based case study in Section 5. Finally, conclusions and future
works close the paper.

II. RELATED WORKS

SOA is an architectural model for the support of widely dis-
tributed software application based on the concept of service.
According to the Service Oriented Computing paradigm, a
service is an autonomous, platform-independent computational
entity that can be used independently by the platform. SOA
leverages the potential of Internet to allow software applica-
tions (in turn, usable as complex services) that use services
available in a network, thus representing the widest accepted
model to design geographical distributed systems. It promotes
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loose coupling between software components, improving their
reusability [11] in dynamic business processes. One of the
most promising research trend in this field is the evaluationof
non functional features of Composed Web Services as stated
in [26].

A crucial aspect for the design of SOA applications is
service composition, both for what is related to correctness
and performance (QoS) aspects. Besides the technical support
offered by standards, verification of the correctness of com-
positions is a widely and successfully explored problem in
literature. Correctness verification has been studied by means
of different kinds of formal methods (pi calculus, logic, model
checking) but the most relevant technique for the purposes of
this Section is given by Petri Nets, since Petri Nets have also
been used in some performance evaluation work in literature.
A detailed description of the problem of correctness in terms
of workflows can be found in [29], that surveys this argument,
and many other works of the same author. A model checking
oriented transformational approach is presented in [16], related
to the development of automatic transformation between BPEL
(that is a standard de facto for the implementation of SOA
applications) and Petri Nets.

On the other hand, the evaluation of QoS in Composed
Web Services is still an important open issue. It involves the
study of functional and non-functional attributes of a service as
performance, availability, security, reconfigurability and so on.
The vastity of this issue, cumulated with the need to satisfy
related design specifications in a non-controllable, complex
environment such as the Internet, represents a grand challenge
for researchers. Web Services performances are studied by
means of direct measuring and statistical techniques (see e.g.
[27] that introduces time management extensions).

The focus of this paper concerns formal methods based tech-
niques. Following this direction, literature presents different
studies using Performance Evaluation Process Algebra [15],
timedCCS Process Algebra [24], Timed Automata in [10], and
of course Petri Nets [20], [9], [31], [17] (the latter presents
a clear introduction to the problem, describing a method to
evaluate BPEL workflows - in its BPEL4People extension -
by analyzing them with GSPN models).

Performance and performability measures have been suc-
cessfully performed taking advantage of multiformalism mod-
eling techniques. Many experiences in supporting and de-
veloping multiformalism modeling techniques and frame-
works are reported in literature (Sharpe [28], SMART [4],
[5], Mobius [8], [6], [7], OsMoSys [30], [13], [25],
[14], SIMTHESys [19], [2], [1], [3], [18]). In this paper
SIMTHESys is used to support the development of our ap-
proach.

III. M OTIVATION

SOA is advocated to enable business agility [21], due to the
principles on which it is inspired: reuse, coarse granularity,
modularity, composability, componentization and interoper-
ability. Coarse grain atomic software composition is used as
an agile alternative to traditional software development cycles

approaches. This approach allows more efficient and consistent
results although it requires a higher complexity in the design
and more implementation efforts.

The flexibility of SOA is comparable to the richness of ca-
pabilities offered by the cloud computing paradigm that allows
computing resources i) to be used from the Internet on a on-
demand basis and ii) to be seamlessly ran on heterogeneous,
(geographically) distributed architectures.

The typical scenarios involve frequent reconfigurations of
(high-level) software and hardware architectures and compo-
sition of applications by using alternative third-party existing
services, differently from typical distributed systems, in which
software and hardware are usually designed as quasi-stable,
interdependent entities. Moreover, the professional background
required in this field is usually different from the typical
background of modeling experts.

The change of scenarios, the little time spent on develop-
ment and the short life cycles of these systems make per-
formance evaluation a difficult and crucial factor for success.
The availability of an automated modeling technique, directly
representing (BPEL) workflows and fit to the first steps of
the development cycle would lower the cultural gap between
workflow and model design. As a consequence, designers
could exploit their experience on the base of performance eval-
uations without the need for a radical change of perspective.

Since the most spread approach for the development of
SOA applications exploits BPEL, this paper considers a BPEL
representation as a starting point for the software level ofSOA.
The typical scenario is thus given by a distributed software
layer, composed of intercommunicating BPEL workflows, and
a distributed architecture layer. The latter is composed by
different application servers (hardware and application server
software) and the computer network to which they are con-
nected.

A. Why PerfBPEL

BPEL is a complex language. Modeling BPEL, as seen, has
been the goal of several works. Given the modeling power
of Petri Nets and the fact that they have been used for both
correctness and performance analysis of BPEL, two main Petri
Nets based references have been considered while developing
this paper: [23] and [17]. The first presents a comparison
of two automatic verification approaches, that give complete
and detailed descriptions of all aspects of the language, by
articulated modular nets. The second presents a method to
describe by a GSPN a given workflow, for performances
evaluation, taking in account the main aspects of the language.
Although such approaches are very sound and well designed,
using the first as a basis for a performance oriented extension
would produce very complex nets for common workflows,
thus complicating the analysis and affecting its complexity;
the second seems not sufficiently detailed to capture all the
execution semantics of BPEL (e. g. the execution of fault
handling, quite frequent in BPEL) and allow an automatic
translation. Moreover, detailed Petri Nets representations of



workflows appear as syntactically distant from BPEL descrip-
tions, and are difficult to handle and understand for the average
BPEL designer.

In this paper a dedicated modeling formalism, namely
PerfBPEL, is introduced. PerfBPEL is designed to represent
all performance related aspects of BPEL while keeping the
structure of models as similar as possible to BPEL workflows.
BPEL constructs are rendered with one to one PerfBPEL
equivalents, that capture the same semantics and enrich it
with performance related annotations. This allows the direct
translation of BPEL workflows into PerfBPEL models, easy
to be handled by designers and ready to be completed with
performance parameters (not allowed by pure BPEL standard
workflows). Such a tool allows a model-based analysis of an
application in the first phases of design, with a minimal alter-
ation of the development cycle that supports design choices
since its beginning.

In the approach proposed in this paper, PerfBPEL is used
to describe the SOA software layer and is implemented as a
(graph-based) formalism for the SIMTHESys framework [19],
[2], [1], [3], and the architecture layer is described by a ded-
icated formalism, that describes the deployment of services.
Using SIMTHESys enables the use of other formalisms too,
such as Generalized Stochastic Petri Nets (GSPN), Queuing
Networks (QN) or Fault Trees (FT), to represent services
or other architectural components for the convenience of
designers.

The main focus of this paper is on PerfBPEL. The rest of
this Section is dedicated to more detailed considerations about
its concept, its main aspects and its solution method.

B. Main issues

BPEL offers different paradigms and features like concur-
rency, synchronization, message-based communication, excep-
tion handling and the use of variables. Concurrency and syn-
chronization paradigms suggest (as seen in the related works)
that formalisms like GSPN or PEPA could be used as an
intermediate modeling step. Even if the BPEL synchronization
mechanism has a complex semantics1 (represented by Petri
Nets [22]), in the general framework of the approach presented
here this would require a completely automatic generation
of complex nets, that would be then analyzed to generate
an equivalent solution model (e.g. a Markov chain). The
generation of a Markov chain from BPEL minimizes the state
space and simplifies the modeling of BPEL paradigms, so
PerfBPEL models are solved by generation and analysis of
equivalent Markov chains.

The virtually unlimited set of possible values of variablesis
collapsed in relevant subsets, each one determined according
to the combination of conditions present in a given workflow.
In a case-by-case basis, this approach allows reducing the
original number of possible values of a variable during the

1The Link clauses within Flow constructs are subject to a complex enabling
logic with mutual consequences, namely the Dead Path Elimination [12], that
involves variable and logic clauses evaluation and influences the result of the
execution of the whole Flow construct.

execution of the workflow to a finite and generally small
number of states.

Note that stochastic characterization of the states of vari-
ables is required when a deterministic value is not available
or is not generated during the execution of the workflow. This
can be derived by profiling analogous workflows, analyzing the
specifications or setting proper hypotheses. Both the aspects
of variables characterization should be taken into account,
to enhance the quality of the performance model by letting
correlations emerge from the model itself.

C. PerfBPEL models evaluation

PerfBPEL models evaluation is implemented by the SIM-
THESys modeling framework, that supplies the SIMTHE-
SysER solvers generation tool. This choice lets PerfBPEL
leverage all characteristics available in it. SIMTHESys isa
multiformalism modeling approach that allows the develop-
ment of modeling formalisms by specifying the static and
dynamic aspects of its modeling elements. SIMTHESys al-
lows: the automatic generation of solvers for models written
in formalism compositions, by using solving engines based
on elementary general solution algorithms; and models com-
position and formalisms extension by means of the behavioral
interfaces.

The proposed approach supports message-based communi-
cation and fault handling by exploiting the features of the
framework. Since the use of the framework natively enables
multiformalism modeling, the architectural layer of the sys-
tems to be analyzed is specified by means of a separate
ancillary formalism, designed to describe how system com-
ponents are deployed and connected. Moreover, by exploiting
multiformalism the modeler can represent the behavior of
some components by using submodels written in other well-
known formalisms (such as GSPN, QN and FT), to consider
peculiar effects of the dynamics of the architecture or of
third-party services, or to let modelers evaluate more complex
phenomena (such as performability characteristics or effects
of the application of user-defined mechanisms).

D. Current implementation and limitations

For the purposes of this paper, besides the development
of a dedicated tool to transform BPEL workflows in Perf-
BPEL models, SIMTHESysER has been used to generate a
multiformalism solver. This is based on GSPN, QN, FT and
CTMC solving engines, capable of analyzing SOA system
models relying on PerfBPEL and the ancillary formalism. Note
that the case study presented in the paper does not explicitly
show the use of exception handling BPEL constructs due to
space restrictions (the use of exception handling primitives
[3] in the case study would have complicated the description
of the structure). Variables are specified as for the previous
subsections with reference to state reduction and stochastic
characterization, with the exclusion of correlation manage-
ment. Currently, synchronization inside Flow constructs is not
covered by the implementation. Finally, message-based com-



munication is enabled by the use of the ancillary formalism
to integrate the submodels forming the architecture.

IV. T HE PERFBPEL APPROACH

The PerfBPEL formalism is based on the reference im-
plementation WS-BPEL 2.0 [12]. BPEL is a XML-based
language designed to represent orchestration of services as a
workflow. BPEL constructs are divided in Basic Activities and
Structured Activities. Basic activities are atomic operations of
the language, while Structured Activities describe its control
flow.

A. BPEL constructs

A brief description of BPEL Basic activities is given in
Table I. WS-BPEL supports both one-way and two-ways
communications by a correlation mechanism used with Invoke,
Receive and Reply: correlation allows the use of the commu-
nication primitives to obtain synchronous and asynchronous
service invocations. A brief description of BPEL Basic activ-
ities is given in Table II.

TABLE I
BPEL BASIC ACTIVITIES

NAME DESCRIPTION
Invoke Synchronous or asynchronous invocation of a ser-

vice offered by a partner
Receive Waits for a message from a partner (used to

complete the protocol in case of asynchronous
invocation of a service)

Reply Sends a message to a caller (used to complete the
protocol in case of asynchronous invocation of a
service)

Assign Assigns a value to a variable
Validate Validates the values of process variables against

their associated XML and WSDL data definitions
Wait Waits for a timer to expire
Empty Null action
Throw Launches an exception
Rethrow Propagates an exception to the outer scope
Exit Immediately terminates a BPEL process with no

termination handling, fault handling or compensa-
tion behavior

Compensate Handles the actions needed in case an activity
cannot be completed

Compensate
scope

Handles the actions needed in case a scope cannot
be completed

Extension ac-
tivity

Hooks for the extension of the available set of
activities with a personalized activity

B. Designing PerfBPEL

The SIMTHESys modeling framework offers a sound ap-
proach to formalism development. It prescribes each formal-
ism to be defined in terms of language elements, each of
which is characterized in terms of properties (that define
their structure), and behaviors (that define their execution
semantics). As a result, BPEL has been analyzed according to
the SIMTHESys approach by bearing in mind that PerfBPEL
should be as much as possible similar to BPEL.

The analysis has been guided by some considerations.
Firstly, the goal is to isolate the business logic from chore-
ography details as much as possible, in order to increase

TABLE II
BPEL STRUCTURED ACTIVITIES

NAME DESCRIPTION
Scope Defines inner activities as an atomic group
Process Defines the main BPEL workflow
Fault handler Defines a group of actions launched in case of

fault in the execution of an activity
Compensation
handler

Defines a group of actions launched in case an
activity cannot be completed

Termination han-
dler

Defines a group of actions launched in case of
termination of the workflow

Event handler Defines a group of actions launched in case an
event happens. Used for asynchronous execution
of parts of the workflow

Flow Executes activities in parallel and waits for their
completion. Internal synchronization between
parallel execution branches is possible by using
Link

If-Else Executes alternative actions depending on the
value of a logic condition

Pick Executes alternative actions depending on the
arrival of one between a set of messages or the
expiration of a timer between a set of timers

Sequence Executes a sequence of activities one after the
other in the specified order

While Executes repeatedly an activity until a condition
keeps true (the activity is not executed if the
condition is false)

Foreach Executes repeatedly in a sequence or in parallel
an activity N times, and terminates successfully
if M execution are successful

reusability and allow early application in the SOA develop-
ment cycle. Secondly, the details of real service invocations
(not necessarily available in the first phases of the cycle)
have been ignored in favor of a simplified and generalized
approach. Thirdly, value-based choices and messaging have
been modeled as probabilistic, since the effective detailsabout
variables, types, values and called services are not known at
design time. Finally, a static analysis-like quantification can
give information about how the application will behave in the
average case.

Each BPEL construct corresponds to a PerfBPEL element,
including the behaviors that mimic the proper execution se-
mantic and a set of properties. Additional elements have been
added to connect the BPEL-equivalent elements in a graph
structure and implement the interactions that represents the
possible paths of the BPEL execution flow. The aspect related
to performances have been implemented as additional prop-
erties describing the parameters needed to evaluate execution
time (in terms of deterministic and exponentially distributed
duration).

Next (then)

Else

While

For-each

Edges

Start

End

Sequence

Invoke

Receive

Reply

Assign

If-Else

Nodes

Fig. 1. The elements of PerfBPEL

Fig. 1 presents the BPEL primitives currently considered in
PerfBPEL. Future work will incorporate other BPEL activities.
Following the SIMTHESys approach, a model is defined by



a graph structure. The BPEL model has been transformed
into a graph by adding an arc (theNext arc in Fig. 1) that
connects each primitive to the following one. Since some
the structured activities can have more than one following
action, we have introduced another type of arc (theElsearc).
Following the SIMTHESys methodology, the properties that
define an element can be classified into three sets:static
properties, that define the parameters of the model;dynamic
properties, that are used to identify the state of the model;
and measuresthat specify the performance metrics that can
be computed for an element. Moreover, the entire model can
have its own properties. The following introduces the single
nodes composing the formalism and their properties:
BPEL. It represents the entire model, and contains all the other
primitives. Its static properties are:variables, an array of labels
that represents all the variables used in the model,valueSetthat
defines a set of ranges of values that the variables can assume
(i.e. the variable types), andvariableTypethat associates to
each variable one of the available types. Its dynamic properties
are:currentActivity, that points to the activity that is currently
being performed by the model, andwaitingForEventused to
wait for external events. This property is empty if the system
is performing an internal action. Otherwise, if the system is
waiting for an external event, it specifies a label for it. The
last dynamic property isvariableValuesthat stores the current
value of all the variables.
Start andEnd. They define the beginning and the end of the
model. They have no properties and they must be unique in
the entire model. The former cannot have any incoming arcs,
while the latter cannot have any outgoing arcs.
Sequence. This element has no properties and represents the
start of a sequence of actions. Since a PerfBPEL model is a
graph of actions, it is not strictly necessary (the sequenceis
already implemented by theNextarcs). However, it has been
included to support the future extension of the formalism to
support management of concurrent execution flow inhibition.
Assign. It is characterized by two static properties:variable,
that represents the variable set by the activity, andvalue that
contains the value that it is going to be assigned. When this
activity is executed, the given variable is set to the specified
value.
Invoke. It is used to model the invocation of an external
service. It has a static property calledservice that includes
the name of the service that it is going to be called. It also
has a boolean dynamic property calledwaiting that defines the
state of the element. As soon as the element is considered, it
sends the service request corresponding to a label contained
in the static properties and it goes to a wait state (by setting
waiting to true). The name of the service is also inserted in the
waitingForEventproperty of the model (theBPEL element)
to block the execution until the required event is received.
The Invoke element has also a static property calledrate
that specify a (possibly 0) mean exponential waiting time to
represent the time required to issue the request.
Reply and Receive are similar to theInvoke, as they
generate respectively an event or wait for an event to occur.

Both have the static propertyservicethat includes the name
of the service that is due to be performed.Receive has the
dynamic property calledwaiting with a behavior similar to
the receiving part of theInvoke element. In the same way,
Reply has arate property that specify the mean waiting time
before sending the event.
If-Else. It has two mutually exclusive static properties:condi-
tion andprobability. If conditionis present, it corresponds to a
boolean expression involving some variable. Ifprobability can
be specified as a real value in the range[0, 1] that determines
the probability that the condition will be true. AnIf-Else
element must have exactly two outgoing arcs: aNextarc that
represents the direction of the flow of action to be followed
when the condition is true, and anElse arc that has to be
chosen when the condition isfalse. The choice of the next
action is either deterministic (ifconditionhas been specified),
or probabilistic (whenprobability is present).
While. It behaves exactly as theIf-Else element, with the
only extra feature that the component flow is required to return
the While element to perform a loop.
For-each. It has two static properties:variable that represents
the variable used to identify the iterations, andset that rep-
resents the different values that the variable will assume.The
value of the considered variable will be used to determine
which service has to be called during each iteration. The
element also has a dynamic propertycurrentValuethat stores
the current value of the iteration. AFor-each element has
two outgoing arcs: one ofNext type and one ofElse type.
When there is a new value in the set that the variable can
assume, the execution flow continues along theNextdirection.
As soon as all the values of the set have been considered,
the execution follows theElsearc. Note that this is currently
just an approximation of the actual BPEL Foreach structured
activity, where actions can be performed either in series orin
parallel.

C. The bridge formalism

In the SIMTHESys methodology, submodels written in
different formalisms are logically connected by arcs in an
external formalism (thebridge formalism) that defines the
interactions among the various primitives. The ancillary for-
malism for PerfBPEL is a bridge formalism.

To model the intercommunication among BPEL processes,
a new arc calledConnectionis added to the formalism. This
arc has a static property calledservicethat contains the label
of a service request. TheConnectionarcs joins the requesting
process with the replying one. Specifically, service requests
produced by the element from which the edge starts, and
that match the label of the arc, are sent to the process at the
other end. If that process is blocked waiting for that particular
event, it allows the process to continue to its next state. The
sameConnectionarc can also start from elements that defines
the push behavior and end at elements implementing the
setOccupancy behavior; moreover, arcs that implement the
isActive behavior can also terminate on a BPEL submodel:



these features are useful to create multi-formalism modelsand
will be covered in more detail in the following section.

D. The solution process

The solution process is based on the automatic generation of
a Markov chain for the model. The generation is obtained by
applying the activation rules of a PerfBPEL model, emulating
the behavior of a BPEL workflow engine. The state of the
engine is obtained from the composition of the distributed
state described by the properties of the PerfBPEL elements in
the model.

All the exponential and immediate events based
SIMTHESys formalisms operate by defining a behavior
called initEvents. The purpose of this behavior is to
find which events (either characterized by an exponentially
distributed firing time, or zero time and event probability)are
enabled and can occur in a given state. With respect of the
BPEL elements,initEvents first checks if the process is
enabled by looking for all the arcs that end on the considered
sub-model and which implement theisActive behavior.
If at least one of this arcs returnsfalse, then the component
is considered to be inactive. This is used for example to
stop an activity using a place of a GSPN and an inhibitor
arc. If the BPEL sub-model is active, then the property
waitingForEventis checked to see if the process is blocked
waiting for a reply. If the property is not empty, then the
execution terminates since the component is waiting for an
external event to continue. IfwaitingForEventis empty, the
execution continues by reading the current activity from the
property currentActivity. Depending on the specific activity,
initEvents decides which events can occur and schedules
them.Start and Sequence schedule an immediate event
that changes the current action to the one found along its
exiting arc (that must be present and must be unique for
the model to be valid).End resets all the variables of the
component, and returns the current action to theStart
element.If-Else andWhile schedule, if theirprobability
property is set, two immediate events corresponding to the
system choosing thethen or the else path. If the condition
property is set, the condition is evaluated and only one
immediate event is generated, along the path corresponding
to the value of the test.Assign sets the variable to the value
defined in the corresponding two properties, and schedules
an immediate transition to the next activity.For-each
assigns the current value to the variable, and then sets its
currentValueproperty to the next element of the set (defined
in the corresponding property). It schedules an immediate
transition along theNext arc if there are other elements in
the set, or along theElse arc if there are no new values to
be assigned. As outlined earlier, theReceive element sets
the waitingForEvent property of the BPEL submodel, and
schedules no action. When the event is received, it also sets
its dynamic propertywaiting to resume the operation along
the path that starts from this element. When aConnectionarc
of the bridge formalism executes apush behavior, it checks
if the sub-model at the destination of the arc is waiting for

the event specified in theservice property of the arc. If it
matches, the transition to the next state in the BPEL submodel
is scheduled as an immediate event to release the process and
continue to the next activity. Since thepush behavior is very
general (it is used for example by arcs exiting from GSPN
transitions and FCQN queues to move tokens and customers
among their elements), it could be used to create complex
inter-formalism interactions, by allowing for example the
firing of a GSPN transition to define the completion of a
service. A Reply activity schedules either an immediate
or a timed (exponentially distributed) event, depending on
whether therate property is present or not. When this event
is executed, it looks for all the arcs that start from the BPEL
submodel in which the element is contained. For all the arcs
whose service property matches the one contained in the
corresponding property of theReply element, it executes a
push behavior to send this event to other sub-models. It also
changes thecurrentActivityproperty of the BPEL sub-model
to the next activity connected to theReply node. Thepush
behavior of theConnectionarc checks (assuming that it is not
connected to a BPEL sub-model) that its destination element
supports thesetOccupancy behavior. If this is the case, it
uses this behavior to increase of one unity the occupancy of
the destination element. This can be used in multi-formalism
models, for example to increase the number of tokens in a
GSPN place, or the jobs in a FCQN queue, when a specific
event occurs. Finally, theInvoke activity is executed by
calling first aReply and then aReceive activity on the
same service. Fig. 2 shows the events that are scheduled,
and the time in which the process is stopped waiting for
synchronization, obtained for the PerfBPEL model of Fig. 7
(that is the equivalent of the BPEL process given in Fig. 4).

V. CASE STUDY

A. Description

The application proposed as case study is related to the topic
of resource management and service deployment in a cloud
computing context. In particular, the need to have a sustainable
computing implies the necessity to improve corporate IT
infrastructures efficiency even by means of outsourcing and
externalization of such facilities. In other words a user can
be invited to use external service from the Cloud rather then
expanding owned data center. This choice can be mediated
by means of SOA paradigm where BPEL-based services can
hide the real location of services implementation (if they are
deployed on “real” data centers or on the Cloud).

As it is depicted in Fig. 3, this system is composed of five
different web applications:

• Broker: it is an application deployed on the user access
portal used to determine where the service invoked by the
user would be executed. This application will be better
described later since it is at the core of this study;

• Negotiator: it runs on the cloud providers front-ends,
catching requests from the Service Client. If the provider
cannot satisfy user’s requests, it propagates the request to
other cloud providers;
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• Resource Manager: this is a “in-house” service that
confirms if the owned data center can take the Service
User request;

• Setup: it allows the data center to prepare the execution
of requested service;

• Billing: this is a service hosted on a Tolling Server that
is responsible to determine to economical viability of
the operation when cloud user/provider check agrees to
externalize/accept the requested service.

The interaction starts with the request of a user that activates
the Broker service. This service asks forResource Manager
on its data center first. If it is not possible to execute service
“in-house”, it asks for service execution from cloud providers
invoking the Negotiator services. If one cloud provider an-

swers positively, the phase of economic viability starts by
means on the invocation of the remote serviceBilling. If, on
the other hand, service can be executed by owned data center
(meaning thatResource Managerhas provided a positive
response),Broker activates theSetupprocedure. If a cloud
provider cannot satisfy the request, it propagates it to other
cloud providers.
We make the hypothesis that the decision to accept or not
a user request is taken by a Cloud Provider Administrator
(CPA). In this context, the last two services are regarded as
an external black-box while the formers are considered two
proper BPEL applications. They are depicted respectively in
Fig. 4 and Fig. 5.

Fig. 4. Broker BPEL workflow

B. Modeling

The model of the system is in Fig. 6. To simplify the presen-
tation, a single edge with arrows on both ends corresponds to
two edges connecting the same elements in opposite directions.

The evaluated configuration has two cloud providers (1
and 2) that are directly known by theBroker and a third
provider (N) that is known by the second provider. These
two CWS are represented by PerfBPEL and are detailed in
Fig. 7 and in Fig. 8. Being connected by a network, the



Fig. 5. Negotiator BPEL workflow
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three providers can be available or not: this is obtained by
modeling this condition by means of a GSPN model, that
enables/disables the related providers model with an inhibitor
arc of the ancillary formalism (that extends GSPN inhibitor
arcs). Third party servicesResource Managerand Setupare
modeled by simple GSPNs, as the only relevant aspect of
their presence in the model is related to the delays that they
may introduce in the system, whileBilling is modeled by a
QN, as the queuing effect impacts on all the PerfBPEL CWS
submodels, resulting in a mutual influence on their response
time.
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Fig. 7. Broker PerfBPEL description
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C. Results

Table III shows the parameters used in the model, their
meaning and nominal values chosen for the quantitative anal-
ysis.

The model has been analyzed in order to obtain two
different metrics: the probability to get request acceptedwith
respect of the variation of theprobBLOK parameter (Fig. 9)
and the probability to not have a (even negative) response
with respect to the time the CPA spends away from terminal
(Fig. 10). The probability of a positive response from the
Billing is an upper bound to the probability of getting a request
accepted: this ensures that the system is working correctlyand
that there is not the possibility of accept not economically
viable requests. The response probability in Fig. 10 accounts
for the cases in which all the providers are not available. As
expected, the probability of not receiving an answer increases



TABLE III
PARAMETERS OF THE APPLICATION

Name Meaning Value
checkTime time interval at the end of which CPA

periodically checks external requests
1800 sec

busyRatio fraction of time the CPA spends in back-
office practice (and so is far from termi-
nals)

1

decisionTime time in which the CPA takes a decision
about satisfying external requests

30 sec

billTime time in which theBilling service com-
putes a request

10 sec

rmTime time in which the Resource Manager
service computes a request

10 sec

stTime time in which theSetupservice com-
putes a request

10 sec

netTime generic transmission time of a message3 sec
probRMOK probability theResource Managerserver

gives a good response
0.1

probBLOK probability the Billing service gives a
good response

0.7

probSAT probability according to which the CPA
decides to accept user request

0.7

with portion of time CPA spends away from the terminal.
However it is interesting to see that the protocol is still capable
of limiting the negative effect: with a large off period (240s)
the probability is just around 30%.

Fig. 9. Acceptance vs probBLOK

VI. CONCLUSIONS AND FUTURE WORK

The approach proposed in this paper provides an original
contribution to the performance evaluation of systems based
on SOA. This claim is motivated by the capacity of design-
ing models including the effects of third-party services and
other external factors, like users behavior. Although the work
presented does not cover yet mutual influences of concurrent
execution in Flow constructs, the scope considered is sufficient
to evaluate real workflows. This approach benefits of the flexi-
bility offered by the SIMTHESys modeling framework. Based
on the possibility of defining the execution semantics of the
elements of a formalism by means of the behavior mechanism,
the PerfBPEL formalism will be extended to cover the missing
aspects of BPEL execution semantics. Moreover, future work

Fig. 10. Acceptance vs checkTime

includes the application of different solution techniquesin
addition of a Markov chain based solving engine.
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