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SAMOVAR, CNRS (UMR 5157)

jeremie.jakubowicz@it-sudparis.eu

Abstract—Consider a connected network of N agents observ-
ing N arbitrary samples. We investigate distributed algorithms,
also known as gossip algorithms, whose aim is to compute the
sample average by means of local computations and nearby
information sharing between agents. First, we analyze the con-
vergence of some widespread gossip algorithms in the presence
of misbehaving (stubborn) agents which permanently introduce
some false value inside the distributed averaging process. We
show that the network is driven to a state which exclusively
depends on the stubborn agents. Second, we introduce a novel
gossip algorithm called Total Variation Gossip Algorithm. We show
that, provided that the sample vector satisfies some regularity
condition, the final estimate of the network remains close to the
sought consensus, and is unsensitive to large perturbations of
stubborn agents. Numerical experiments complete our theoretical
results.

I. INTRODUCTION

Algorithms designed to estimate averages over a network
in a distributed fashion have been the subject of intense
research [1], [2], [3]. They are usually referred to as Gossip
algorithms [4], even if the word gossip is sometimes used
for a broader family of distributed algorithms [4]. One of
the most widespread approach to achieve this distributed
average computation is through iteration of linear operations
mimicking the behaviour of heat equation [3]: at each round,
nodes average the values in their neighborhood (including
themselves). We will refer to this general strategy as linear
gossip. Under mild hypotheses, linear gossip can be shown to
converge to a state where each node in the network has the
same value – this value being the sought network average.

In its most simple form, linear gossip is synchronous: time
is slotted and at each slot, all agents wake up and perform
their local averaging [1], [2]. But many variants have been
studied as well: asynchronous gossip, where some random
node wakes up, and then communicates with some neighbors;
it can, for instance, broadcast its value to its neighborhood and
let its neighborhood perform the averaging, or choose a single
random neighbor and both adjust to their common average
(a variant known as random pairwise gossip [3]). However,
most of this works share a common view of the network: all
agents show good will. They do not, for instance, deliberately
introduce some false value inside the network, or refuse to
update their value. There are a few recent work raising the

problem of misbehaving agents in the gossip process [5], [6].
Contributions. The contributions of the paper are twofold.

First, we study the impact on the network of the presence of
stubborn agents, that do not change their minds and keep the
same value instead of performing correct averaging with their
neighborhood. We assess this impact in both quantitative and
qualitative terms. In quantitative terms, we characterize the
convergence of synchronous linear gossip in the presence of
stubborn agents. We show in particular that a single stubborn
agent flips the whole network, in the sense that the whole
network end up taking his/her value. We also analyze the
impact of several stubborn agents and show that the network
is driven by their values. Second we propose a non-linear
gossip algorithm which we shall refer to as Total Variation
Gossip Algorithm (TVGA) which is meant to be more robust
to misbehaving agents. Under some regularity conditions, we
prove that the algorithm converges to the sought consensus
in the ideal case where the network is free from misbehaving
agents. We also study the behavior of TVGA in case a stubborn
agent perturbates the network. We prove that, irrespective to
the magnitude of the perturbation, the final estimate of the
network remains close to the sought consensus. Finally, we
provide numerical experiments showing the attractive behavior
and robustness of TVGA.

The paper is organized as follows. In Section II, some well
known fact about linear gossip are recalled. In Section III,
standard linear gossip algorithm are studied in the presence
of stubborn agents. In Section IV a new gossip algorithm
is proposed. In Section V its performance is evaluated in
the presence of stubborn agents. In Section VI numerical
experiments are conducted to assess its behavior on simulated
data and we conclude in Section VII, rejecting technical proofs
to the appendix.

II. FRAMEWORK

The common goal of average gossip algorithms [3], [7] is
to estimate the average of values spread over a network. The
goal of this section is to formalize precisely this notion and
recall some well known results.

The agents of the network are represented by a set V , their
ability to communicate with each other is represented by a set
of undirected edges E: an undirected edge is a pair {v, w} with
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(v, w) ∈ V 2, v 6= w. The assertion {v, w} ∈ E is sometimes
denoted v ∼ w, represents the fact that agent v and w are able
to communicate (they may or may not use this ability), while
v 6∼ w means that v and w can never communicate directly
with one another. The undirected graph G = (V,E) sums up
the communication infrastructure of the network.

The information held by the agents is represented by func-
tions x : V → R, meaning that agent v holds the scalar
x(v). For instance if all agents share the same value, e.g. 1,
the corresponding function: v ∈ V 7→ 1 is denoted 1. By
abuse of notations, we consider x as a vector in RN with
components x(v) in a given order, where N = |V | is the
total number of agents in the network. Now, each agent has its
own initial information, encoded x0 and wants to share it with
the other agents so that anyone can estimate 1

N

∑
v∈V x

0(v).
It is convenient to use the couple of orthogonal projectors
J = 1

N 11T and J⊥ = I − J . Using these notations, the
goal of any average gossip algorithm is to go from x0 to
x∞ = Jx0 using some specific communication protocols we
now specify.

The communication protocol used by the agents is not
encoded by G, instead it has to be compliant to G: two agents
are allowed to communicate only if they are connected in
G. Obviously, there are many ways to satisfy this constraint:
agents can communicate pairwise or not, synchronously or not,
etc. Gossip algorithms are iterative algorithms and can be cast
in terms of the following update equations:

∀n ≥ 0, v ∈ V, xn+1(v) = fn+1,v (xn(v), (xn(w))w∼v, ξn+1)
(1)

where, xn(v) is seen as a state variable attached to agent
v at time n and (ξn+1)n≥0 are independent and identically
distributed random variables.

Remark 1: The fact that xn+1(v) depends only on xn(v),
its neighbors xn(w) and some independent randomness ξn+1

ensures that the corresponding gossip algorithm is indeed
distributed. Moreover, it also helps agents to use a limited
amount of memory (only the previous state is needed). It is
always possible to concatenate the T previous states in a larger
state vector, hence this model also encompasses dependence on
a fixed number of previous states. Random variables ξn usually
represent two sources of randomness: noise and asynchronism.
Noise alters transmitted values while asynchronism alters order
in which operations are performed: which agent initiate a given
communication, with which destination, etc.

The most widespread family of average gossip algorithm is
the following:

x0(v) = x0(v) (2)

xn+1(v) = wn+1,v,vxn(v) +
∑
w∼v

wn+1,v,wxn(w) (3)

where wn,v,w is the (v, w) entry of an N ×N matrix W n.
Assumption 1: Gossip matrices W n are independent and

identically distributed (iid) and such that:
(a) W n has its entries in [0, 1] almost surely.
(b) W n1 = 1 almost surely.

(c) W T
n1 = 1 almost surely.

(d) ρ(E[W n]− J) < 1.
Remark 2: Even if some authors consider negative weights

[3], the first assumption allows to easily interpret W as a
weight matrix. Assumption W n1 = 1 is a sanity check: if all
agents agree on the value 1 at time n = 0 the network should
remain unchanged at each iteration. Assumption W T

n1 = 1
asks for a good deal of cooperation in the network: agents have
to coordinate their weights. Condition ρ(E[W n] − J) < 1
ensures connectivity on average, see [3] for details.

Remark 3: As an interesting example of random matrices
fulfilling this set of conditions, let us mention Random Pair-
wise Gossip. At time n, a node vn is chosen uniformly at ran-
dom in the network. This node chooses uniformly at random
one of its neighbor wn, then W n = I − (evn − ewn

)(evn −
ewn

)T /2. As a byproduct, E[W n] is a deterministic matrix
the same assumption.

Remark 4: In the particular case where W n is constantly
equal to some matrix W , note that this scheme needs a syn-
chronous network since at each time n, all agents update their
state simultaneously. We will refer to this case as synchnronous
gossip.

The following result from [8] addresses convergence.
Theorem 1 ([8]): Under Assumption 1, iterations xn+1 =

W n+1xn converge almost surely to the consensus state Jx0.

III. GOSSIP WITH STUBBORN AGENTS

In this section, we study the usual linear gossip algorithm
of the previous section under the assumption that some agents
misbehave and show how things can go wrong in that case.

More precisely we assume that some agents, called stub-
born, following the terminology from [6], never change their
state. The rationale behind this model is twofold: either these
agents are malfunctioning, or they might want to deliberately
pollute or influence the network. What is going to appear
from the following analysis, is that a single stubborn agent
is enough to drive the network to a given prescribed state
instead of the sought average state when using standard gossip
algorithms.

The algorithm under study is thence the same: xn+1 =
W n+1xn, with the following assumptions.

Assumption 2 (Network Structure): (a) Vertices set V =
R ∪ S is the disjoint union of regular agents R and stubborn
agents set S. Both sets are assumed non-empty.

(b) State vector xn is written in bloc form xn =

(
xRn
xS

)
.

(c) Edge set E contains no edges between stubborn agents:
∀(s, s′) ∈ S2, s 6= s′ ⇒ {s, s′} 6∈ E.
Note that, by assumption, the state vector of stubborn agents
is constant over time, which justify their name. The itera-
tions cannot follow the very same assumptions than in the
previous section. Indeed, symmetry or sum preservation asks
for network cooperation. And stubborn agents have no reason
to cooperate; on the opposite, it is obvious that, in order to
remain constant over time, wn(s, v) = 0 for each v 6= s.
Hence symmetry ofW n cannot be assumed. Instead, we make



the following assumptions, distinguishing, as in the previous
section, deterministic gossip from random gossip:

Assumption 3 (Random Gossip Structure):
(a) (W n)n≥1 forms an independent and identically distributed
random matrices sequence.
(b) Matrix W n has its entries in [0, 1] almost surely.
(c) Matrix W n is written in bloc form:

W n =

(
WR

n W S
n

0 I

)
(4)

(d) W n1 = 1
(e) Considering the directed edge structure E′ defined by:
(v, w) ∈ E′ ⇔ P[W n(v, w) > 0] > 0, there exists a directed
path from each regular node r to some sutbborn node s.

Remark 5: The bloc structure of matrix W n follows from
the constraint that stubborn agents do not change their state
over time. RequiringW n1 = 1 is still a sanity check: if all the
agents, including the stubborn, agree on some value, it would
be inconsistant not to keep it. The last requirement means
that the weighted graph induced by E[W n] is connected. The
last requirement is also very natural, if it were to be not
fulfilled, there would exist regular agents that communicate
in complete autarky. The last requirement is also very natural.
If it were to be not fulfilled, there would exist regular agents
that communicate in autarky and cannot be aware of stubborn
agents’ opinions.
We now address the issue of convergence of such gossip
algorithms in the presence of stubborn agents. Let us begin
with a technical Lemma.

Lemma 1: Under Assumption 3, for each complex number
z with |z| ≥ 1, matrix zI−E[WR

n ] is invertible. In particular,
in the deterministic case, matrix I −WR is invertible.

Theorem 2: Under Assumptions 2 and 3 and W n = W ,
algorithm xn+1 =Wxn converges to

x∞ = (I −WR)−1W SxS (5)

Consensus is not necessarily reached since x∞ is not propor-
tional to 1 as long as stubborn agents disagree with each other.
In addition, the limit state does not depend on the initial state,
it only depends on the stubborn agents state. In other terms,
the stubborn agents solely drive the network, initial opinions
of regular agents is lost, even with one single stubborn agent.

It is possible to gain further insight on the limit state since
it is basically the solution of Laplace equation with Dirichlet
type boundary condition. In particular the following maximum
principle holds:

Theorem 3: Under the assumptions of Theorem 2, one has

min
s∈S

xS(s) ≤ min
r∈R

x∞(r) ≤ max
r∈R

x∞(r) ≤ max
s∈S

xS(s) (6)

Let us now study the case of random gossip, i.e. W n is an
iid sequence not necessarily constant.

Theorem 4: Under Assumptions 2 and 3, and the assump-
tion that there exists a connected component for E′ with at
least two nodes in S, algorithm xn+1 =W n+1xn, with W n

corresponding to random pairwise matrices with node from R
only waking up almost surely does not converge.

This situation is very different from the one of the previous
section for which all sound gossip algorithms, random or not,
lead to the correct consensus. See also a related result in [6].

It appears clearly from the previous results that using
standard linear gossip algorithms in the presence of stubborn
agents leads to non-desirable results.

IV. TOTAL VARIATION GOSSIP

A. Notations

For notational convenience, we equip each edge {v, w} ∈ E
with an arbitrary orientation. We denote by G = (V, E) the
corresponding directed graph, where E ⊂ V 2 is composed of
couples of vertices of the form (v, w) (notice the curved letters
G = (V, E) as opposed to the initial undirected graph G =
(V,E)). The gradient on G is the linear operator∇ : RV → RE
defined for any x ∈ RV by ∇x : (v, w) 7→ x(v)− x(w) .

We set sign (x) = 1 if x > 0, sign (x) = −1 if x < 0 and
define sign (0) as an arbitrary value in [−1, 1], say 0. If F is
a real function on a given Euclidean space and x is a point
in that space, we denote by ∂F (x) the set of subgradients
of F at x. Finally, ‖ . ‖1 and ‖ . ‖2 respectively stand for the
`1-norm and `2-norm of vectors.

B. A Distributed Optimization Problem

The above analysis of classical gossip strategies shows that
the estimate xn is not robust to the presence of stubborn
agents: the estimate xn not only fails to converge to the sought
consensus Jx0 as n tends to infinity, but its asymptotic behav-
ior is exclusively governed by the stubborn agents regardless to
the initial value x0. For instance, large values of the stubborn
agents can drive the network arbitrarily far away from the
sought consensus. The cause of this misbehavior is intuitively
related to the fact that stubborn agents permanently inject their
value in the network, whereas regular agents tend to forget
their initial value as time goes on. In order to design robust
gossip algorithms, it is thus legitimate to reintroduce the initial
data at each step of the algorithm, hopping this way to balance
the overwhelming effect of stubborn agents. Motivated by this
remark, the proposed approach seeks to distributively solve
the following optimization problem:

min
x∈RV

‖x− x0‖22
2

+ λ ‖∇x‖1 . (7)

We refer to the second term ‖∇x‖1 in (7) as the total variation
of x. We recall that:

‖∇x‖1 =
∑

{v,w}∈E

|x(v)− x(w)| .

Hence, ‖∇x‖1 is a regularization term which penalizes the
estimates x that are away from consensus: ‖∇x‖1 ≥ 0 with
equality if and only if x = Jx, as long as G is connected.
The second term 1

2‖x− x
0‖22 in (7) measures the goodness of

fit i.e., penalizes the estimates x that are away from the initial



value x0. Finally, λ ≥ 0 is an ad-hoc parameter allowing to
set the tradeoff between regularization and goodness of fit.

In the sequel, we provide a new gossip algorithm called
Total Variation Gossip Algorithm (TVGA) for solving the
optimization problem (7) in a distributed fashion. Both syn-
chronous and asynchronous variants of the algorithm are
proposed. In order to validate the proposed algorithm, we
first analyze its behavior in the absence of stubborn agents.
We prove that TVGA asymptotically achieves the sought
consensus provided that λ is chosen large enough. The study
of the behavior of TVGA in the presence of stubborn agents
is postponed to the end of the paper.

C. Synchronous TVGA

We now introduce a distributed programming technique
for solving (7). Note that the objective function is nondif-
ferentiable but convex, and subgradients are straightforward
to compute. For any x ∈ RV , we define φ(x) ∈ RV as the
vector whose vth component is given by:

φv(x) := x(v)− x0(v) + λ
∑
w∼v

sign (x(v)− x(w)) .

Define F (x) := 1
2‖x− x

0‖22 + λ ‖∇x‖1. The proof of the
following lemma is left to the reader.

Lemma 2: For any x ∈ RV , φ(x) ∈ ∂F (x).
It is worth noting that φv(x) depends on x only through the
elements x(v) and x(w) for w in the neighborhood of v.
Therefore, if x represents a vector of local agents’ values, a
given agent v ∈ V can compute φv(x) by merely collecting
the values x(w) of its neighbors w.

We are now in position to state a subgradient descent
algorithm for solving (7). In accordance with the generic
gossip scheme formalized by (1), the proposed algorithm is
an iterative one, for which each node v ∈ V maintains an
estimate xn(v) of the sought average at each iteration n of the
algorithm. Each node v receives the current estimates xn(w)
of its neighbors w ∼ v and performs the update:

xn+1(v) = xn(v)− γnφv(xn) (8)

where γn > 0 is a step size such that the following holds:
Assumption 4:

∑
n γn = +∞ and

∑
n γ

2
n <∞ .

We set the initial value to x0 = x0 (although x0 could in fact
be chosen arbitrarily without changing our results).

Theorem 5: Under Assumption 4, the sequence (xn)n≥1
defined by (8) converges to the unique minimizer of (7).

Uniqueness of the minimizer follows from the strict con-
vexity of (7). Next, Theorem 5 follows from Lemma 1 and
standard results on subgradient methods (see [9] or references
therein). Theorem 5 can also be seen a special case of
Theorem 6 proved in the sequel.

Of course, the result stated in Theorem 5 should still be
completed by an analysis of the solutions to (7). However, be-
fore addressing this point, we first introduce an asynchronous
variant of TVGA.

D. Asynchronous TVGA

The algorithm introduced in the previous section is syn-
chronous in the sense that for any iteration n, all vertices of the
graph G must be able to simultaneously exchange their values.
Here, we extend our algorithm to a less stringent context.

The following asynchronous model is inspired from [3]. We
assume that all agents have of independent random clocks
driven by a Poisson process (see [3] for details). At the nth
time instant, assume that the clock of agent vn is ticking.
Agent vn becomes active and contacts some other agent wn
randomly selected amongst its neighbors. We shall say that an
edge e ∈ E is active at time n if e = {vn, wn}. We shall
say that a vertex/agent u ∈ V is active if u belongs to the
active edge. Let p : V × V → R+ be a function such that
pv,w = 0 whenever v � w and

∑
w pv,w = 1 for any v. As

formally stated by the Assumption below, pv,w represents the
probability that a node v, when awake, asks for the value of
node w.

Assumption 5: Random variables (vn, wn)n≥1 form an
i.i.d. sequence. Random variable v1 follows the uniform dis-
tribution on V . For any (v, w) ∈ V × V ,

P(w1 = w | v1 = v) = pv,w .

As a remark, one can easily check that a given edge {v, w} ∈
E is active at time n with probability:

q{v,w} :=
pv,w + pw,v

N
,

while a given vertex v is active with probability:

αv :=
1 +

∑
w pw,v
N

.

For any (v, w) ∈ V × V , we set:

ψv,w(x) = x(v)− x0(v) + λ sign (x(v)− x(w)) .

The asynchronous TVGA is summarized in Algorithm 1.

Algorithm 1 Asynchronous TVGA

Initialize: Set x0(v) = x
0(v) for any v ∈ V .

Iterate: At each time n = 1, 2, · · ·
The clock of some agent v ∈ V is ticking.
Agent v selects an agent w according to the
probability measure (pv,w : w ∈ V )

Agents v, w share their current estimate and update:
xn+1(v) = xn(v)− γn ψv,w(xn) ,
xn+1(w) = xn(w)− γn ψw,v(xn) .

For any u /∈ {v, w}, set xn+1(u) = xn(u) .

In order to analyze the convergence of the above algorithm,
we need further notations. To any edge (v, w) ∈ E of the
directed graph G, associate the weight q{v,w}. Denote by G =
(V, E ,W) the corresponding directed weighted graph. Denote
by ∇ : RV → RE the gradient operator on G defined for any



x ∈ RV by ∇x : (v, w) 7→ q{v,w}(x(v)−x(w)) . Finally, we
set ‖x‖22,α :=

∑
v αvx(v)

2 for any x ∈ RV .
Theorem 6: Under Assumptions 4 and 5, the sequence

(xn)n≥1 generated by Algorithm 1 converges almost surely
to the unique minimizer of the problem:

min
x∈RV

‖x− x0‖22,α
2

+ λ
∥∥∇x∥∥

1
. (9)

Proof: Define F as the objective function in (9).
It can be shown that the vector φ(x) whose vth el-
ement is equal to φv(x) := αv(x(v) − x0(v)) +
λ
∑
w∼v q{v,w}sign (x(v)− x(w)) is a subgradient of F at

point x. On the otherhand, it can be shown after some algebra
that Algorithm 1 can be quivalently written as xn+1 =
xn−γnφ(xn)+γnξn+1 where ξn+1 is a martingale increment
noise. Thus, sequence xn satisfies a stochastic subgradient
recursion whose convergence can be analyzed: due to the lack
of space, we only provide a brief sketch of the analysis. Upon
noting that:

xn+1 − xn
γn

∈ −∂F (xn) + ξn+1 ,

the results of [10] imply that the continuous-time interpolated
process associated with xn+1 is perturbed solution to the
differential inclusion (DI) dx(t)/dt ∈ −∂F (x(t)). As F is
a Lyapunov function for the DI, the limit set of any solution
to the latter DI coincides with the minimizer of F , which
concludes the proof by Theorem 5 of [10].

E. Analysis of the Minimizers

So far, we introduced a novel gossip algorithm in a syn-
chronous (resp. asynchronous) setting, and proved its conver-
gence to the minimizer of (7) and (9) respectively. The next
step is to analyze these minimizers. Unfortunately, an exact
characterization of the minimizers is a notoriously difficult
problem. Nevertheless, we provide a sufficient condition on the
initial values x0 in order that the proposed algorithm converges
to the sought consensus Jx0.

From now on, in order to avoid technical details, we restrict
our analysis to the complete graph.

Assumption 6: (a) G is the complete graph.
(b) pv,w = 1/(N − 1) for any v, w such that v 6= w.
Note that Assumption 6(b) is meaningful only as far as the
asynchronous setting is concerned. It means that whenever an
agent v wakes up, this agent activates a neighbor w according
to the uniform distribution amongst its neighbors.

Definition 1: We say that a vector u ∈ RV is regular if
there exists a bijection σ : {1, · · · , N} → V such that for any
1 ≤ i ≤ N − 1:∣∣∣∣∣∣

N∑
j=i+1

u(σ(i))− u(σ(j))

∣∣∣∣∣∣ ≤ (N − i)(N − i+ 1) . (10)

We denote by RN ⊂ RV the set of regular vectors. We set
λ̃ = λ/(N − 1

2 ).

Theorem 7: Let Assumption 5 hold.
(a) If x0 ∈ λRN then Jx0 is the unique minimizer of (7).
(b) If x0 ∈ λ̃RN then Jx0 is the unique minimizer of (9).

Proof: Under Assumption 5(b), it is straightforward to
show that ∇x = 2/(N(N − 1))∇x and ‖x − x0‖22,α =
(N−1+(N−1)−1)‖x−x0‖22. Thus, Problem (9) is equivalent
to Problem (7) only replacing λ with λ̃ in the latter. It is
thus sufficient to prove the first statement (a) of the Theorem.
Recall notation F (x) := 1

2‖x− x
0‖22 + λ g(x) where we

set g(x) := ‖∇x‖1. A vector x is a minimizer of (7)
if and only if (iff) 0 ∈ ∂F (x) which is equivalent to
x0−x ∈ λ∂g(x). Thus, Jx0 is a minimizer iff b ∈ ∂g(Jx0),
where b = J⊥x0/λ. This means that for any h ∈ RV ,
〈b,h〉 ≤ g(Jx0 + h)− g(Jx0). The latter inequality simply
reads 〈b,h〉 ≤ ‖∇h‖1. Let σ : {1, · · · , N} → V be a
function such that (10) holds. For any i = 1, · · · , N − 1,
define ci ∈ RN by ci(k) = 0 for j < i, ci(j) = −1 for
k > i and ci(i) = N − i. The functions di := ci ◦ σ−1 for
i = 1, · · · , N − 1 form an orthogonal basis of the hyperplane
orthogonal to 1. As b belongs to this hyperplane, we may
thus write the decomposition b =

∑
i βidi where coefficients

βi := 〈b,di〉/ ‖di‖22. After some algebra, we obtain for all
i = 1, · · · , N − 1:

βi =
1

(N − i)(N − i+ 1)

N∑
j=i+1

b(σ(i))− b(σ(j))

Upon noting that b(σ(i)) − b(σ(j)) = (x0(σ(i)) −
x0(σ(j)))/λ, the hypothesis (x0/λ) ∈ RN along with the
choice of σ imply that |βi| ≤ 1 for any i. We conclude the
proof by noting that 〈b,h〉 =

∑
i βi〈di,h〉 ≤

∑
i |〈di,h〉|

and using the fact that 〈di,h〉 =
∑
j>i h(σ(i))−h(σ(j)) we

finally obtain:

〈b,h〉 ≤
N−1∑
i=1

N∑
j=i+1

|h(σ(i))− h(σ(j))| = ‖∇h‖1 .

Thus, the result is proved.
The above Theorem provides a sufficient condition in order

that the TVGA converges to the sought value. For a given
value of λ, it can be shown that there always exists data x0

for which consensus is not achieved. This can be seen as a
price to pay for robustness. Fortunately, since λRN tends to
RV as λ→∞ and since λ can be chosen as large as needed,
the set of values x0 successfully handled by our algorithm
can be made arbitrarily large. Otherwise stated, whatever the
value of x0, TVGA always converges to the sought consensus
Jx0 provided that λ is large enough.

V. ROBUSTNESS TO STUBBORN AGENTS

In this section, we let Assumption 2 hold true. Some subset
S ⊂ V of the vertices is composed of stubborn agents which
do not change their value as time goes on. On the opposite, we
assume that regular agents apply the TVGA update described



in the previous section. Let us focus on a synchronous setting,
and consider the following recursion:{

xn+1(v) = xn(v)− γnφv(xn) , ∀v ∈ R
xn+1(v) = x

0(v) , ∀v ∈ S .
(11)

Let GR be the restriction of the graph G to the regular
agents R. We denote by ∇R the gradient operator on GR.
We introduce x0,R := (x0(v) : v ∈ R) the restriction of x0

to R. Similarly, we define xRn as the restriction of xn to R.
Theorem 8: Consider the algorithm (11). Under Assump-

tion 4, the sequence (xRn )n≥1 converges to the unique mini-
mizer of the problem:

min
x∈RR

‖x− x0,R‖22
2

+ λ
∥∥∇Rx∥∥

1
+ λ

∑
(v,w)∈R×S

v∼w

∣∣x(v)− x0(w)
∣∣ .

(12)

Theorem 8 shows that stubborn agents introduce a perturbation
in the objective function minimized by our algorithm. The
remaining task is therefore to analyze the effect of this
perturbation on the minimizer and, hopefully, to show that the
final estimate cannot escape too far from the sought consensus,
even if stubborn agent contaminate the network with very large
values. As already mentioned, a compact characterization of
the minimizers of (12) is difficult. We thus restrict our analysis
to a simpler scenario, assuming that G is the complete graph
and that S is a singleton.

Assumption 7 (Single stubborn agent): The set S is re-
duced to a singleton {s}. We define a := x0(s).

Let 1R ∈ RR be the constant function equal to 1.
Theorem 9: Assume that x0,R ∈ λRN−1 and let Assump-

tions 6(a) and 7 hold true. Define

x0,R =
1

N − 1

∑
v∈R

x0,R(v)

and

x =


a if

∣∣x0,R − a
∣∣ ≤ λ

x0,R + λ if x0,R < a− λ
x0,R − λ if x0,R > a+ λ .

Then, x1R is the unique minimizer of Problem (12).
Proof: Due to the lack of space, we provide a sketch of

proof in the case x0,R < a−λ. Under the stated assumptions,
Problem (12) is equivalent to the minimization of the function
defined on RR by F (x) := 1

2‖x− x
0,R‖22 + λ g(x) where

we set g(x) :=
∥∥∇Rx∥∥

1
+
∑
v∈R |x(v)− a|. Note that 0 ∈

∂F (x) is equivalent to λ−1(x0,R−x) ∈ ∂g(x). Setting b :=
J⊥x0/λ, one can write λ−1(x0,R − x1R) = b − 1R. Thus,
0 ∈ ∂F (x1R) iff for any h ∈ RR, 〈b − 1R,h〉 ≤ g(x1R +
h)− g(x1R) which can be restated as:

〈b− 1R,h〉 ≤ ‖∇Rh‖1 +
∑
v∈R
|h(v) + x− a| −

∑
v∈R
|x− a|

We have already established in the proof of Theorem 7 that
〈b,h〉 ≤ ‖∇h‖1. Thus, it is sufficient to prove that for any h,

−〈1R,h〉 ≤
∑
v∈R
|h(v) + x− a| − |x− a| . (13)

As x− a < 0, (13) is equivalent to

−
∑
v∈R

h(v) ≤
∑
v∈R
|h(v) + x− a|+ x− a .

The latter inequality is indeed satisfied, so that (13) holds true.
The result is proved in the case where x0,R < a − λ . Other
cases follow the same steps.

We conclude this section with some comments regarding
Theorem 9. Provided that the initial data x0,R is regular
enough, Theorem 9 implies that, even in the worst case
scenario where the stubborn value is overwhelming, the final
estimate deviates from at most λ from the sought consensus
x0,R. This is of course unlike the classical gossip algorithms
studied in Section III which can be driven arbitrarily far away
from the sought consensus.

Theorem 9 also provides insights on the way to select
parameter λ. The selection of a small λ allows to reduce the
residual error to consensus whereas the selection of a large
λ allows to enlarge the set of vectors x0,R which can be
successfully handled by our algorithm.

VI. EXPERIMENTS

In this section, we perform some numerical experiments on
the proposed Total Variation Gossip Algorithm.

The underlying network is the complete graph with N = 20
agents throughout this section, and the initial data is repre-
sented in Figure 1. There is one stubborn agent corresponding
to index 1 in all experiments, though it is only for graphical
convenience since the complete graph is homogeneous. Fig-
ure 1 also represents the true average value over the regular
agents. Let us recall that regular agents are all but the first.
We focus on synchronous TVGA for simplicity reasons.

Fig. 1. Initial data (circles) and the corresponding average over regular agents
(all but agent 1)

Next we represent iteration 1, 5 and 10 of TVGA on this
data (see Figure 2). Observe how the stubborn agent does
not evolve and how the disparity diminishes with iterations.



Fig. 2. TVGA first iterations. Iteration 1 in plain line, iteration 5 in dotted
line, iteration 10 in dashed line, iteration 375 in dashdot.

Consensus seems already attained at iteration 375. In order
to measure how far regular agents are from consensus, we
represent the evolution of ‖J⊥xRn ‖ with n (see Figure 3).
One can see that convergence to consensus takes place fast.
To illustrate the (in)sensitivity to outliers of TVGA table I

Fig. 3. n 7→ ‖J⊥xR
n ‖

represents the average attained over regular agents for several
value of the stubborn agent. First it is striking that TVGA is
not perturbed by huge values of the stubborn agent. Second,
as predicted by Theorem 9, consensus value is separated by
λ = .04 in our experiment from the “true” average value for
x0 over the regular agents.

VII. CONCLUSION

In this paper we analyzed the effect of stubborn agents on
standard linear gossip algorithms. It appears that they behave

Stubborn Agent Value 0 −10 −109 10 109

Consensus Attained 0.60 0.60 0.60 0.68 0.68

TABLE I
TVGA. COMPARE TO “TRUE” AVERAGE 0.64. NOTE THAT THIS IS IN

PERFECT ACCORDANCE WITH THEOREM 9 SINCE λ = .04 IN THIS
EXPERIMENT.

badly in this scenario. They are affected by even a single
stubborn agent, at the point of converging to a value that
depends exclusively on stubborn agents. In the same time, we
proposed a non-linear gossip algorithm based on total variation
regularization that behaves in a very robust way in the presence
of stubborn agents and even other forms of perturbation (which
is not illustrated in this paper but checked in unreported
experiments), while still performing precisely in the absence
of perturbation. We provide several quantitative statements
to back up these observations. This algorithm appears to be
extremely promising and should be analyzed further to confirm
these preliminary findings.
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APPENDIX

Assume that zI−WR be not invertible, then there exists a
vector x 6= 0 such that WRx = zx. Let us denote by v0 ∈ R
a node such that |x(v)| be maximum. We have,

zx(v0) =
∑
v∈R

wR(v0, v)x(v) .

Hence, |z||x(v0)| ≤
∑
v∈R w

R(v0, v)|x(v)|. By definition of
v0: |z||x(v0)| ≤ (

∑
v∈R w

R(v0, v))|x(v)|. Since W n1 = 1,
we have

∑
v∈R w

R(v0, v) ≤ 1. Thence, necessarily,∑
v∈R

wR(v0, v) = 1 ,



which proves that all neighbors of v0 for E′ are in R, which
in turn implies that |z||x(v0)| =

∑
v∈R w

R(v0, v)|x(v)|.
Moreover, wR(v0, v) > 0 implies that x(v) = zx(v0),
otherwise the equality zx(v0) =

∑
v∈R w

R(v0, v)x(v) would
be violated. So one can repeat the argument with all the
neighbors of v0: all their own neigbors are necessarily in R
and eventually all the connected component containing v0 lies
in R, which completes the proof.

Equation xn+1 =Wxn writes xRn+1 =WRxRn +W SxS .
Repeating the argument, we get:

xRn = (WR)nxR0 +

n−1∑
k=0

(WR)kW SxS

Lemma 1 shows that ρ(WR) < 1. From ρ(WR) < 1 we
deduce that (WR)nxR0 tends to 0 and

∑n−1
k=0(W

R)kW SxS

tends to (I −WR)−1W SxS .
We only prove the inequality maxr∈R x∞(r) ≤

maxs∈S x
S(s). Matrix (I − WR)−1 has nonnegative en-

tries since it can be written
∑+∞
k=0(W

R)k and WR it-
self has nonnegative entries. Hence (I −WR)−1W S pre-
serves coordinate-wise partial order on vectors. And xS �
(maxs∈S x(s)) · 1. We then deduce:

(I −WR)−1W SxS � max
s∈S

(x(s)) · (I −WR)−1W S1

Now, W1 = 1; so WR1+W S1 = 1 and

(I −WR)−1W S1 = (I −WR)−1(1−WR1) = 1 ,

which proves the result.
Let us denote by WR = E[WR

n ] and W S = E[W S
n ].

Consider a random outcome ω that give rise to the matrix
sequence W n(ω). The symbol ω is dropped for the sake of
readability. Assume that the algorithm converge to a vector
x∞(ω). The following equality stems directly from xn+1 =
W n+1xn:

xRn+1 − xRn = ηn + δn + h

where ηn = (WR
n −W

R)xR∞ + (W S
n −W

S)xS , δn =
(WR

n −W
R)(xRn − xR∞) + (WR − I)(xRn − xR∞) and h =

W SxS +(WR− I)xR∞. Now, summing k consecutive terms
and dividing by k leads to:

xRn+k − xRn = h+
1

k

n+k−1∑
m=n

(ηm + δm)

Choose n such that |δm| < ε. The strong law of large numbers
implies that, for almost all ω, 1

k

∑n+k−1
m=n ηm tends to 0 when

k goes to infinity. Indeed, W n have bounded entries and
E[W n −W ] = 0. Obviously xn+k − xn tends to x∞ − xn
when k tends to ∞. Which gives,

|h| < |xR∞ − xRn |+ ε .

Letting n go to infinity gives |h| ≤ ε, and since it is true
whatever the value of ε, it implies h = 0. Which shows that,
necessarily

xR∞ = (I −WR)−1W SxS

In order to finish the proof, we study the case of random
pairwise gossip on a connected component meeting R and two

nodes in S with distinct values. Vector
(
xR∞
xS

)
is not collinear

to 1 since xS has at least two distinct entries. Hence, there
exists two neighbors v and w in G such that v ∈ R and
x∞(v) 6= x∞(w). The probability of selecting edge {v, w}
is positive. It thence happens for an infinite subset of integers
A. For n in that subset A, (W n −W )x∞ = ξ 6= 0. So, for
n ∈ A,

xRn+1 − xRn = ξ + δn

A contradiction stems from the fact that A is infinite and both
xRn+1 − xRn and δn tend to 0.


