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Abstract—In this paper we apply a special class of n-person
non-cooperative games, which we call Weakly Coupled Constrai-
ned Games (WCCG), in femtocell systems to manage the ag-
gregated interference they may generate at macrocell associated
users. WCCG have the following structure: the utility of a player
depends only on its own assignment and interactions between
players appear through extra constraints. Non-cooperative games
with common constraints have infinitely many equilibria, we
focus on selecting one, the normalized Nash equilibrium, which
has some desirable scalable properties related to pricing, establish
its uniqueness and compute it in a closed form.

Index Terms—Femtocell system, interference management,
non-cooperative game, equilibrium selection, normalized equi-
librium.

I. INTRODUCTION

Femtocells or Home eNodeBs (HeNBs), following the
3rd Generation Partnership Project (3GPP) nomenclature, are
small-coverage cellular Base Stations (BSs) to be deployed by
end users to provide or improve indoor coverage and enhance
the users capacity. HeNBs are one of the components of the
recently introduced concept of heterogeneous networks, as part
of the Long Term Evolution-Advanced (LTE-A) technology,
which proposes to combine different access network tech-
nologies to increase the network capcity [6]. HeNBs have
two important configuration characteristics, i.e. users access
privileges: closed, open and hybrid access and frequency of
operation: dedicated band or co-channel operation. In terms of
users access privileges, closed HeNBs only can be accessed
by those users who belong to its Closed Subscriber Group
(CSG). Open HeNBs can give service to any mobile in the
network as long as they have available resources. Finally,
hybrid HeNBs can be accessed by CSG members as well
as non-CSG members. In terms of frequency of operation,
in one hand, HeNBs can work in a dedicated band, which
avoids the interference with the macrocell system or evolved
NodeB (eNB) system, as defined by 3GPP, but goes against
the current Cognitive Radio (CR) efficient frequency use
trends. On the other hand, HeNBs can perform in co-channel
operation, which allows a higher frequency efficiency but
introduces a potential aggregated interference problem in the
eNB system [17].

HeNBs can be considered as low interfering systems since
their required transmission power is low due to the short
distance of their communications and also because of the
isolation properties of walls. Anyhow, when dense urban de-
ployment models are considered, for the case of closed access
and co-channel based HeNBs, aggregated interference problem
has to be considered, i.e. multiple HeNBs simultaneously
transmitting could cause harmful interference to potentially
close macrousers.

In literature, multiple works addressing this timing problem
can be found. The Small Cell Forum presented a study regard-
ing interference management in Orthogonal Frequency Divi-
sion Multiple Access (OFDMA) femtocells [9] and concluded
that interference between femtocells and between macro and
femtocells remains the most detrimental performance factor
in heterogeneous networks. In [5], the authors introduce an
uplink capacity analysis and an interference avoidance strategy
based on feasible combinations of average number of active
macrousers and femtocell BSs per cell-site. Reference [10]
proposes a decentralized interference control based on po-
tential games. Some guidelines on spectrum allocation and
interference mitigation based on self-configuration and self-
optimization techniques are presented in [12]. A distributed
and dynamic carrier assignment method for downlink inter-
ference avoidance is proposed in [16]. In [7] a downlink
interference management in OFDMA networks, based on
distributed gradient descent method is presented and in [4]
the authors present an algorithm based on game theory and
stochastic approximation to mitigate femto-to-macrocell cross-
tier interference.

In this paper we consider a situation in which multiple
HeNBs coexist with an eNB, both systems based on Long
Term Evolution (LTE). We assume HeNBs working in co-
channel operation and with closed access privileges, which is
the most complex situation in terms of intercell interference.
We assume that interference at macrousers coming from other
eNBs is negligible, due to the considered 3-cell frequency
reuse cluster deployment, as well as the one at HeNB orig-
inated from eNBs and neighboring HeNBs, due to the wall
penetration losses. We then focuss on fulfilling two restric-
tions, the first one common to the multiple HeNBs regarding
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the amount of interference they generate at the macrocell
users and the second, a local one, regarding the HeNB’s total
transmitted power. We model the given problem as a non-
cooperative n-person game, where players are the multiple
HeNBs facing an optimization problem with restrictions. Each
player i in the game is characterized by a set of strategies Si
and an utility function. Depending on the relation between
this two parameters and other players’ strategies, n-person
games can be classified in three different models, orthogonal,
coupled and generalized. n-person games with orthogonal
constraints, describe those situations where agent’s restrictions
are independent of other players’ strategies. The existence and
uniqueness of the equilibrium point in these games was proved
by Nash in [13]. Coupled constraints games, are those games
where players share a common restriction, therefore the utility
and strategies of each player may depend on the strategies of
other players. Finally, for the case of generalized constraints,
all players do not necessarily share common constraints.

Given the above description of the type of n-person games,
we focus on coupled constraint games since our players aim
is to maximize their individual utility, subject to a common
global constraint, the total interference at macrousers. We
follow the Generalized Nash Equilibrium Problem (GNEP)
natural extension of the standard Nash equilibrium concept
proposed by Nash to players sharing common resources or
limitations [8]. GNEP is currently widely used in multiple and
different fields such as mathematics, economics, engineering,
telecommunications, computer science, etc. since it perfectly
describes competitive situations in distributed decision making
systems. Some routing games with capacity constraints have
this structure, where the set Si of available strategies to player
i are those for which the sum of flows in each link cannot
exceed the link’s capacity. It is an extension of the constrained
satisfaction games recently introduced by Perlaza et al [14].
GNEP solution concept in n-person non-cooperative games
with common constraints gives infinitely many solutions. In
order to select a unique equilibrium point among solutions in
the game, we follow the approach proposed by Rosen in [15],
which is known as normalized equilibrium, since it has suitable
properties for decentralized scenarios.

In particular, we model our problem as a special subclass
of the normalized equilibrium for non-cooperative game with
coupled constraints, which we call Weakly Coupled Constrai-
ned Games (WCCG). Here the set of strategies Sf available
to a player f depends on the strategies used by the other
players in the game. This dependency appears in the common
constraint to the agents but not in the players’ utility function.
We seek for a GNEP s = (s1, ..., sn) where sf ∈ Sf for each
player f and where no player has any motivation to change
its own strategy unilaterally to another one within the set Sf .
Here, the WCCG is achieved when every HeNB realizes that,
given the current strategy of the other players, any change in its
own strategy to another one that satisfies the constraints would
result in a decrease in the utility. We show for WCCG that
if the utility function of each player is strictly concave in the
strategies of that player, then the normalized Nash equilibrium

is unique.
We propose players to be able to choose among different

strictly concave utility functions, all depending on the same
strategy set Sf . Players select the utility they want to maximize
according to the metric they aim to optimize, i.e. throughput,
Bit Error Rate (BER), packet delay. This introduces an in-
teresting flexibility in the game, since players only have to
fulfil the required common constraint independently of the
parameter they are optimizing.

In the next section we begin with a motivating example.
We then recall in Section III the WCCG equilibrium as a
concept that allows a scalable equilibrium selection, and show
its uniqueness for coupled constrain games. In Section IV we
then compute the WCCG equilibrium for the examples we
gave in Section III-B. Finally, in Section V we present our
conclusions and future work.

II. SCENARIO

An OFDMA system operating in the downlink direction is
considered, where the bandwidth B is divided into R Resource
Blocks (RBs), with B = R · BRB. A RB represents one
basic time-frequency unit that occupies the bandwidth BRB

over time T . The considered scenario consists in two types of
coexisting networks, i.e. eNB and HeNB transmitter-receiver
couples. We consider M eNBs and F = n HeNBs systems.
We refer to the eNB transmitter with eNBm, m ∈ M and
we represent the f ∈ F HeNB as HeNBf , f = 1, . . . , n.
Associated with each eNB and HeNB are UM macro and UF

femto users, respectively. The multi-user resource assignment
that distributes the R RBs among the UM macro and UF femto
users, is carried out by a proportional fair scheduler. We denote
by pi = (pi1, . . . , p

i
R) the transmission power vector of BS i,

with pir denoting the downlink transmission power of RB r.
The maximum transmission power for HeNBs and eNBs are
P F

max and PM
max, with P F

max�PM
max, such that

∑R
r=1 p

m
r ≤ PM

max
and

∑R
r=1 p

f
r ≤ P F

max.
We analyze the system performance in terms of Signal to

Noise Ratio (SNR) and achieved data rate given in (bit/s).
Assuming perfect synchronization in time and frequency, the
SNR of user associated to HeNBf who is allocated in RB r
amounts to:

γfr =
pfrh

f
r

σ2
(1)

where σ2 denotes the thermal noise power and hmr represents
the channel link between eNB and um, um∈UM . We rep-
resent the channel link between HeNBf and uf , uf∈UF ,
through hfr and the interference link between HeNBf and
um through ĥfr , as represented in Figure 1.

We consider the system parameters and Path Loss (PL)
models as proposed in [1] by 3GPP for both, HeNB and eNB
systems. We model the link channels as presented in Table I.
Here, d and dindoor are the total and indoor distances between
the eNB/HeNB and the femto and macrouser, respectively.
The factor 0.7dindoor takes into account the penetration losses
due to the walls inside the apartments. WPout = 15 dB and
WP in = 5 dB are the penetration losses of the building



TABLE I
PATH LOSS MODELS FOR URBAN DEPLOYMENT.

eNB to macrouser outdoors PL(dB) = 15.3 + 37.6 log10 d

HeNB to femtouser PL(dB) = 38.46 + 20 log10 d+ 0.7dindoor + w ∗WP in

macro/femtouser macrouser PL(dB) = max(15.3 + 37.6 log10 d, 38.46 + 20 log10 d) + 0.7dindoor + w ∗WP in + WPout
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Fig. 1. Network components and channel links.

external walls and of the walls separating the apartments,
respectively. Finally, wp represents the number of walls sepa-
rating apartments.

III. WEAKLY COUPLED CONSTRAINED
GAMES

In this section we introduce the concept of existence,
uniqueness and selection of equilibrium for non-cooperative
concave n-players games with coupled constraints. Then, we
apply this theory to find the power allocation strategy in a
HeNB.
n-person games are defined by n players, where each player

f ∈ F has its own set of pure strategies Sf and a utility
function Uf , which maps the n-tuple of pure strategies, one
per player in the game, into a real number. Non-cooperative
games are given by the incapacity of players in the game to
share information, cooperate or share utilities. The existence
of at least one equilibrium point in finite non-cooperative
n-person games with or without orthogonal constraints was
proven by Nash in [13]. Going a step further, the existence
of equilibrium in games with coupled constraints, i.e. when
the choice of strategies of a player depends on the strategies
chosen by other agents, was extended by Arrow and Debreu
in [3].

The uniqueness of equilibrium point for non-cooperative n-
person strictly concave games was proven by Rosen in [15]
through the normalized equilibrium concept. More in detail,
Rosen considers problems where every player joint strategy,
which is a point in the product space of the individual strategy
spaces, lie in convex, closed and bounded region C in the
product space and that each player’s utility function Uf is
a concave function in his own strategy [15]. To apply the
normalized equilibrium concept, the game must fulfill an

additional concavity condition, which is called diagonal strict
concavity.

As mentioned in the introduction of this work, the problem
we aim to solve perfectly fits in the coupled constrained non-
cooperative n-person game approach. We consider n non-
cooperative players, i.e. the n HeNBs in the system, where
player f ∈ F and f = 1 . . . n, controls the variable pfr ∈ Rdf .
Let pr be the n-dimensional vector of all players strategies
with dimension d =

∑n
f=1 df and p−fr the n−1 vector formed

by all players’ strategies but f . Let S ⊂ Rd be a compact
convex set.

Each player in the game has a utility function, Uf : Rdf →
R. An equilibrium in this game consists of a vector p∗r ∈ C
such that for each player f , Uf (pfr ) attains its maximum
over all pfr for which (pfr , p

∗
r [−f ]) ∈ C. Here, C is a

convex compact set of constraints and (pfr , p
−f∗
r ) is the policy

obtained from p∗r by the strategies of all players, except for
that player f who uses pfr instead of p∗r . The maximization
problem is then given by:

maximize
{pf,Fr }

Uf (pfr , p
−f
r )

s.t. pfr ∈ pf (p−fr )

In our problem, we consider the case where the n HeNBs
transmit in downlink direction to their associated users. We
consider the setting in which the achievable utility of all
HeNBs is given by the convex region ν defined by the set
of constraints:

n∑
f=1

ĥfrp
f
r ≤ ITh

0 ≤ pfr ≤ PFmax (2)

where ITh is an interference constraint at macrouser um. Ev-
ery player f maximizes its own utility Uf , which is assumed to
be a strictly concave increasing function of its strategy vector
pf . Given the system model presented in Section II, we assume
that the utility of a player depends only on its own strategy.
We call such games WCCGs, where the interaction with other
players occurs only through the constraints. This is a special
case of normalized Nash equilibrium [15], where interactions
between players are given by both, the utility function and the
constraints.

The interference constraint, ITh, at macrousers is a common
constraint that all players strategies are required to satisfy,



therefore, this places the game we are formulating in the
category of coupled constraint games defined by Rosen [15].
In games with coupled constraints the choice of strategies of
a player depends on the strategies chosen by other players.

The equilibrium notion of the given game is a special case
of the so-called GNEP [8], where multiple players have to find
a power allocation vector pfr within ν such that no player f
can gain by deviating from pfri to pfrj , i, j ∈ pf , for which
(pfrj , p

−f
r ) ∈ ν. When games with constraints are defined, it

is not enough to consider the utility and constraints of each
player, it is also required to specify how a player evaluates
the fact that constraints of another player are satisfied or vio-
lated. We focus on studying the properties of the normalized
equilibria introduced by Rosen in [15], since it properties are
quiet appropriate for decentralized implementations.

Lemma 1: All HeNBs transmission powers, pfr , satisfying
n∑
f=1

ĥfrp
f
r = ITh (3)

are Nash equilibria and Pareto-efficient. Any other point is not
an equilibrium.

Remark 1: The strategy of player f in our game consists
of choosing the i-th entry of the transmission power vector pf .
A deviation of f from a point in the achievable utility region
ν to another one in that region affects only its own utility and
not the other players one [2].

A. Normalized Nash Equilibrium

As mentioned before we propose that players choose the
WCCG equilibrium, which is a special case of normalized
Nash equilibrium, among the large number of Nash equilib-
riums. Normalized Nash equilibriums are based on pricing,
which means that players’ actions will have a price based on
the constraints defining the game. We are interested in pricing
mechanisms that induce equilibria strategies and that can be
implemented in a scalar and decentralized way. We denote
by λf the transmitted power price of HeNB f based on the
total interference at um and by λ the n-dimensional vector
whose f -th entry is λf . Then, the resultant payoff of HeNB
f including the pricing would be:

Lf
λ
(pfr ) = Uf − λf

 n∑
f=1

ĥfrp
f
r − ITh

 (4)

Consider now the following relaxed game. For each player
f find the pf∗r ∈ ν given by:

Lfλ(p
f∗
r ) ≥ Lfλ

(
pfr , p

−f∗
r

)
(5)

If the solution for Lfλ(p
f∗
r ) exists, it can be viewed as the La-

grangian solution corresponding to the constrained optimiza-
tion problem faced by player f when the other players play
p−f∗r . Based on the Karush-Kuhn-Tucker (KKT) conditions
we know that there exists a vector λ, whose entries are not
necessarily equal, such that a power vector p∗r is an equilibrium
in the original game only if for each player f , pf∗r maximizes

Lfλ
(
pfr , p

−f∗
r

)
. Thus, λ represents the non-scalable pricing,

where λf represents the price per transmitted power of player
f . λ is non-scalable since the price depends on f .

Then, the f-th component of p∗r ∈ ν would be the solution
of:

∇Uf (p∗r)−
n∑
f=1

λf∇gf (p∗r) = 0 (6)

for λf ≥ 0. Here, gf represents the constraint function. We
denote the solution as p∗r(λ).

Problem 1: Consider a constant λ and let λ be a vector of
dimension n with all its entries λ. Then, we want to find λ
such that p∗r(λ) is an equilibrium of the original game.

An equilibrium associated with some constraint λ that
solves Problem 1 is a special case of the normalized equi-
librium concept presented in [15].

Theorem 1: There exists a unique normalized equilibrium
to the original problem associated with some λ as defined in
Problem 1 as long as there exists a strategy that satisfies the
constraints.

Proof: Define G to be the n-dimensional square matrix
whose Gij entry is ∂Lf (x)

2

∂xi∂xj
. All the off diagonal elements

are zero since we assumed that the utility of a player does
not depend on the actions of other players. The n remaining
diagonal elements of G + GT are strictly negative definite
due to our assumption that the utility of player f is strictly
concave in the strategies of player f . We conclude that G+GT

is strictly negative definite. The Proof then follows from [15,
Theorem 6].

In our particular case we know that there exists at least one
n-dimensional vector pr, with all its elements pfr = 0, which
would satisfies the coupled constraint.

B. HeNB interference management game

We assume that players in this game can have different
strictly concave utility functions satisfying the given restric-
tions. In the following we present the considered utility
functions regarding throughput and performance.

1) Physical layer Shannon throughput:

Uf = B · log2(1 + γfr ) (7)

2) Physical layer BER. OFDMA systems use Quadrature
Phase-shift Keying (QPSK), 16 Quadrature Amplitude
Modulation (QAM) and 64 QAM modulations. We pro-
pose to use a tight BER approximation for squared
M -QAM for Additive White Gaussian Noise (AWGN)
channels and ideal coherent phase detection [11] given
by:

BER = 0.2 exp

(
− 3γfr
2(M − 1)

)
Then, the utility functions given any of the following
modulations are:
• QPSK

Uf = −0.2 exp
(
−γ

f
r

2

)
(8)
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Fig. 2. Considered utilities functions at the HeNBs.

• 16 QAM

Uf = −0.2 exp
(
−γ

f
r

10

)
(9)

• 64 QAM

Uf = −0.2 exp
(
−γ

f
r

42

)
(10)

3) Packet delay D in the link layer:
• Assuming files with constant size S and link trans-

mission throughput θ(pfr ), then Uf = −D where
D = S

θ(pfr )
, then:

Uf = − S

B · log2(1 + γfr )
(11)

• Assuming an M/M/1 queuing system, where files
have an exponentially distributed size with rate η and
arrive according to a Poisson process with arrival rate
ρ, the packet delay is given by D = 1

η−ρ , and then
the utility function is:

Uf = − 1

B · log2(1 + γfr )− ρ
(12)

In Figure 2 the above introduced utility functions are
represented. Notice that the aim of this figure is only to show
the different functions behavior in order to demonstrate their
strictly concave behavior.

IV. RESULTS

In what follows we present the solution of equation (6)
considering the different proposed utility functions. The given
solutions represent the closed solution pf∗r for agent f . For the
throughput utility function given in equation (7) we obtained.

B · log2
(
1 +

pfrh
f
r

σ2

)
− λf

 n∑
f=1

ĥfrp
f
r − ITh

 = 0

pf
∗

r =

(
B

ln(2)λf ĥfr
− σ2

hfr

)+

(13)

Then, the common price for the players given by the
Lagrange multiplier is:

λf =
Bhfr

ln(2)
(
ĥfrσ2 + IThh

f
r

) (14)

For the BER utility function for the QPSK modulation given
in equation (8) we obtained.

pf
∗

r =

(
−2σ2

hfr
ln

(
10σ2λf ĥfr

hfr

))+

(15)

The common price for the players given by the Lagrange
multiplier is:

λf =
hfr

10σ2ĥfr
exp

(
− IThh

f
r

2σ2ĥ
f
r

)
(16)

For the BER utility function for the 16 QAM modulation
given in equation (9) we obtained.

pf
∗

r =

(
−10σ2

hfr
ln

(
50σ2λf ĥfr

hfr

))+

(17)

And the common price for the players given by the Lagrange
multiplier is:

λf =
hfr

50σ2ĥfr
exp

(
− IThh

f
r

10σ2ĥ
f
r

)
(18)

For the BER utility function for the 64 QAM modulation
given in equation (10) we obtained.

pf
∗

r =

(
−42σ2

hfr
ln

(
210σ2λf ĥfr

hfr

))+

(19)

In this case the common price for the players given by the
Lagrange multiplier is:

λf =
hfr

210σ2ĥfr
exp

(
− IThh

f
r

42σ2ĥ
f
r

)
(20)

The packet delay utility function (11) is highly complex to
solve. We shall therefore restrict utility to low SNR regime,
which means that the approximation ln(1+x) ' x holds. This
regime is of interest since HeNBs are low-power cellular BSs.
Specifically, for the packet delay utility function for files with
constant size given in equation (11), solution is given by:

− S

B · γfr
− λf

 n∑
f=1

ĥfrp
f
r − ITh

 = 0

pf
∗

r =

√
SBσ2λf ĥfrh

f
r

λf ĥfrh
f
r

(21)

And the common price for the players given by the Lagrange
multiplier is:

λf =
Sσ2ĥfr

Bhfr I2Th
(22)



For the packet delay utility function for the case of files
with exponentially distributed size and Poisson arrival given
in equation (12) solution is given by:

− 1

Bγfr − λ
− λf

 n∑
f=1

ĥfrp
f
r − ITh

 = 0

pf
∗

r =

(
λf ĥfrρσ

2 ±
√
Bσ2λf ĥfrh

f
r

Bλf ĥfrh
f
r

)+

(23)

The common price for the players given by the Lagrange
multiplier is:

λf =
Bĥfrσ

2hfr(
ĥfrσ2ρ−BIThhfr

)2 (24)

V. CONCLUSIONS

In the present work we have modeled a multi HeNB scenario
in coexistence with a eNB system as a non-cooperative n-
person game. Given the common nature of the interference
from the multiple HeNBs at eNB users, which is considered
as a restriction in the game, we proposed a special form GNEP
equilibrium concept for coupled constraint games, the WCCG.
We found the normalized equilibrium among the infinitely
many equilibriums of the given coupled game in a closed
form for multiple concave utility functions that HeNBs can
choose depending on the parameter they aim to maximize,
i.e. throughput, BER, packet delay. As future work we aim to
obtain further simulation results for the proposed game model.
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