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Abstract—Efficient simulation of rare events involving sums
of heavy-tailed random variables has been an active research
area in applied probability over the last fifteen years. These rare
events arise in many applications including telecommunications,
computer and communication networks, insurance and finance.
These problems are viewed as challenging, since large deviations
theory inspired and exponential twisting based importance sam-
pling distributions that work well for rare events involving sums
of light tailed random variables fail in these settings. Moreover,
there exist negative results suggesting that state-independent
importance sampling methods that work well in light-tailed
settings fail for certain rare events involving sums of heavy-tailed
random variables. This has led to the development of growing lit-
erature for efficiently simulating such events using more nuanced,
and in many cases, computationally demanding state-dependent
importance sampling methods. In this article we shed new light on
this issue by observing that simpler state-independent exponential
twisting based importance sampling methods, suitably adjusted
in the tails, can provide strongly efficient algorithms to estimate
such rare event probabilities. Specifically, we develop strongly ef-
ficient state-independent importance sampling algorithms for the
classical large deviations probability that sums of independent,
identically distributed random variables with regularly varying
tails exceed an increasing threshold both in the case where the
number of random variables increases to infinity and when it is
fixed.

I. INTRODUCTION

In this article we consider the problem of efficient simula-
tion via importance sampling of large deviation probabilities
P{Sn > b} for b ≥ c̃n

1
2 +ε given c̃ and ε > 0 as n ↗ ∞.

Here Sn =
∑n
i=1Xi is the sum of independent identically

distributed (i.i.d) zero mean random variables with regularly
varying right tails (roughly speaking, this means that the right
tails decay as a power law; see II-A for a precise definition).
For an introduction to the use of importance sampling in rare
event simulation see, e.g., [1] Chapters V and VI, and [2].
Over the last few years, elegant state-dependent importance
sampling algorithms have been proposed in [3], [4] and [5]
to efficiently simulate these large-deviation probabilites; state-
dependence essentially means that the importance sampling
distribution for generating Xi depends on the realized values
of X1, . . . , Xi−1 (typically through Si−1); state-independence
on the other hand implies that such dependence does not

exist and samples of X1, . . . , Xn can be drawn independently.
State-independent methods enjoy obvious advantages over
state-dependent ones in terms of complexity of generating
samples and ease of implementation. When the running time
requirement is stringent, samples can even be generated of-
fline before hand, which may be difficult for state-dependent
methods. Our key contribution is that we show that proposed
simpler state-independent importance sampling algorithms can
also provide strongly efficient algorithms for computing such
large deviation probabilities involving random variables (rv)
with regularly varying tails. The general folklore in the rare
event simulation community is that exponentially twisted
distributions may be used to estimate such probabilities when
the right tails of the constituent Xi’s are light∗, but these
methods fail when the underlying tails are instead heavy. Our
another contribution is that we show that by suitably adjusting
along the right tail, state-independent exponential twisting can
be used to efficiently estimate P{Sn > b} when Xis have
regularly varying right tails.

The problem of efficient estimation of P{Sn > b} as
n↗∞ when Xis are light-tailed as well as heavy-tailed has
received considerable attention in the literature (see [6], [7],
[8], [9], and [10] for literature on light-tailed random walks,
[4] and [5] for the right heavy-tailed ones), mainly because
this forms a building block to many more complex rare event
problems involving combination of renewal processes. For
examples in queueing, see [11], and in financial credit risk
modeling, see [12] and [13].

This problem was first addressed in [6] where they con-
sidered Xis that were light-tailed. They used an importance
sampling measure obtained by exponentially twisting the orig-
inal distribution of each Xi appropriately to arrive at a weakly
efficient algorithm for estimating P (Sn > na) for a > 0 (the
notions of weakly efficient and strongly efficient estimation
methods for rare event probabilities are standard; these are

∗A rv X is said to have a heavy right (resp., left) tail if E[eθX ] =∞ for
all positive (negative) values of θ. Otherwise it is said to have a light right (
resp., left) tail. For presentation convenience, in this paper unless otherwise
specified, by light-tailed rv we mean right light-tailed rv, and by heavy-tailed
rv we mean right heavy-tailed rv.

VALUETOOLS 2012, October 09-12, Cargèse, France
Copyright © 2012 ICST
DOI 10.4108/valuetools.2012.250304



reviewed later in Section II-B). This methodology does not
carry over to heavy-tailed random variables as arriving at
appropriate exponentially twisted distributions assumes the
existence of the moment generating function of the original
random variable in a right neighborhood of zero. Reference
[14] provides an account of why large deviations based meth-
ods for approximating zero-variance measure may fail in a
heavy-tailed setting.

In the heavy-tailed setting, while state-independent impor-
tance sampling distributions have been proposed for estimating
probabilities such as P(Sn > b) in the asymptotic regime
where n is fixed and b ↗ ∞ (see [15], [14], [16], [17],
[18] and [19]), for problems that involve large number of
heavy-tailed random variables, increasingly researchers resort
to using state-dependent importance sampling (see, e.g., [18],
[20], [4] and [5]). This approach is also supported by [21],
where for certain rare probabilities involving heavy-tailed
random walks, it is shown that state-independent importance
sampling algorithms cannot be weakly efficient. We refer
the reader to [22] for an excellent survey of state-dependent
importance sampling methods.

As mentioned earlier, our key aim is to show that state-
independent importance sampling algorithm based on the
proposed ‘tail-adjusted’ exponential twisting provides strongly
efficient algorithms for estimating P{Sn > b} when compo-
nent Xis have regularly varying right tails, for b ≥ c̃n

1
2 +ε

as n ↗ ∞. We believe that this approach has much wider
applicability. To illustrate this, we further show that similar
importance sampling distribution can also be used to develop
strongly efficient algorithms for estimating P{Sn > b} when
n is fixed and b increases to infinity. Note that algorithms
proposed in [15], [14] and [16] for this problem were weakly
efficient. [17] and [19] exploit alternative representations for
P(Sn > b) to arrive at faster algorithms. Our approach can be
potentially adapted to those representations to provide further
performance improvement.

The organization of the rest of the paper is as follows: In
Section II we discuss the preliminary concepts relevant to the
problems addressed. We introduce our state-independent im-
portance sampling algorithms for estimating P{Sn > b}, b ≥
c̃n

1
2 +ε as n↗∞ in Section III and for P{Sn > b} as b↗∞

with fixed n in Section IV. We discuss a numerical simulation
example in Section V, where we compare the performance of
the proposed algorithm, which runs in O(n) time with that
of the state-dependent importance sampling algorithm in [3],
which runs in O(n2) time; there we note that the observed
values of relative error are comparable for large values of n.
We end with a brief conclusion in Section VI. Some of the
more technical proofs are presented in the appendix.

II. PRELIMINARIES

In this section we first specify the exceedance probabilities
considered in this paper for efficient simulation. We then
briefly review rare event simulation and the use of impor-
tance sampling for estimating rare event probabilities. We
also review the relevant efficiency notions that asymptotically

quantify the performance improvement offered by successful
importance sampling algorithms. We then review the asymp-
totics in the existing literature for the tail probabilities that we
need in proving efficiency results for the proposed algorithms.
Finally we review some of the importance sampling techniques
proposed in the literature for efficient simulation of large
deviation probabilities associated with random walks involving
light as well as regularly varying heavy-tailed random vari-
ables.

A. Problem setup

Let {Xn : n ≥ 1} denote a collection of i.i.d. random
variables with distribution function F, mean 0 and finite
variance σ2. The right tail of F is taken to be regularly-
varying, so that F̄ (x) = 1−F (x) = L(x)/xα for some slowly
varying function L and α > 2; as is well known, function L
is said to be slowly varying if for all t > 0,

L(tx)/L(x)→ 1

as x↗∞. Regularly varying distributions form an important
class of heavy-tailed distributions. The random walk associated
with the collection {Xn : n ≥ 1} is given by S0 = 0,

Sn = X1 + . . .+Xn

for each n ≥ 1. We let M(θ) = E[eθX1 ] and Λ(θ) = ln[M(θ)]
denote the moment and cumulant generating functions of X1,
respectively.

The following assumption is imposed on the random vari-
ables Xi throughout the paper.

Assumption 1: The left tail of F is light, that is, there exists
φ > 0 such that M(−φ) <∞.

In Sections III and IV, respectively, we provide strongly
efficient algorithms for the following two probabilities:

P1: computation of P{Sn > b} as n ↗ ∞, for b >
c̃n

1
2 +ε given c̃, ε > 0, and

P2: computation of P{Sn > b} as b↗∞ for fixed n.

B. Rare event simulation and importance sampling

Let A denote a rare event on the probability space (Ω,F ,P),
i.e., z := P(A) > 0 is small (in our setup A corresponds to the
event {Sn > b}). Suppose that we are interested in obtaining
an estimator ẑ for z such that the relative error |ẑ− z|/z < δ,
with probability at least 1− ε, for given ε and δ > 0.

Naive simulation for estimating z involves drawing N
independent samples of the indicator IA and taking their
sample mean as the estimator. For a different measure P̃ such
that the Radon-Nikodym derivative dP

dP̃ is well defined on A,
we get:

P(A) =

∫
A

dP
dP̃

(ω)dP̃(ω) = Ẽ [LIA] ,

where L := dP/dP̃ and Ẽ is the expectation associated with
P̃. Define Z := LIA; then Z is an unbiased estimator of z
under measure P̃. If N i.i.d samples Z1, . . . , ZN of Z can be
drawn from P̃, then by strong law of large numbers we have:

ẑ
N

:=
Z1 + . . .+ ZN

N
→ z a.s.,



as N ↗ ∞. This method of generating an estimator is
called importance sampling (IS). The measure P̃ is called the
importance sampling measure and Z is called an importance
sampling estimator.

Using Chebyshev’s inequality allows us to find an upper
bound on the required number of samples N to achieve the
desired relative precision:

P
(
|ẑ
N
− z|
z

> δ

)
≤ V ar(ẑ

N
)

z2δ2

=
CV 2(Z)

Nδ2
.

Here CV (Z) =
√
V ar(Z)/z is the coefficient of variation of

Z. This enables us to conclude that if we generate at least

N =
CV 2(Z)

εδ2
(1)

i.i.d. samples of Z, we can guarantee the desired relative
precision.

In naive simulation we use the measure P itself and have
Z = IA as the estimator; so the number of samples required in
(1) grows (roughly proportional to z−1) to infinity if z ↘ 0.

As is well known, the choice P∗(·) := P(·|A) as an
importance sampling measure yields zero variance for the
associated estimator Z = zIA. Then, in simulation every
sample equals z with P∗ probability 1. However, the explicit
dependence of Z on z, the quantity which we want to estimate
makes this method impractical.

Efficiency notions of algorithms: Consider a family of
events {An : n ≥ 1} such that zn := P(An) ↘ 0 as
n ↗ ∞. For an importance sampling algorithm to compute
{zn : n ≥ 1}, we come up with a sequence of changes of
measures {P̃n : n ≥ 1} and estimators {Zn : n ≥ 1} such
that ẼnZn = zn, where Ẽn denotes the expectation operator
under P̃n.

Definition 1: The sequence {Zn : n ≥ 1} of unbiased
importance sampling estimators of {zn : n ≥ 1}, is said to be
strongly efficient if,

lim
n→∞

Ẽn
(
Z2
n

)
z2
n

<∞. (2)

It is said to be weakly efficient if for each ε > 0,

lim
n→∞

Ẽn
(
Z2
n

)
z2−ε
n

<∞. (3)

From (1), we can see that if an algorithm is strongly efficient,
the number of simulation runs required to guarantee desired
relative precision stays bounded as n ↗ ∞. It also follows
that strong efficiency implies weak efficiency and that naive
simulation is not even weakly efficient.

C. Tail asymptotics for i.i.d sums

(a) The well-known asymptotics

P{Sn > b} ∼ nF̄ (b), as n↗∞ (4)

for b >
√
n log n can be found in [23], [24] or [25]†. Let

Mn := maxk≤nXk, then it is easily verified that

P{Mn > b} ∼ nF̄ (b).

Additionally, the following asymptotics can be found in [24]:
as n↗∞,

P{Sn > b,Mn < b} = o(nF̄ (b))

sup
b≥
√
n logn

|P{N(n, b) = 1|Sn ≥ b} − 1| → 0,

sup
b≥
√
n logn

|P{Mn−1 ≤ b, Sn ≥ b|Xn > b} − 1| → 0,

where N(n, b) denotes the cardinality of {1 ≤ i ≤ n :
Xi > b}. These large deviations asymptotics reveal that
with the number of summands growing to infinity, with high
probability, the sum becomes large because of one of the
components becomes large.

(b) The following tail probability asymptotic of P{Sn > b}
for fixed n can be found, e.g., in [26]:

P{Sn > b} ∼ nF̄ (b), as b↗∞. (5)

D. Review of existing IS techniques

1) For light-tails: Suppose that {Yi} are i.i.d., zero mean,
light-tailed random variables (that is, their moment generating
function exists in a neighborhood of zero) with distribution
function FY . Sadowsky and Bucklew [6] introduce a weakly-
efficient method for estimating P{

∑n
i=1 Yi > na}, a > 0 that

involves generating i.i.d. samples {Yi} using the distribution
function obtained by exponentially twisting the original distri-
bution function, that is, using

Fθ(dx) = eθx−ΛY (θ)FY (dx), (6)

where ΛY (θ) = lnE[eθYi ] denotes the log-moment generating
function of Yi. [6] propose that θ > 0 be chosen such that
Λ′Y (θ) = a, (this is assumed to exist). Note that the resulting
estimator has the form:

Zn = exp

(
−

(
θ

n∑
i=1

Yi − nΛY (θ)

))
I{∑n

i=1 Yi>na}

2) For heavy-tails: For regularly varying right tailed ran-
dom variables {Xi}, the associated log-moment generating
function Λ(θ) = ∞, for each θ > 0; therefore the above
method of exponential twisting is not directly applicable for
simulation of P (Sn > b). Blanchet and Liu [4] propose two
efficient state-dependent importance sampling algorithms for
solving P1. The better of the two involves drawing samples
for increment Xk+1 based on Sk from an appropriately
parameterized family of density functions. In particular, they
recommend using

P̃{Xk+1 ∈ dx|Sk = s} = pn
F (dx)1{x>a(b−s)}

F̄ (a(b− s))

+ (1− pn)
F (dx)1{x≤a(b−s)}

F (a(b− s))
,

†We say that {an} ∼ {bn} if an
bn
→ 1 as n→∞



where pn is the suitably chosen mixture probability and a ∈
(0, 1). Asymptotic forms of P{Sn > b} given in [23] are
used to construct a family of functions that satisfy a certain
Lyapunov inequality; relevant parameters such as pn and a
are chosen in a way that the Lyapunov inequality holds. The
state-dependent scheme used in very recent paper [5] avoids
using asymptotic approximations of P{Sn > b} by employing
sequential importance sampling and resampling methods.

III. PROPOSED ALGORITHM FOR P1

The proposed importance sampling distribution for drawing
samples of X1, . . . , Xn to estimate P{Sn > b} is:

F̃n(dx) := cne
θn·(x∧b)F (dx), (7)

with θn := θn(b) given by,

θn(b) =
1

b
log

(
1

nF̄ (b)

)
. (8)

In (7) cn := cn(b) denotes the appropriate normalizing
constant, which is well-defined because:

1

cn(b)
=

∫ b

−∞
eθnxF (dx) + eθnbF̄ (b) ≤ eθnb =

1

nF̄ (b)
.

Though we do not emphasize in notation, it can be seen that
all F̃n, θn and cn defined above depend on both n and b. Since
we suitably modify the tail and circumvent the problem of nor-
malizing constant cn becoming 0, we refer to {F̃n : n ≥ 1} as
tail-adjusted exponentially twisted distributions corresponding
to F . It is easy to check that θn ↘ 0 as n↗∞.

Let P̃n be the probability measure induced when {Xi : i ≥
n} are independently distributed according to F̃n. Then under
the importance sampling change of measure P̃n, the unbiased
estimator for P{Sn > b} takes the form:

Z1(n, b) =
1

cnn
exp

(
−θn

n∑
i=1

(Xi ∧ b)

)
I{Sn>b}. (9)

One simulation run of the corresponding state-independent
importance sampling algorithm is given below:

Algorithm 1:
Given parameters b ≥ c̃n 1

2 +ε, c̃, ε > 0
STEP 1: Draw n i.i.d samples x1, . . . , xn from F̃n
STEP 2: s←− x1 + . . .+ xn
STEP 3: L←− 1

cnn
e−θn

∑n
i=1(xi∧b)

STEP 4: RETURN L1{s>b}
STOP

Doing many independent simulation runs and taking the
sample average of the returned values gives an unbiased
estimator of P{Sn > b}.

Observe that the IS measure P̃n induced by F̃n is such
that the event {Xk > b} receives a considerable mass of
cn/n under P̃n. We provide asymptotic bounds for the integral∫ b
−∞ eθnxF (dx) in the appendix and there we prove the

following lemma:

Lemma 1: limn→∞ cn = 1.
We now argue that the proposed measure P̃n assigns similar
probability to events {Xj > x} for each x ≥ b as the
zero-variance measure asymptotically as n ↗ ∞. Recall that
P{Xj > x|Sn > b} denotes the probability assigned to
{Xj > x} under the zero-variance measure. We have,

P{Xj > x|Sn > b} = P{Sn > b|Xj > x}P{Xj > x}
P{Sn > b}

.

Since P{Sn > b|Xj > x} ∼ 1 as n↗∞, we get

P{Xj > x|Sn > b} ∼ F̄ (x)

nF̄ (b)
.

It can be verified that P̃n{Xj > x} = cn
F̄ (x)
nF̄ (b)

. Therefore
from Lemma 1,

P{Xj > x|Sn > b} ∼ P̃{Xj > x}, as n↗∞.

A. Strong efficiency of Z1

For proving the strong efficiency of Z1 we bound its second
moment separately over the elements of the partition {Ak :
0 ≤ k ≤ n}, with Ak denoting the event of exactly k of
X1, X2, . . . , Xn crossing b. Recall that θn and cn depend on
both n and b, though in notation we often make only the
dependence on n explicit. The following lemma, useful for
establishing strong efficiency of the above algorithm, is proved
in the appendix.

Lemma 2: Under Assumption 1, for any given c̃, ε > 0,
there exists a constant D1 such that:
(a) 1

(cn(b))n ≤ D1,

(b)
(

Ẽn[exp(−2θnX1I{X1<b})]
cn

)n
≤ D1

are satisfied ∀n and b ≥ c̃n 1
2 +ε.

The strong efficiency of Algorithm 1 is established in the
following theorem.

Theorem 1: Under Assumption 1, Algorithm 1 is strongly
efficient when b ≥ c̃n 1

2 +ε, that is,

lim
n→∞

Ẽn[Z2
1 (n, b)]

(P{Sn > b})2
<∞, (10)

given any b ≥ c̃n 1
2 +ε,∀c̃, ε > 0.

Proof: Recall that Ak = {ω :
∑n
i=1 I{Xi>b} = k}. Let

Bk := Ak ∩ {Sn > b}, for k = 0, . . . , n and let

Ik(n) :=
1

c2nn
Ẽn

[
exp

(
−2θn

n∑
i=1

(Xi ∧ b)

)
;Bk

]
,

then Ẽn[Z2
1 (n, b)] =

∑n
k=0 Ik(n). On the set B0, none of the

{X1, . . . , Xn} cross b but Sn > b. Therefore,

c2nn I0(n) = Ẽn
[
e−2θn

∑n
i=1Xi ;B0

]
≤ e−2θnbP̃n(B0)

≤ e2 log(nF̄ (b)).

Thus, I0(n) ≤ (nF̄ (b))2

c2nn
. (11)



We observe that Xi ∧ b = XiI{Xi<b} + bI{Xi≥b}, and on
Bk, k = 1, . . . , n

∑n
i=1 I{X>b} = k. Therefore,

c2nn Ik(n) = Ẽn
[
e−2θn

∑n
i=1XiI{Xi<b}e−2θn

∑n
i=1 bI{Xi≥b} ;Bk

]
= Ẽn

[
e−2θn

∑n
i=1XiI{Xi<b}e−2kθnb;Bk

]
≤ (nF̄ (b))2kẼn

[
e−2θn

∑n
i=1XiI{Xi<b}

]
,

where in the last line we have used the relation θnb =
− log nF̄ (b), and the fact that Ẽn[Y ;Bk] ≤ Ẽn[Y ] for Y ≥ 0.
Therefore, for k = 1, . . . , n,

Ik(n) ≤ (nF̄ (b))2k

c2nn

(
Ẽn
[
e−2θnX1I{X1<b})

])n
. (12)

Now combining the above equation with (11),

Ẽn
[
Z2

1 (n, b)
]

(nF̄ (b))2
≤ 1

c2nn
+

1

cnn

(
Ẽn
[
e−2θnX1I{X1<b}

]
cn

)n
×
(

1− (nF̄ (b))2n

1− (nF̄ (b))2

)
From (4), P{Sn > b} ∼ nF̄ (b) as n ↗ ∞ uniformly for
b >
√
n log n. Therefore application of Lemma 2 results in:

lim
n→∞

Ẽ[Z2
1 (n, b)]

(P{Sn > b})2
≤ D2

1 +D1.D1.1 <∞,

thus establishing the strong efficiency of Algorithm 1.

IV. PROPOSED ALGORITHM FOR P2

In this section we consider efficient simulation of the rare
probabilities P{Sn > b} for some fixed n as b↗∞. Efficient
state-independent algorithms already exist, refer [15], [14],
[16], [17] and [19] for some of the related literature. Our aim
is to illustrate that the importance sampling measure resulting
by doing tail-adjusted exponential twisting as before for P1,
yields a strongly efficient algorithm for P2 as well.

The importance sampling distribution F̂b we recommend for
drawing samples for X1, . . . , Xn is:

F̂b(dx) := cbe
θb·(x∧b)F (dx), (13)

where,

θb =
1

b
log

(
1

nF̄ (b)

)
, (14)

and cb is the appropriate normalizing constant. Let P̂b be the
measure induced by following the above importance sampling
distribution for drawing independent samples of Xis. Let Êb be
the associated expectation operator. The unbiased importance
sampling estimator for P{Sn > b} is given by:

Z2(b) =
1

cnb
exp

(
−θb

n∑
i=1

(Xi ∧ b)

)
I{Sn>b}. (15)

We provide only the outline of the proof of strong efficiency,
as the details are almost identical to that in the proof for
Algorithm 1.

Theorem 2: Under Assumption 1, estimator Z2(b) is
strongly efficient under measure P̂b; that is,

lim
b→∞

Êb
[
Z2

2 (b)
]

(P{Sn > b})2
<∞. (16)

Proof: As before for k = 1, . . . , n, let

Bk :=

{
ω :

n∑
i=1

I{Xi>b} = k

}
∩ {Sn > b}, and

Ik(b) :=
1

c2nb
Êb
[
e−2θb

∑n
i=1(Xi∧b);Bk

]
.

So we have Êb[Z2
2 (b)] =

∑n
k=0 Ik(b). As in the proof of

Lemma 2, we can show that:

lim
b→∞

1

cb
≤ 1 +

2

n
, (17)

lim
b→∞

Êb
[
e−2θbX1I{X1≤b}

]
cb

≤ 1

n
. (18)

For Ik, k = 1, . . . , n we just follow the same procedure to get,

I0(b) ≤ (nF̄ (b))2

c2nb
,

Ik(b) ≤ (nF̄ (b))2k

c2nb

(
Êb
[
e−2θbX1I{X1<b})

])n
.

Therefore,

ÊbZ2
2 (b)

(nF̄ (b))2
≤ 1

c2nb
+

1

cnb

(
Êb
[
e−2θbX1I{X1<b}

]
cb

)n
×
(

1− (nF̄ (b))2n

1− (nF̄ (b))2

)
Using the asymptotics P{Sn > b} ∼ nF̄ (b) as b ↗ ∞, (17)
and (18) we get:

lim
b→∞

ÊbZ2
2 (b)

(P{Sn > b})2
≤
(

1 +
2

n

)2n

+

(
1 +

2

n

)n
1

nn
1 <∞.

This completes the proof.

V. NUMERICAL EXAMPLES

Here we explain the results of simulation experiments for
computing P{Sn > na} for different values of a and n.
Suppose that {Xn : n ≥ 1} have a Pareto tail distribution
in the right side and exponential tail distribution in the left.
Specifically, the probability distribution function for Xi is:

F (x) :=

{
e2x

2 , if x < 0,
1− 1

2(1+x)3 , otherwise

The random variable Xi has zero mean. We use N = 1000
simulation runs to estimate P{Sn > na} for n = 50, 75, 100
and a = 1, 2, 3. In the implementation of Algorithm 1, we
draw samples for the increments from the density given by
(7). For a = 1, we take θ50 = 0.0745, θ75 = 0.0542, θ100 =
0.0431 as dictated by (8); θn is chosen similarly for other
choices of a as well. Table I provides a comparison of the



TABLE I
AS IS APPARENT FROM THE VR COLUMN OF ALGORITHM 1, THE PROPOSED IS SCHEME GIVES LARGE VARIANCE REDUCTION COMPARED TO NAIVE

SIMULATION; THE RE COLUMN APPEARS TO BE BOUNDED, THUS SUGGESTING STRONG EFFICIENCY; ALSO FOR LARGE n, THE VARIANCE REDUCTION
OFFERED BY ALGORITHM 1 IS COMPARABLE WITH THAT OF ALGORITHM BL. RECALL THAT THE COMPUTATIONAL EFFORT FOR SAMPLE GENERATION

IN ALGORITHM 1 AND ALGORITHM BL SCALE LIKE O(n) AND O(n2), RESPECTIVELY

ALGORITHM 1 ALGORITHM BL
n Estimator (9) VR RE Estimator VR RE

50 1.905×10−4 6.591×101 2.861 1.972×10−4 2.041×103 1.536
a=1 75 1.037×10−4 1.145×103 2.903 1.085×10−4 5.255×103 1.886

100 4.887×10−5 3.213×103 2.529 5.012×10−5 5.494×103 1.447

50 2.833×10−5 7.677×103 2.144 2.621×10−5 6.290×104 0.810
a=2 75 1.098×10−5 2.336×104 1.975 1.012×10−5 9.699×104 1.052

100 6.663×10−6 4.369×104 1.853 6.650×10−6 9.059×104 1.289

50 6.947×10−6 3.725×103 1.966 6.835×10−6 2.988×105 0.705
a=3 75 3.489×10−6 8.575×104 1.829 3.531×10−6 4.388×105 0.799

100 1.785×10−6 1.617×105 1.861 1.659×10−6 3.723×105 1.320

performance of Algorithm 1 which runs in O(n) time with that
of the O(n2) algorithm proposed in [3], which is identified as
Algorithm BL in the table. In Table I, VR denotes the ratio
of the variance of naive simulation estimator to the variance
of the estimator corresponding to the specified algorithm.
Variance of the naive simulation estimator is taken to be
γ̂(1 − γ̂), where γ̂ denotes the estimate of the probability
P{Sn > na} obtained using the specified algorithm. Further-
more, RE denotes the ratio of empirical standard deviation to
the estimate γ̂.

The relative error of the estimates under Algorithm 1
appear to be bounded as n increases, thus suggesting strong
efficiency. Further it can be noted that the variance reduction
by Algorithm 1 is comparable with that of the Algorithm BL,
as n increases. Using 1000 simulation runs, for large values of
n, it has been observed that Algorithm 1 runs at least 20 times
faster than Algorithm BL, thus underscoring the computational
advantage offered by the O(n) running time of Algorithm 1
over the O(n2) running time of Algorithm BL.

VI. CONCLUSION

In this paper we revisited the problem of estimating
P{Sn > b} in the settings where both n and b increase to
infinity (P1) as well as when n is fixed and b increases to
infinity (P2) when the constituent random variables have heavy
regularly varying right tails. We showed that state-independent
exponential twisting based algorithms can be developed to
efficiently estimate these probabilities. The current literature
on the other hand focuses on estimating P1 using more nu-
anced state-dependent methods. In many settings, the proposed
algorithms offer implementation and computational benefits
over state-dependent algorithms. Also, our work re-examines
the widely held belief that exponential twisting is applicable
only when light-tailed random variables are involved.

We believe that the proposed methods are applicable in
greater generality. For instance, in our ongoing effort we
attempt to efficiently estimate probabilities such as

P
{

max
k≤n

Sk ≥ b
}

as both n and b increase to infinity, when the constituent
variables have a negative mean and heavy right-tails. Such
probabilities have wide application in insurance and in queue-
ing (see, e.g. [27] and [28]).

APPENDIX

We aim to provide proofs of Lemmas 1 and 2 making use of
Lemmas 3 and 4, which are stated and proved below. The proof
of the Lemma 3 below, which gives asymptotic upper bound
for the integral

∫ b
−∞ eθnxF (dx), follows the approach in [25]

for bounding similar integral while deriving large deviations
asymptotics for P{Sn > b}.

Lemma 3: For any pair of sequences {xn}, {φn} satisfying
xn ↗∞ and φnxn ↗∞, the integral,∫ xn

−∞
eφnxF (dx) ≤ 1 +

e2ασ2φ2
n

2
+ e2αF̄

(
2α

φn

)
+ eφnxn F̄ (xn)(1 + εn),

where εn ≥ 0 is such that εn ↘ 0 as n↗∞
Proof: We split the region of integration into (−∞, γ/φn]

and (γ/φn, xn] for some constant γ > 0; the partition is
such that the integrand stays bounded in the former despite
its growth to (−∞,∞).

Let I1 :=
∫ γ/φn
−∞ eφnxF (dx) and I2 :=

∫ xn
γ/φn

eφnxF (dx).

Since eφnx ≤ 1 + φnx+
φ2
nx

2

2 eφnx,

I1 ≤
∫ γ/φn

−∞
F (dx) + φn

∫ γ/φn

−∞
xF (dx)

+
φ2
n

2

∫ γ/φn

−∞
x2eφnxF (dx)

≤
∫ ∞
−∞

F (dx) + φn

∫ ∞
−∞

xF (dx) +
φ2
ne
γ

2

∫ ∞
−∞

x2F (dx)

= 1 +
eγφ2

nσ
2

2
, (19)



because EX = 0 and EX2 = σ2. Integrating by parts for the
second integral,

I2 = −
∫ xn

γ/φn

eφnxF̄ (dx)

= eφnγ/φn F̄ (γ/φn)− eφnxn F̄ (xn) + φn

∫ xn

γ/φn

eφnxF̄ (x)dx

≤ eγF̄ (γ/φn) + I ′2, (20)

where, I ′2 := φn
∫ xn
γ/φn

eφnxF̄ (x)dx. Now the change of
variable u = φn(xn − x) results in:

I ′2 = eφnxn
∫ φnxn−γ

0

e−uF̄

(
xn −

u

φn

)
du

= eφnxn F̄ (xn)

∫ φnxn−γ

0

e−ugn(u)du, (21)

where,

gn(u) :=
F̄
(
xn − u

φn

)
F̄ (xn)

=
F̄
(
xn

(
1− u

φnxn

))
F̄ (xn)

.

Since L is slowly varying and φnxn →∞, given any δ > 0,
for all n large enough we have:

(1−δ)
(

1− u

φnxn

)−α+δ

≤ gn(u) ≤ (1+δ)

(
1− u

φnxn

)−α−δ
.

This preliminary fact about slowly varying functions, which
is Theorem 1.1.4 of [25], helps in concluding that gn(u) ∼ 1
as n→∞ for any u ∈ [0, φnxn − γ].
Now fix δ = α

2 . Then for n large enough,

gn(u) ≤
(

1 +
α

2

)(
1− u

φnxn

)− 3α
2

. (22)

To show that gn(u) is uniformly bounded in n and u ∈
[0, φnxn − γ] by an integrable function, so that we can apply
dominated convergence, we call the term involving u in the
upper bound in (22) as h(u),that is h(u) = (1− u/φnxn)

− 3α
2 .

Since log h(0) = 0 and d
du (log(h(u)) ≤ 3α

2γ for 0 ≤ u ≤
φnxn − γ, we have h(u) ≤ e

3αu
2γ on the same interval.

Therefore if we choose γ = 2α, the integrand in I ′2 is bounded
for large enough n by an integrable function as below:∣∣e−ugn(u)1{0≤u≤φnxn−γ}

∣∣
≤
∣∣∣e−u (1 +

α

2

)
h(u)1{0≤u≤φnxn−γ}

∣∣∣
≤
(

1 +
α

2

)
e−u+ 3αu

2γ

=
(

1 +
α

2

)
e−

u
4 .

Applying dominated convergence theorem, we get∫ φnxn−γ

0

e−ugn(u)du ∼ 1 as n↗∞.

Since
∫ xn
−∞ eφnxF (dx) = I1 + I2, combining this result with

(19), (20) and (21), completes the proof.
Lemma 4: For b ≥ c̃n 1

2 +ε, given c̃ and ε > 0, if θn is given
by (8), then the following hold true as n↗∞:

(a) θn = o
(

1√
n

)
,

(b) F̄
(

2α
θn

)
= o( 1

n ).

Proof: (a) We have F̄ (x) = L(x)
xα . Since L is slowly

varying, given any δ > 0 for sufficiently large values of b, we
have b−δ ≤ L(b) ≤ bδ, thus yielding L(b) = bo(1) as b↗∞.
Since b ≥ c̃n 1

2 +ε, n/b2 ≤ c̃−1n−2ε. Then,

nθ2
n =

n

b2
log2

(
1

nF̄ (b)

)
=

n

b2
log2

(
bα

nL(b)

)
= O

(
log2 n

n2ε

)
→ 0, as n↗∞.

(b) Since F̄ is regularly varying, By Theorem 1.1.4 (iii) of
[25], given any δ > 0, for n large enough,

nF̄

(
2α

θn

)
= nF̄

(
2αb

− log(nF̄ (b))

)
≤ n

(
− log

(
nF̄ (b)

)
2α

)α+δ

F̄ (b)

= O
(

(log n)
α+δ
) nL(b)

bα
→ 0, as n↗∞.

because α > 2 and L is slowly varying.
Now using the above two lemmas, we provide proofs for the
results left unproved in previous sections.

Proof of Lemma 1

Since cn(b) is the normalizing constant in (7),

1

cn(b)
=

∫ b

−∞
eθnxF (dx) + eθnbF̄ (b)

≤ 1 +
e2ασ2θ2

n

2
+ e2αF̄

(
2α

θn

)
+

1

n
(2 + εn), (23)

where we have used the Lemma 3 and the relationship, θnb =
− log

(
nF̄ (b)

)
. Usage of Lemma 3 is justified because θnb↗

∞ as n↗∞. Since the terms involved are of o(1) as noted
in Lemma 4, limn→∞ cn ≥ 1. Now for the other side,

1

cn
=

∫ b

−∞
eθnxF (dx) +

1

n

≥ F (b)eθn
∫ b
−∞

x
F (b)

F (dx) +
1

n
,

where the last inequality is due to Jensen’s inequality. Since∫ b
−∞ xF (dx)→ 0, θn ↘ 0 and F (b)↗ 1, as n↗∞ we get

limn→∞ cn ≤ 1.

Proof of Lemma 2

(a) In (23) if we use 1 + x ≤ ex for positive x, then

1

cnn(b)
≤ e

e2ασ2nθ2n
2 +ne2αF̄( 2α

θn
)+n 1

n (2+εn)

= eo(1)+1.(2+εn) → e2,



where the final equality is due to application of Lemma 4 for
the first two terms in the exponent. Thus we have established
that c−nn (b) stays bounded.

(b) Recollect that Λ is the cumulant generating function of
X1 under P. Now consider,

Ẽn
[
e−2θnX1I{X1<b}

]
=

∫ b

−∞
e−2θnxF̃n(dx) + 1− F̃n(b)

= cn

∫ b

−∞
e−θnxF (dx) +

cn
n

≤ cn
(
eΛ(−θn) +

1

n

)
, (24)

where the second equality follows from (7) and using 1 −
F̃n(b) = cne

θnbF̄ (b).
Since θn ↘ 0, using Assumption 1 we can say that

Λ(−θn) < ∞, for large enough n. Due to the continous
differentiability of Λ in (−φ, 0), Taylor expansion of Λ around
0 gives

Λ(−θn) = 0 +
θ2
n

2
Λ(θ̃n),

for some θ̃n between −θn and 0. Since Λ(0) = σ2, given any
δ > 0, we use continuity of Λ′′ to write Λ′′(θ̃n) ≤ σ2(1 + δ),
for all n large enough. Thus we conclude that, given any δ > 0,
for sufficiently large values of n,

Λ(−θn) ≤ θ2
nσ

2(1 + δ)

2
. (25)

Therefore from (24), we can write:

Ẽn[e−2θnX1I{X1<b} ]

cn
≤ eθ

2
n
σ2

2 (1+δ) +
1

n
.

Then,(
Ẽn[e−2θnX1I{X1<b} ]

cn

)n
≤ enθ

2
n
σ2

2 (1+δ)

(
1 +

1

neθ
2
n
σ2

2 (1+δ)

)n
≤ enθ

2
n
σ2

2 (1+δ)+e−θ
2
n
σ2

2
(1+δ)

, (26)

holds true for all n large enough. Here we have used 1 + x ≤
ex for x positive.
Since we have nθ2

n = o(1) from Lemma 4, (26) results in,

lim
n→∞

(
Ẽn[e−2θnX1I{X1<b} ]

cn

)n
≤ e0+e0 = e.

Therefore we can find an appropriate constant D1 such that
both the inequalities stated in Lemma 2 hold true.
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