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Abstract—We introduce the ∆(i)/GI/1 queue, a new queueing
model. In this model, customers from a given population inde-
pendently arrive according to some given distribution F . Thus,
the arrival times are an ordered statistics, and the inter-arrival
times are differences of consecutive ordered statistics. They are
served by a single server which provides service according to
a general distribution G, with independent service times. We
develop fluid and diffusion limits for the various stochastic
processes, and performance metrics. The fluid limit of the queue
length is observed to be a reflected process while the diffusion
limit is observed to be a function of a Brownian motion and
a Brownian bridge, reflected through a directional derivative
of the usual Skorokhod reflection map. We also observe what
may be interpreted as a ‘transient’ Little’s law. Sample path
analysis reveals various operating regimes where the diffusion
limit switches between a free diffusion, a reflected diffusion
process and the zero process, with possible discontinuities during
regime switches.

Index Terms—Queueing models; transitory queueing systems;
fluid and diffusion limits, distributional approximations; direc-
tional derivatives, M1 topology

I. INTRODUCTION

Most of modern queueing theory is concerned with sce-
narios where arrival and service processes are stationary and
ergodic. That the arrival process is a renewal process with
i.i.d. inter-arrival times is a common modeling assumption.
This is mathematically convenient as it allows full use of the
tools that renewal theory and ergodic theory provide. But it
need not be true in some queueing scenarios. For example,
in some queueing scenarios, each arriving customer takes an
independent decision of when to arrive. Even if we assume that
every arriving customer draws an arrival time from the same
distribution, this need not lead to a renewal arrival process.
Moreover, such a distribution may only have finite support
meaning that the system is transient. Thus, these scenarios do
not seem to fit the standard, single-server models in queueing
theory such as M/M/1, M/G/1, etc.

There has been an interest in developing a theory for
transient queues [15]. The first such models for time-dependent
queues were the early attempts of Newell [22] (see also
[15], [21], [8], [20]), and the more recent developments for
Mt/Mt/1 in [18] and state dependent Markovian queues in
[19]. However, in all of these the assumption of a renewal ar-
rival process (albeit time-inhomogeneous) remains ubiquitous.
Furthermore, all such models still assume a queueing system

operating forever, with an infinite population of customers
and a steady state. In contrast, many queueing systems serve
only a finite number of customers, and in fact, the queueing
system itself may be transitory, i.e., it may operate only in a
finite window of time, meaning that the concept of a steady
state does not exist. A goal of the present work is to propose
queueing models, and develop their theory, that are relevant
for such transitory queueing systems.

Such models can arise when service starts at a certain time,
and customers may choose to arrive early. For example, when
customers go to a rock concert in a Greek theater, they may
choose to arrive before the gates open, or arrive any time
after until the gates close. Such a scenario was studied as
the concert arrival game in [13], [10]. Other scenarios where
such a model may be relevant include queueing outside stores
for black Friday sales, outside Apple store before new product
launches, DMV or postal offices, lunch cafeterias, etc.

We introduce a new queueing model that has a finite
population of customers whose arrival process is not a renewal
process, and arrivals happen in a finite time window; in partic-
ular, it is a transitory queueing model. Consider n customers
who arrive into a single-server queue. Each customer’s time
of arrival is sampled i.i.d. from a distribution F . Then, the
times of arrival are an ordered statistics. Service times have a
general distribution G and are i.i.d. We call this the ∆(i)/GI/1
queueing model. The ∆(i)/GI/1 queue in the notation of
Kendall [16] is a ∆(i)/GI/1 queue, where X(i) is the ith
order statistic from a sample of size n from the distribution
F and ∆(i) = (X(i) − X(i−1)). We note, without proof,
that the exact analysis of the ∆(i)/GI/1 parallels that of a
Mt/GI/1 queue, but with the added complication that the
first and the last “inter-arrival” periods are not renewal periods
complicating the boundary conditions used for the transient
queue length probability distributions. Therefore, we develop
fluid and diffusion limits for this queueing model.

To develop our fluid and diffusion limits for the ∆(i)/GI/1
model, we scale up the population size and accelerate the
service process, and use the functional strong law of large
numbers (FSLLN) for random walks and the Glivenko-Cantelli
theorem to establish fluid limits for the service and arrival
processes respectively. Then, using Skorokhod’s reflection
mapping theorem [26], [9], we can obtain fluid limits for
the queue length process and the workload (the time it
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would take to serve current jobs in the queue) process. The
diffusion process limits of the service and arrival processes
can be obtained by use of the functional central limit theorem
(FCLT) for renewal processes and for empirical processes
respectively. The queue length diffusion process limit involves
a map which can be interpreted as the directional derivative
of the Skorokhod reflected fluid netput in the direction of a
diffusion refinement of the netput process. We also note that
our diffusion process convergence results are in Skorokhod’s
M1 topology on the space Dlim[0,∞), the space of functions
that are right or left continuous at every point, and right
continuous at 0.

The most standard heavy traffic approximation in the liter-
ature for a single server queue is a reflected Brownian motion
diffusion approximation; see, for example, Chapter 6 in [5] and
the pioneering work in [12]. The reflected Brownian motion
approximation is relevant for a G/G/1 queue in which the
inter-arrival and service times are either independent or only
exhibit weak dependence, and in which both the inter-arrival
and service time distributions have finite second moments. In
the case that there is strong dependence in the inter-arrival
or service times and/ or in the case that the distributions are
heavy-tailed (with an infinite second moment), non-Brownian
limits arise; see, for example Chapter 4 in [31] and the
overview paper [29]. However, the ∆(i)/GI/1 queue does not
fit that framework. In fact, the ∆(i)/GI/1 queue has a closer
connection with single server queues that have a time-varying
arrival rate.

Thus, it is pertinent to compare the ∆(i)/GI/1 model to
the already studied Mt/Mt/1 queueing model. One of the
earliest papers on this model is [20]. Strong approximations
for the model were later developed in [18]. However, all
such models still assume a renewal arrival process (albeit a
time-inhomogeneous one). Thus, the arrival process in the
∆(i)/GI/1 model cannot be obtained simply by windowing
the process for the Mt/GI/1 queue since the first and last
inter-arrival time in such a time-window need not be renewal
periods.

Perhaps the work closest to the current paper is [17], where
the author considers the same setup as we have, but does
not allow early arrivals. The paper develops diffusion approx-
imations to the queue length in separate, distinct intervals
and the maximum queue length process. However, without
establishing a “process-level” convergence over all time, such
a result is rather incomplete. In fact, it is not difficult to derive
point-wise limits to the queue length process. Establishing
“process-level” convergence for such limiting processes in an
appropriate topology is the main mathematical difficulty, as
was also observed in [18] for the Mt/Mt/1 model.

We note that there is a ‘transient’ Little’s Law that holds
for the ∆(i)/GI/1 model, i.e., the diffusion limit of the work
load process converges to diffusion limit of the queue length
process divided by the service rate plus a diffusion term
which is non-zero only in the ‘overloaded’ regime. This is a
handy result analogous to a similar Little’s Law for diffusion
approximations to the GI/GI/1 queues (see Chapter 6 ,[5]).

However, it is to be noted that, unlike the ’standard’ Little’s
Law, this result holds only in the case of a First-Come-First-
Serve (FCFS) service discipline.

II. PRELIMINARIES

A. Queue Model

Consider a single server, infinite buffer queue that is non-
preemptive and non-idling, and say, starts empty. Customers in
the queue will be assumed served on a first-come-first-served
(FCFS) basis, though this is not essential. Arriving customers
do not balk or renege once they commit to queueing. We also
allow early-bird arrivals so customers can queue up before
service starts . Most importantly, it is assumed there is a large
but finite number of customers who arrive for service over
some finite time interval.

Let n be the customer population size. Arriving customers
independently sample an arrival time Ti, i = 1, . . . , n, from
a fixed cumulative distribution function F that is assumed to
have support [−T0, T ] ⊂ R, where −T0 ≤ 0 and T > 0. Thus,
F (−T0) = 0 and F (T ) = 1. Customers enter the queue in
increasing order of the sampled arrival times. Let A(t) be the
number of customers who have arrived by time t, which is
usually called the arrival process. This is defined to be

A(t) :=

n∑
i=1

1{Ti≤t}. (1)

Let νi, i ≥ 1 be a sequence of independent and identically
distributed (IID) random variables, independent of the arrival
times Ti, with mean Eνi = 1/µ and finite variance σ2, whose
cumulative distribution function G has support [0,∞). Define
S to be a renewal process in terms of νi as

S(t) := sup{m ≥ 1|V (m) ≤ t}, ∀t ≥ 0, (2)

where V (m) :=
∑m
i=1 νi. S(t) is interpreted as the service

process of the queue. Here, νi is the service time for the ith
potential customer, and µ as the service rate offered by the
system. Note that S is defined for all t ≥ 0, so service starts
at time 0 in the ∆(i)/GI/1 model, and we define S(t) = 0
for all t < 0. Thus, the service process S(t) can be interpreted
as the number of customers that could be served if the server
were busy all the time in the interval [0, t].

Now, V (m) can be interpreted as the amount of work (in
units of time) presented by m customers. Let Z represent the
virtual waiting time process, defined using V as

Z(t) := V (A(t))−B(t)− t1{t≤0}, (3)

where B(t) is the busy time process defined as

B(t) :=

(∫ t

0

1{Q(s)>0}ds

)
1{t≥0}, ∀t ∈ [−T0,∞). (4)

B(t) is the amount of time the server has been busy in
the interval [0, t], and clearly B(t) ≤ t. Thus, Z(t) is the
difference between the total amount of work presented by the
arrivals up to time t and the amount of work completed by
the server by t. Z(t) can also be interpreted as the amount



of time a virtual arrival at time t would have to wait till it
enters service. Note that this definition varies slightly from
the standard definition due to the fact that an arrival at time
t < 0 before service starts has to wait an extra t units of time
for service to start, which accounts for the −t1{t≤0} term.

Finally, let Q represent the queue length process, or the
number of customers in service and waiting in the buffer at
time t. This is defined in terms of the arrival and service
processes as

Q(t) := A(t)− S(B(t)), ∀t ∈ [−T0,∞). (5)

As noted before, S(t) is the number of service completions if
the server is always busy in [0, t]. Thus, S(B(t)) counts the
number of service completions by time t given that it is busy
only for time B(t) until that time. This then is the number of
departures from the queue in [0, t], and the queue length is the
difference between the number of arrivals and the number of
departures by time t.

We observe that this model is intractable to exact analy-
sis. Therefore, we develop asymptotic approximations as the
population size increases.

B. Basic results

Notation Unless noted otherwise, all intervals of time are
subsets of [−T0,∞), for a given −T0 ≤ 0. Let Dlim :=
Dlim[−T0,∞) be the space of functions x : [−T0,∞) → R
that are right-continuous at −T0, and are either right or left
continuous at every point t > −T0. Note that this differs
from the usual definition of the space D as the space of
functions that are right continuous with left limits (cadlág
functions). We denote almost sure convergence by a.s−→ and
weak convergence by ⇒. The topology of convergence is
indicated by the tuple (S,m), where S is the metric space
of interest and m is the metric inducing a metric topology on
S. Thus, Xn

a.s−→ X in (Dlim, U) as n → ∞ indicates that
Xn ∈ Dlim converges to X ∈ Dlim uniformly on compact
sets (u.o.c.) of [−T0,∞) almost surely. Similarly, Xn ⇒ X
in (Dlim, U) as n → ∞ indicates that Xn ∈ Dlim converges
weakly to X ∈ Dlim uniformly on compact sets of [−T0,∞).
(Dlim,M1) indicates that the topology of convergence is the
M1 topology. X̄ indicates a fluid-scaled or fluid limit process.
X̂ and X̃ are used to indicate diffusion-scaled and diffusion
limit processes. We use ◦ is used to indicate composition of
functions or processes. The indicator function is denoted by
1{·} and the positive part operator by (·)+.

We now present known functional strong law of large
numbers (FSLLN) or fluid limits, and functional central limit
theorem (FCLT) or diffusion limits, for the arrival and service
processes, as the population size n increases to ∞. Our con-
vention is to superscript any process associated with the model
having population size n by n. These limits are presented for
the reader’s convenience, and will be useful in later sections
where fluid and diffusion limits for the queue length and the
virtual waiting time processes are derived.

We start with the arrival process. For the rest of this section,
let An := A be the arrival process indexed by the population

size n, and define the fluid-scaled arrival process as

Ān :=
An

n
.

Now, for the service process, we use an acceleration tech-
nique wherein the service rate is accelerated by multiplication
with the population size so that µn := nµ. Correspondingly,
the scaled service times are νni := νi/n for i = 1, . . . , n.
Using these, we define the accelerated service process as

Sn(t) := sup

{
m ≥ 1|

m∑
i=1

νi
n
≤ t
}

t ≥ 0,

and the fluid-scaled service process as

S̄n :=
1

n
Sn.

Finally, Recall that we have

V (m) :=

m∑
i=1

νi.

This random variable can be interpreted as the amount of work
(in units of time) presented to the server by m customers.
We can define the offered work process (the amount of work
offered by time t by a population of size n), as

V̄ n(t) :=

bntc∑
i=1

νni ∀t ∈ [0,∞). (6)

Here, we have used the acceleration argument presented for
the service process.

The following lemma establishes the fluid limits for these
processes.

Proposition 1: As n→∞, in (Dlim, U)

(Ān(t), S̄n(t)1t≥0, V̄
n(t)1t≥0)

a.s−→ (F (t), µt1t≥0,
t

µ
1t≥0). (7)

Remarks 1. The proof of Proposition 1 follows easily from
standard results: The fluid arrival process limit is given by the
Glivenko-Cantelli Theorem (see [6]). The fluid limits of the
service process and the offered work process follow from the
functional strong law of large numbers theorem for renewal
processes (see [5]).

Next, using the fluid limits from Proposition 1, we present
functional central limit theorem or diffusion limits, to the
appropriately standardized or diffusion-scaled processes. The
diffusion-scaled arrival process is defined as

Ân(t) :=
√
n

(
Ān(t)− F (t)

)
∀t ∈ [−T0,∞).

Similarly, the diffusion-scaled service and offered work pro-
cesses are given by

Ŝn(t) :=
√
n

(
S̄n(t)− µt

)
t ≥ 0

V̂ n(t) :=
√
n

(
V̄ n(t)− 1

µ
t

)
t ≥ 0.



The following proposition presents the diffusion limits for
these processes.

Proposition 2: As n→∞, in (Dlim, U),

(Ân, Ŝn, V̂ n)⇒
(
W 0 ◦ F, σµ3/2W ◦ e,−σµ1/2W ◦ e

µ

)
(8)

where W 0 is the standard Brownian Bridge process and W is
the standard Brownian motion process, both are independent
processes. e : [0,∞)→ [0,∞) is the identity map.
Remarks 1. The proof of this proposition follows easily
from standard results: The FCLT limit for the diffusion-scaled
arrival process, also called the empirical process, is a Brownian
Bridge process by Donsker’s Theorem (see Sections 13 and
16 in [3]). Note that this limit also arises in the study of the
invariance principle associated with the Kolmogorov-Smirnov
statistic used to compare empirical distributions with candidate
ones (see [31] for more detail). The limits for the diffusion-
scaled service and offered work processes follow from the
FCLT for renewal processes (see Section 16 in [3] and Chapter
5 in [5]).
2. Note that we have not placed any restriction on the arrival
distribution F other than that of finite support. The proofs
of the fluid limits to the performance metrics will hold for
arbitrary distribution functions F . However, the diffusion
limits require F to be absolutely continuous, since the form
of the limit process depends on this fact. Extending the result
to arbitrary F appears non-trivial, and left for future work.

III. FLUID APPROXIMATIONS

We now derive the fluid limit to the queue length process
for an arbitrary continuous arrival distribution and constant
service rate. Recall the queue length process from (5). The
corresponding fluid-scaled queue length process is

Qn(t)

n
=

1

n
An(t)− 1

n
Sn(Bn(t)), (9)

where Bn(t) is the fluid-scaled version of the busy time
process (4) defined as

Bn(t) :=

(∫ t

0

1{Qn(s)>0}ds

)
1{t≥0}. (10)

Now, we can write (9) by adding and subtracting the
functions F and µBn to obtain Qn(t)

n =(
An(t)

n
− F (t)

)
−

(
Sn(Bn(t))

n
−

µBn(t)

)
+

(
F (t)− µBn(t)

)
.

Similarly, adding and subtracting the function µt1{t≥0}, we
get Qn(t)

n := µIn(t)+(
An(t)

n
−F (t)

)
−
(
Sn(Bn(t)

n
−µBn(t)

)
+

(
F (t)−µt1{t≥0}

)
,

where In(t) = t1{t≥0} − Bn(t) is the fluid-scaled idle time
process. Now, we rewrite the fluid-scaled queue length process

(9) as follows:

Qn(t)

n
= X̄n(t) + µIn(t), ∀t ∈ [−T0,∞), (11)

where X̄n(t) is defined to be X̄n(t) :=(
An(t)

n
−F (t)

)
−
(
Sn(Bn(t))

n
−µBn(t)

)
+(F (t)−µt1{t≥0}).

(12)
Let Q̄n(t) := Qn(t)/n denote the fluid-scaled queue length
process. Theorem 1 below proves two things about Q̄n. First,
that it satisfies the Skorokhod reflection mapping theorem
(see Chapter 6 of [5]), and can be expressed uniquely in
terms of X̄n. Second, using this unique representation and
the continuous mapping theorem, we obtain the the fluid limit
for the queue length process.

Recall that the Skorokhod reflection map is a continuous
functional (Φ,Ψ) : Dlim → Dlim ×Dlim defined as

x 7→ Ψ(x) := sup
−T0≤s≤t

(−x(s))+,

and
x 7→ Φ(x) := x+ Ψ(x), ∀x ∈ Dlim.

Theorem 1 (Fluid Limit): The pair (Q̄n, µIn) has a unique
representation (Φ(X̄n),Ψ(X̄n)) in terms of X̄n. Furthermore,
as n→∞,

(Q̄n, µIn)
a.s−→ (Φ(X̄),Ψ(X̄)) in (Dlim, U),

where X̄(t) = (F (t)− µt1{t≥0}).
Proof: First note that Q̄n(t) ≥ 0, ∀t ∈ [−T0,∞). It is also
true that In(−T0) = 0 and dIn(t) ≥ 0, ∀t ∈ [−T0,∞).
By definition of In(t), it follows that

∫∞
−T0

Q̄n(t)dIn(t) = 0.
Thus, by the Skorokhod reflection mapping theorem [25], [5],
the joint process (Q̄n(t), µIn(t)) has a unique reflection map-
ping representation in terms of X̄n(t) as (Φ(X̄n),Ψ(X̄n)).

Note that by definition of Bn(t) ≤ t and from Proposition
1, it follows that as n→∞,∣∣∣∣Sn ◦Bnn

− µBn
∣∣∣∣ a.s−→ 0 in (Dlim, U). (13)

Using (13) and Proposition 1 it follows that as n→∞

X̄n a.s−→ X̄ in (Dlim, U),

where X̄ := (F (t) − µt1{t≥0}). Finally, it is easy to verify
that Ψ : D −→ D is a continuous operator. So, using the
limit derived above and the Continuous Mapping Theorem
(Theorem 5.2 of [5]) it follows that, as n→∞

(Q̄n, µIn) = (Φ(X̄n),Ψ(X̄n))
a.s−→ (Φ(X̄),Ψ(X̄)) in (Dlim, U).

Remarks 1. Note that X̄ is the difference between the fluid
limits of the arrival and service processes, and is often referred
to as the fluid limit of the netput process. In effect, it is the
amount of net potential fluid inflow to the system.



Q̄(t)

t-T0 !1 !2 !30

F(t)

µt

Fig. 1. An example of a ∆(i)/GI/1 queue that will undergo multiple
“regime changes”. The fluid queue length process is positive on [−T0, τ1)
and [τ2, τ3), and 0 on [τ1, τ2) and [τ,∞)

2. Theorem 1 shows that the fluid limit of the queue length
process for t ∈ [−T0,∞) is

Q̄(t) = (F (t)− µt1{t≥0}) + sup
−T0≤s≤t

(−(F (s)− µs1{s≥0}))+.

Q̄ can be interpreted as the sum of the fluid netput process
and the potential amount of fluid lost from the system.
Suppose that (F (t)− µt1{t≥0}) < 0 so that the fluid service
process has “caught up” and exceeded the cumulative amount
of fluid arrived in the system by time t (for simplicity
assume t > 0). Further, suppose f(t) − µ < 0, implying
that the netput process is decreasing at t. In this case,
sup−T0≤s≤t(−(F (s) − µs1{s≥0}))+ = −(F (t) − µt). This
is the amount of extra fluid that could have been served, but
is now lost.

From Theorem 1, we can see that the fluid limit of the
fluid-scaled busy time process is

B̄(t) := t1{t≥0} −
1

µ
Ψ(X̄(t)), ∀t ∈ [−T0,∞) (14)

Note that B̄(t) = 0 for all t ≤ 0, as Ψ(X̄)(t) = 0 on that
interval.

The limit for the busy time process will prove useful in
establishing a fluid limit for the virtual waiting time process
(3). The fluid-scaled virtual waiting time process is

Zn(t) = V n
(
n

(
An(t)

n

))
− Bn(t)− t1{t≤0}. (15)

The following result establishes a fluid limit for the virtual
waiting time process.

Proposition 3 (Fluid Transient Little’s Law): As n→∞,

Zn
a.s−→ Z̄ in (Dlim, U), (16)

where Z̄(t) := Q̄(t)/µ− t1{t≤0}.
Remarks 1. The fluid limit in Corollary 3 can be interpreted as
a fluid ’transient’ Little’s Law in the fluid limit for this model
since it relates the virtual waiting time fluid queue length but
there is a transient term, t1{t≤0} which accounts for the fact
that an arrival at time t < 0 would have to have −t time units
for service to start.

IV. DIFFUSION APPROXIMATIONS

A. Queue Length Process

Define the diffusion-scaled queue length process as

Qn(t)√
n

:=
An(t)√

n
− Sn(Bn(t))√

n
∀t ∈ [−T0,∞) (17)

Rewriting it after introducing the term
√
nµt1{t≥0}, we have

Qn(t)√
n

=

(
An(t)√

n
−
√
nF (t)

)
−
(
Sn(Bn(t))√

n
−
√
nµBn(t)

)
+
√
n(F (t)− µt1{t≥0}) +

√
nµ(t1{t≥0} −Bn(t)).

Using the definition of the idle time process
√
nIn(t) =

√
n(t1{t≥0} −Bn(t)),

and we can express Qn/
√
n as

Qn√
n

= X̂n +
√
nX̄ +

√
nµIn, (18)

where X̂n(t) :=(
An(t)√

n
−
√
nF (t)

)
−
(
Sn(Bn(t))√

n
−
√
nµBn(t)

)
= Ân(t)− Ŝn(Bn(t)), ∀t ∈ [−T0,∞). (19)

Recall from Theorem 1 that X̄(t) = (F (t) − µt1t≥0) is
the fluid netput process. We can think of X̂n as a diffusion
refinement of the netput process. Now, Lemma 1 gives a
diffusion limit of X̂n(t) as a direct consequence of Proposition
2.

Lemma 1: As n→∞,

X̂n ⇒ X̂ := W 0 ◦ F − σµ3/2W ◦ B̄ in (Dlim, U) (20)

where B̄ is defined in (14), and W 0 and W are independent
standard Brownian Bridge and standard Brownian motion
processes.
Proof: First note that Bn(t) ≤ t, ∀t ∈ [0,∞), implying that
Sn ◦ Bn ∈ D. Using Proposition 2, (14) and the random
time change theorem (see Section 17 of [3]), it follows that
as n→∞

√
n

(
Sn ◦Bn

n
− µBn

)
⇒ σµ3/2W ◦ B̄. (21)

Now, it follows from Proposition 2 and the weak limit (21)
that, as n→∞,

X̂n ⇒ X̂(t) := W 0 ◦ F − σµ3/2W ◦ B̄.

Remarks 1. Note that using a classical time change (see [14])
it is possible to see that the Brownian Bridge process is equal
in distribution to a time changed Brownian motion process,
and X̂ is equal in distribution to a stochastic integral

X̂(t)
d
=

{∫ t
−T0

√
g′(s)dW̃s, ∀t ∈ [−T0, T ]

−σµ3/2W (B̄(T )), ∀t > T.
(22)

where g(t) = F (t)(1−F (t))+σ2µ3B̄(t) and W̃ is a Brownian
motion independent of W 0 and W . Thus, the process X̂ can



also be interpreted as a time-changed Brownian motion, on
the interval [−T0, T ], and then its sample path is a constant
on (T,∞).

In the rest of this section, we will use Skorokhod’s almost
sure representation theorem [25], [30], and replace the random
processes above that converge in distribution by those defined
on a new probability space, that have the same distribution as
the original processes and converge almost surely. Remarkably,
the requirements for the almost sure representation are quite
mild - the underlying topological space needs to be Polish (a
separable and complete metric space). We note without proof
that the space Dlim, as defined in this paper, is Polish when
endowed with the M1 topology. This conclusion follows from
Theorem 2.6 of [28] and the fact that the proof there extends
easily to the case of the M1 topology. The authors in [18] also
point out that [23] has a more general proof of this fact.

Thus, we replace the weak convergence in (8) by

(Ân, Ŝn, V̂ n)
a.s−→

(
W 0 ◦ F, σµ3/2W,− σµ1/2W ◦ h

µ

)
in (Dlim, U), where abusing notation we denote the new limit

random processes by the same letters as the old ones. This
implies that in Lemma 1, as n→∞, we actually have

X̂n a.s−→ X̂ in (Dlim, U).

Now, our goal is to establish a functional central limit theorem
for the centered queue length process

Q̂n(t) :=
√
n

(
Qn(t)

n
− Q̄(t)

)
. (23)

We achieve this by using the Skorokhod reflection mapping
theorem [25], [5], [31] and express (Qn(t)/

√
n,
√
nµIn(t))

uniquely in terms of X̂n and X̄ . Using this representation,
we redefine Q̂n in terms of X̂n and X̄ , and then establish the
necessary limit as n→∞. Note that we will establish the limit
in the weaker topology M1, as opposed to the more common
U (uniform) or J1 topologies. This is because a directional
derivative reflection mapping lemma (Lemma 2) we will use
is only available for (Dlim,M1). For convenience, we define
the function

Ỹ n(t) :=
√
nµIn(t)−

√
nΨ(X̄(t)). (24)

Recall that (Φ,Ψ) is the Skorokhod reflection map. We denote
the directional derivative of the Skorokhod reflection map by

∇X̄t = {−T0 ≤ s ≤ t|X̄(s) = Ψ(X̄)(t)}, (25)

which is a set correspondence of points upto time t where the
fluid netput process achieves an infimum.

The following theorem proves the diffusion limit for the
queue length process.

Theorem 2 (Diffusion Limit): The pair (Q̂n, Ỹ n) has a
unique representation in terms of X̂n and

√
nX̄ given by(

Φ(X̂n +
√
nX̄)−

√
nQ̄,Ψ(X̂n +

√
nX̄)−

√
nΨ(X̄)

)
,

where Q̄ = X̄ + Ψ(X̄) is the fluid limit of the queue length
process. Furthermore, as n→∞

(Q̂n, Ỹ n)⇒ (X̂ + Ỹ , Ỹ ) in (Dlim,M1),

where X̂(t) = W 0(F (t))− σµ3/2W (B̄(t)), and Ỹ (t) =
maxs∈∇X̄

t
(−X̂(s)) ∀t ∈ [−T0,∞).

The limit result follows by use of the following directional
derivative reflection mapping lemma which is adapted from
Lemma 5.2 in [18].

Lemma 2: Let x and y be real-valued continuous functions
on [0,∞), and Ψ(z)(t) = sup0≤s≤t(−z(s)), for any process
z ∈ Dlim. Let {yn} ⊂ Dlim be a sequence of functions such
that yn

a.s→ y as n → ∞. Then, with respect to Skorokhod’s
M1 topology, ỹn := Ψ(

√
nx + yn) −

√
nΨ(x) −→ ỹ :=

sups∈∇x
t
(−y(s)) as n→∞, where ∇xt = {0 ≤ s ≤ t|x(s) =

x̄(t)}.
Proof: Rewrite ỹn as

ỹn = (Ψ(
√
nx+yn)−Ψ(

√
nx+y))−(Ψ(

√
nx+y)−

√
nΨ(x)).

Now, using the fact that the Skorokhod reflection map is
Lipschitz continuous under the uniform metric (see Lemma
13.4.1 and Theorem 13.4.1 of [31]) we have

(Ψ(
√
nx+ yn)−Ψ(

√
nx+ y)) ≤ ‖yn − y‖,

where ‖ · ‖ is the uniform metric. It follows that

ỹn ≤ ‖yn − y‖+ (Ψ(
√
nx+ y)−

√
nΨ(x)),

Now, by Lemma 5.2 of [18] we know that as n→∞

(Ψ(
√
nx+ y)−

√
nΨ(x))

a.s→ ỹ, in (Dlim,M1).

Using this result, and the fact that by hypothesis yn converges
to y in (Dlim, U) we have, as n→∞,

ỹn
a.s→ ỹ, in (Dlim,M1).

Proof: [Proof of Theorem 2] First using (18), it follows by the
Skorokhod reflection mapping theorem that(
Qn√
n
,
√
nµIn

)
=

(
Φ(X̂n +

√
nX̄),Ψ(X̂n +

√
nX̄)

)
. (26)

This implies that

Q̂n =
Qn√
n
−
√
nQ̄ = Φ(X̂n +

√
nX̄)−

√
nQ̄. (27)

Recall from Theorem 1 that Q̄ = X̄ + Ψ(X̄). Substituting
this expression into (27), and using the fact that Φ(x) = x+
Ψ(x), for any x ∈ Dlim, we have

Q̂n = X̂n +
√
nX̄ + Ψ(X̂n +

√
nX̄)−

√
n(X̄ + Ψ(X̄)),

= X̂n + Ψ(X̂n +
√
nX̄)−

√
nΨ(X̄). (28)

Similarly, utilizing the expression for
√
nµIn in (26) we have

Ỹ n =
√
nµIn −

√
nΨ(X̄),

= Ψ(X̂n +
√
nX̄)−

√
nΨ(X̄), (29)



implying that Q̂n = X̂n + Ỹ n.
Observe that Ỹn is exactly in the form of ỹn defined in

Lemma 2 above. Since it has been shown that X̂n converges
uniformly on compact sets of [−T0,∞) to the continuous
process X̂ in Lemma 1, applying Lemma 2 above it follows
that, as n→∞,

Ỹn
a.s−→ Ỹ := max

s∈∇X̄
·

(−X̂(s)) in (Dlim,M1)

Now, using Lemma 1 and the immediate result above we
have

Q̂n = X̂n+Ỹ n
a.s−→ X̂+ max

s∈∇X̄
·

(−X̂(s)) in (D,M1) as n→∞.

This completes the proof.

Remarks 1. Observe that the diffusion limit to the queue
length process is a function of a Brownian Bridge and a
Brownian motion process. This is significantly different from
the usual limits obtained in a heavy-traffic or large population
approximation to a single server queue. For instance, in the
G/G/1 queue one would expect a reflected Brownian motion
in the heavy-traffic setting. In [18] it was shown that the
diffusion limit process to the Mt/Mt/1 queue is a time
changed Brownian motion reflected through the directional
derivative reflection map we used in Lemma 2. There are
very few examples of heavy-traffic limits involving a diffusion
that is a function of a Brownian Bridge and a Brownian
motion process. However, there have been some results in
non-conventional queueing models where a Brownian bridge
arises in the limit. In [24], for instance, a Brownian Bridge
limit arises in the study of a many-server queue in the Halfin-
Whitt regime.
2. We noted in the remarks after Theorem 1 that the fluid
limit can change between being positive and zero in the arrival
interval for a completely general F . One can then expect the
diffusion limit to change as well, and switch between being a
‘free’ diffusion, a reflected diffusion and a zero process. This
is indeed the case. Figure 2 illustrates this for the example
in Figure 1. Note that ∀t ∈ [−T0, τ1) Ψ(X̄)(t) = −X̄(−T0),
implying that the set ∇X̄t is a singleton. On the other hand, at
τ1 ∇X̄t = {−T0, τ1}. For t ∈ (τ1, τ2], Ψ(X̄)(t) = 0 = X̄(t),
implying that ∇X̄t = (τ1, t]. On (τ2, τ3), Ψ(X̄)(t) = 0,
but X̄(t) > 0, so that ∇X̄t = (τ1, τ2]. Finally, the fluid
queue length becomes zero when the fluid service process
exceeds the fluid arrival process in [τ3,∞), implying that
Ψ(X̄)(t) = −(F (t)− µt) > 0. It can be seen that ∇X̄t = {t}
in this case.

1) Uniform Arrival Distribution: Note that ∇X̄t is a set
correspondence that maps each time t to the set of points (upto
t) at which the fluid netput process is equal to its infimum at t.
Theorem 2 shows that the diffusion limit to the queue length
process is in fact piecewise continuous since Ỹ is. We now
specialize the diffusion limit results to the case of a uniform
F with early-bird arrivals. This illustrates with greater clarity
the discontinuous nature of the limit processes.

Fig. 2. An example of a ∆(i)/GI/1 queue that will undergo multiple
“regime changes”. The diffusion limit switches between a free Brownian
motion (BM), a reflected Brownian motion (RBM), and the zero process

Corollary 1: Let F be the uniform distribution on
[−T0, T ], where −T0 < 0. Then,

Q̂(t) =


W 0(F (t))− σµ 3

2W (t), ∀t ∈ [−T0, τ)

(W 0(F (τ))− σµ 3
2W (τ))

+(−(W 0(F (τ))− σµ 3
2W (τ)))+, t = τ

0, ∀t ∈ (τ,∞),

where τ = {−T0 ≤ t <∞|F (t) = µt}.
The time τ can be interpreted as the first time that the fluid

service process catches up with the fluid arrival process. For
a uniform F there is at most one such point, but in general
there can be many such points.

Interestingly, the nature of the discontinuity at Q̂(τ) depends
on the the sign of X̂(τ). The following corollary clarifies this
statement. Recall that t is a point of right-discontinuity for a
function x ∈ Dlim if x is left-continuous at t, and x(t−) >
x(t+). On the other hand, t is a point of left-discontinuity if
x is right-continuous at t, and x(t+) > x(t−).

Corollary 2: Let F be the uniform distribution function
over [−T0, T ], where T0 > 0, and τ = {−T0 ≤ t <∞|F (t) =
µt1{t≥0}}. Then, for the process Q̂ in Corollary 1, we have

(i) [−T0, τ) ∪ (τ,∞) are points of continuity.
(ii) τ is a point of right-discontinuity, when X̂(τ) ≥ 0.

(iii) τ is point of left-discontinuity, when X̂(τ) < 0.
The proof is available in [11].
Remarks: 1. In Corollary 1, Q̂ is piecewise continuous on
[−T0,∞), with a single point of discontinuity at τ . Inter-
estingly, Q̂(τ) is determined by the value of the process
at τ−. If Q̂(τ−) is non-positive, then the value of Q̂(τ)
is 0. On the other hand, if Q̂(τ−) = X̂(τ) > 0, then
Q̂(τ) = X̂(τ) = Q̂(τ−). However, at τ+ the queue length



immediately falls to 0 and remains there forever after, as the
reflection regulator map becomes positive for all time that
follows τ .
2. A useful way to interpret the discontinuity at τ in Corollary
1 is to consider the process on the two sub-intervals separately
and try to “patch” them together. If Q̂(τ−) = X̂(τ) =
Q̂(τ) > 0 we should expect a free diffusion path on the
interval [−T0, τ ], and a reflected process such that the path
is 0 on (τ,∞). Further, Q̂(τ) becomes the “starting state”
for the process on the interval (τ,∞), and the reflection
operator is applied an instant after τ . On the other hand, if
Q̂(τ−) = X̂(τ−) ≤ 0 we have a free diffusion on [−T0, τ)
and the zero process on [τ,∞); i.e., the process drops to zero
at τ . Thus, Q̂(τ−) provides the starting conditions for the
new “regime” of the diffusion, as the process transitions from
[−T0, τ) to (τ,∞).
3. We note that in [17], a diffusion approximation to the queue
length process is derived independently for different operating
regimes. However, these limit results have not been “patched”
together to obtain a “process-level” convergence result, which
is precisely where the mathematical challenges lie. We also
note that diffusion limits in [17] do not involve directional
derivative maps since the processes are continuous over the
intervals on which they are studied.
4. It is also pertinent to mention that the limit results in [17]
are obtained in the uniform topology at what are the continuity
points of the limit process between regime changes. However,
as we noted above, there are discontinuities in the limit
process at points such as τ where regimes change, precluding
the possibility of establishing a “process-level” limit in the
uniform topology and necessitating the need to establish the
limit in a weaker topology.

B. Virtual Waiting Time Process

Now, consider the centered virtual waiting time process
given by

Ẑn(t) =
√
n(Zn(t)− Z̄(t)) ∀t ∈ [−T0,∞), (30)

where Z̄(t) is defined in (16) and Zn(t) is defined in (15).
Corollary 4 proves the diffusion limit to this process.

Proposition 4 (Diff. transient Little’s Law): As n→∞,

Ẑn ⇒ Ẑ :=
1

µ
Q̂+σµ1/2W ◦B̄−σµ1/2W ◦F in (Dlim,M1).

(31)

V. SAMPLE-PATH ANALYSIS

As noted in Section IV, the limit process is piecewise
continuous, with discontinuity points determined by the fluid
limit. Indeed, the discontinuity points are precisely where the
fluid limit switches regimes between ‘overloaded’, ‘under-
loaded’ and ‘critically-loaded’ states. We now provide formal
definitions of these notions, in terms of the fluid limit arrival
and service processes.

We then characterize the sample path of the queue length
limit process, and the points at which it has discontinuities.
Developments in this section follow the study of the directional

derivative process in [18]. However, the limit processes and
the setting of our models are completely different. Thus, where
necessary, we prove some of the facts about the sample paths.
The operating regimes for the Mt/Mt/1 model in [18] and
our ∆(i)/GI/1 model are quite similar, and we adapt the
definitions to our model.

A. Regimes of Q̄

It can be useful to characterize the state of a queue in terms
of a “traffic intensity” measure. For instance, in the case of a
G/G/1 queue, the traffic intensity is the ratio of the arrival
rate to the service rate. In [21] a traffic intensity function for
the Mt/Mt/1 queue with arrival rate λ(s) and service rate
µ(s) was introduced as the ratio

ρ∗(t) := sup
0≤s≤t

∫ t
s
λ(u)du∫ t

s
µ(u)du

, t > 0.

Here, we adapt the form of this function and define the traffic
intensity for the ∆(i)/GI/1 queue in terms of the fluid limit
as

ρ(t) =


∞, ∀t ∈ [−T0, 0]

sup0≤r≤t
F (t)−F (r)
µ(t−r) , ∀t ∈ [0, T̃ ]

0, ∀t > T̃ ,

(32)

where T̃ := inf{t > 0|F (t) = 1 and Q̄(t) = 0}. Note that we
define the traffic intensity to be ∞ in the interval [−T0, 0] as
there is no service, but there can be fluid arrivals. It is also
important to note that the definition of ρ∗ follows from the
pre-limit system describing the arrival and service processes in
the Mt/Mt/1 queue, whereas the definition of ρ is contingent
on the establishment of the fluid limit processes as there is no
explicit arrival ’rate’ associated with the arrival process. In the
case of a uniform F over an interval [−T0, T ] ρ is given by

ρ(t) =
t ∧ T
t

1

µ(T + T0)
, ∀ t ∈ [0, T̃ ].

Now, consider the following obvious definitions of the some
of the operating states of the fluid ∆(i)/GI/1 queue.

Definition 1 (Operating regimes.): The ∆(i)/GI/1 queue
is
(i)overloaded if ρ(t) > 1.
(ii) critically loaded if ρ(t) = 1.
(iii) underloaded if ρ(t) < 1.

Notice that these regimes correspond to the operating
regimes of a time homogeneous G/G/1 queue. However, since
the queue length fluid limit in the ∆(i)/GI/1 queue can also
vary with time, and analogous to the Mt/Mt/1 queue in
[18] we also identify the following “finer” operating states. In
particular, these states are useful in studying the approximation
to the distribution of queue length process on local time scales.

Definition 2 (Operating states.): The ∆(i)/GI/1
queue is at
(i) end of overloading at time t if ρ(t) = 1 and there exists
an open interval (a, t) or (t, a) such that ρ(r) > 1 for all r in
that interval.



(ii) onset of critical loading at time t if ρ(t) = 1 and there
exists a sequence λn ↑ t such that ρ(λn) < 1 for all n.
(iii) end of critical loading at time t if ρ(t) = 1, and there
exists a sequence λn ↑ t such that ρ(λn) = 1 for all n and a
sequence γn ↓ t such that ρ(γn) < 1 for all n.
(iv) middle of critical loading at time t if ρ(t) = 1, and t is
in an open interval (a, b), such that supt∈(a,b) ρ(t) ≥ 1 and
there exists a sequence λn ↑ t such that ρ(λn) = 1 for all n.

The following Lemma shows the equivalence of the defini-
tions of the operating regimes to the process Q̄.

Lemma 3: The ∆(i)/GI/1 queue is
(i) overloaded at time t if Q̄(t) > 0.
(ii) critically loaded at time t if Q̄(t) = 0, X̄(t) = Ψ(X̄)(t)
and there exists an r < t such that Ψ(X̄)(t) = Ψ(X̄)(s) for
all s ∈ [r, t].
(iii) underloaded at time t if Q̄ = 0, X̄(t) = Ψ(X̄)(t) and
there exists an r < t such that Ψ(X̄)(t) > Ψ(X̄)(s) for all
s ∈ (r, t).
The proof of the lemma is available in [11].

VI. SIMULATIONS
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(a) Sample queue length process mean for n =
10, 25, 100, 1000, averaged over 10000 simulation runs.
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Fig. 3. Mean and variance envelopes for F uniform over [−20, 40], and
exponentially distributed service times with rate µ = 0.03

We now present some simulation results to illustrate the va-

lidity of the approximations in Theorems 1-2 as the population
size increases. Consider a uniform arrival distribution over the
interval [−20, 40], with service times i.i.d. and exponentially
distributed with parameter µ = 0.03. We simulated the
∆(i)/GI/1 queue with population sizes n = 10, 25, 100, 1000.

It is straightforward to show that the variance of the
diffusion limit process at time t is given by

σ2(t) =


F (t)(1− F (t)), ∀t ∈ [−T0, 0]

F (t)(1− F (t)) + σ2µ3t, ∀t ∈ (0, τ)

0, ∀t > τ.

Here, F (t) = t+20
60 , 1/σ = µ = 0.03 and τ = 25.

Observe from Figure 3(a) that even for small n, the sample
mean is quite close to the fluid limit for t < 0. However, once
queueing dynamics come into play, the fluid limit is a good
approximation only for n = 100 or larger. Similarly, Figure
3(b) shows that the diffusion limit is a good approximation to
population sizes of around n = 1000.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a novel single server queueing
model which we call the ∆(i)/GI/1 queue. In this model, cus-
tomers from a finite population independently choose (sample)
their time of arrival at the queue from a common distribution
function. The arrival times are, thus, order statistics, and
the inter-arrival times are differences of consecutive order
statistics, and thus not renewal intervals. Service times are
i.i.d. with some general distribution G, and the service rate is
fixed.

Our original motivation for introducing the ∆(i)/GI/1
model came from the ‘concert arrival game’, a game of arrival
timing introduced in [13]. Customers choose to arrive at a
queue to minimize an expected cost functional that depends on
the waiting time and the number of people who have already
arrived. The Nash equilibrium analysis was done in the fluid
limit, and it was established that for linear cost functionals,
the uniform arrival distribution is a Nash equilibrium. With a
given arrival distribution, this is a ∆(i)/GI/1 queueing model,
and the details of the queueing dynamics in the game are also
of interest. The second question is whether the equilibrium
derived from the fluid model approximates in any way the
equilibrium of the finite population ‘concert arrival game’.
Note that this is in the spirit of mean field equilibrium
approximations of finite stochastic game models [4], [1], [27].

The new queue model we introduce should also be of
interest in other scenarios. Thus, another thing we plan to
do in the future is to acquire data for some common queueing
situations, for example, queues at lunch-time cafeterias, postal
and DMV offices, some enterprise call centers, and check if
the ∆(i)/GI/1 queue could be a reasonable model.
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