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Abstract—Performance evaluation in computer networks re-
quires consistent traffic and topology models to deliver compa-
rable results. In this work we present our platform that provides
a consistent interface by encapsulating standard parameters as
scheduling strategy, link speed, processing delay, and propagation
delay. In contrast to existing solutions, we provide several perfor-
mance estimation techniques within a single toolbox making the
identified performance results comparable. The functionality of
our developed toolbox is demonstrated by employing it to real-
world scenarios in avionics, which is the Ethernet based Cabin
Management System and the communication network inside the
cabin server.

I. INTRODUCTION

Automotive and aeronautics industry have to cope with

evolved communication networks in vehicles and airplanes.

However, there are good reasons to benefit from recent

progress in the field of switched Ethernet. In aeronautics,

a clear cost driver is the weight of the communication in-

frastructure, and so, any additional redundant link results

additional weight. Transmitting more traffic over the network

while possibly merging different safety domains would bring

clear advantage compared to current systems. In automotive

industry, the cost drivers in terms of network technology

are connectors, cable and their shielding, as well as the

price for the network chips. The objectives of both means

of transportation differ somewhat, but the intention is clear:

less weight, lower price, higher bandwidth, and yet no loss in

terms of safety. Certainly, these objectives influence each other

and are difficult to fulfill. Often an existing and expensive cer-

tification process does not encourage the introduction of novel

communication technologies. In terms of safety, an important

point that be addressed is the certification process, which

differs in the certain areas of transportation. The evaluations

in those processes are often hand-crafted or semi-automated.

Our toolchain tries to fill that gap by providing a consistent

platform for performance evaluation and calculation such that

certification processes can be completed in shorter time. Figure

1 shows the aspects of our performance calculation toolbox.

The task of performance estimation and calculation yielded

several approaches in the last decades. There are discrete event

simulations based on Monte Carlo studies, methods that aim at

the calculation of queuing delays based on queuing theory as
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Fig. 1. Performance Calculation with DIMTOOL

well as its alternative Network Calculus (NC). The calculated

results often fall in the category of latency, memory utilization,

and link utilization. To the best of our knowledge, these tools

deliver results, that cannot easily be compared since they may

assume different models or constraints. In this work we present

the network calculation platform DIMTOOL, which provides

such a consistent view on network performance calculations.

This paper provides the following key contributions: In

contrast to previous tools, we provide several performance

estimators under one umbrella, thus making performance

results of different methods transparent and comparable. We

employ DIMTOOL to verify latency constraints in the switched

aircraft cabin and show that the NC FIFO bound does not

hold by Worse Case Simulation (WCS). In contrast, we did

not observe the necessity of the non-FIFO bound with the

established Monte Carlo method— even after several random

runs.

This paper is structured as follows: Section II shows related

work in the field of performance calculators. Section III pro-

vides an overview of DIMTOOL, its objectives, its architecture

and the provided back-ends. The experimental results are

discussed in Section IV. Section V summarizes the work and

outlines further steps.

II. RELATED WORK

In this section we provide a comprehensive overview of

network performance calculation solutions. Throughout this

work, network performance calculators are classified by the

employed technology. More precisely, we cover network sim-

ulation based on Monte Carlo Simulation (SIM), NC analysis,
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Model Checking (MC) approaches as well as WCS. Table I

gives a comprehensive, not necessarily complete overview of

available products and the underlying technology.

Comparison of results achieved from those network per-

formance estimators is hardly possible because the traffic

and network models often differ from each other, and small

distinctions may have significant impact on the results. This

aspect is addressed by the work shown in this paper. For this, a

generic interface and wrappers are provided, that act as back-

ends to simplify comparison of the determined performance

bounds. Furthermore, we provide a Matlab front-end to the

Network Calculation tools.

Computer networks are usually too complex to identify

the worst case through network simulation. Popular network

simulators are ns-2 [1], ns-3 [2], SSF [3], OMNeT++ [4]

and OPNET [5]. The main idea behind such a Monte Carlo

simulation is to do individual simulation runs that are based on

different random seeds. However, it cannot be guaranteed to

observe the worst case in one of these runs, such that advanced

models and techniques are required. Our previous work [6]

presented a method that shifts bounds achieved in a Monte

Carlo simulation towards the worst case observed by analytical

models. This approach is refered to as WCS.

Recent approaches for performance evaluation are based on

real-time scheduling analysis tools, e.g., ChronVal [7] or Sym-

TA/S [8] to determine maximum and minimum performance

bounds in communication networks. These tools are usually

employed for determining worst case schedules of processes

in CPUs, but when those tools are aware of handling non-

preemptive processes, this technique can be used to model

worst case schedules of frames in a switched network. The

model checker Uppaal [9] was used to determine performance

bounds in the field of Ethernet networks [10], which is in line

with the recently mentioned real-time scheduling analyzers,

because they exhaustively enumerate the search space. In

the later we will use the term MC to refer to the recently

mentioned approaches. The approach given in [11] (and briefly

presented in Section III-C) also falls into this category.

Another well-accepted method to determine performance

bounds in computer networks is known under the concept of

NC [12]–[14], being a competitor to classical queuing theory.

Mainly academic research of the last decade brought tools

to the community of NC such as DISCO [15], COINC [16],

CyNC [17], or RTC [18].

In all those performance calculators, the network and the

flows traversing the topology have to be specified explicitly

by graphs and traffic patterns. There exist various data formats

to describe these environments that are often tool dependent.

Besides those tool dependent data formats there exist some

standardized data formats as the Common Information Model

(CIM) [19] used for network management or BRITE [20] used

for topology creation.

Tool Sim NC MC WCS

DIMTOOL X X X X

ns-2 [1] X

ns-3 [2] X

SSF [3] X

OMNeT++ [4] X

OPNET [5] X

ChronVal [7] X

SymTA/S [8] X

Uppaal [9] X

DISCO [15] X

COINC [16] X

CyNC [17] X

RTC [18] X

TABLE I
PERFORMANCE ESTIMATION TOOLS

III. DIMENSIONING TOOL

In this section we introduce the concepts and architecture of

DIMTOOL and introduce the covered performance calculators.

A. Objectives and Traffic Models

In communication networks, there exist three major ap-

proaches to determine meaningful bounds of real-time appli-

cations: (a) analytical methods, (b) network simulation, and

(c) measurements.

To evaluate safety critical systems, a mixture of those

approaches is commonly used to prove correct functional-

ity. Analytical methods have the drawback, that determined

performance bounds may differ significantly from that of a

deployed network. Consider a worst case scenario in a queuing

network. The worst case will only be provoked when the

packets of interest are delayed by all other crossing packets.

Proving the correctness of queuing networks, does, however,

still contain some unsolved problems—methods known so far

either pay by significant overestimation, or by computational

effort. While overestimated bounds are sometimes tolerable,

the computational effort of tight bounds is usually impractical

for larger networks [21]. In fact, the problem of finding

tight bounds has been proven to be NP-hard [22], such that

an exponential number of solutions has to be compared in

order to find the tightest bound when using the known linear

optimization based algorithms of [22], [23].

Typically the following delay types are observed in switched

Ethernet: (a) Propagation Delay, (b) Transmission Delay, (c)

Processing Delay, and (d) Queuing Delay. Current work pri-

marily focused on determining worst case values for trans-

mission and queuing delays. Due to the nature of queuing

networks, where arbitrary cross traffic may pass the system,

this may lead to high variability. In contrast to transmission

and queuing delay, values for propagation and processing

delay are relatively stable which allows providing tight bounds.

Bounds for the processing delay highly depend on the assumed

multiplexing architecture, i.e., whether the switch fabric is

implemented in hardware, or as a software solution.
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We will briefly introduce common approaches to define

traffic profiles. In the field of NC, standard token bucket

traffic models are used, such as the single token bucket, the

dual token bucket or even multiple token bucket curves built

of several piecewise linear curves. Common literature (e.g.,

[24]) characterizes the single token bucket as being (σ ,ρ)-
constrained, while σ specifies the burst and ρ the burst rate.

Paying attention to the property of computer networks usually

sending the individual frames at wire speed, the second model

using a dual token bucket [14] is employed to additionally

model peak rate and maximum packet size. The dual bucket

model is described as a 4-tuple (p,M,r,b), where p represents

the peak rate, M is the maximum packet size, r corresponds

to the rate of the token bucket and b is the burst of the token

bucket. In network simulation, there exist several models for

traffic description, e.g., Markov on-off processes, distributions

over wait times and packets sizes, self-similar processes [25]–

[27], as well as traces from traffic measurements.

Network performance evaluation tools differ between FIFO

bound and non-FIFO bound. Figure 2 shows the relevance of

this distinction in a simple switching scenario, and why we

require a non-FIFO bound even if queuing policy is FIFO

in the output queue. In fact non-FIFO bounds would not be

required for performance evaluation, if the implemented switch

guaranteed FIFO forwarding [28]. The implementation would

have to store the concrete arrival time of each packet for

guaranteeing true FIFO behavior. Despite the fact, that the

concrete implementation details are not published by hardware

vendors, it is assumed that most switch implementations do

not guarantee FIFO forwarding. Instead maximum bipartite

matching algorithms should have been implemented to achieve

high throughput in the crossbar [29].

B. Topology and Flow Description

In fact there are several data formats available to express

network topologies which highly depend on the exact field of

application and the consequent information content. Some data

formats mentioned earlier use XML representation while oth-

ers use Comma Separated Value (CSV). Our toolbox follows

the latter approach and describes topologies via CSV. More

precisely we use two sections, one expressing the topology of

the network, the other expressing the data flows traversing the

network. Listing 1 gives an idea of the format we use in this

toolchain to express topology and traffic generation.

This description covers the tandem scenario given in Figure
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Fig. 3. Tandem Scenario with four Flows

Flow Burst [bytes] Rate [kBits/s]

f1 1024 50

f2 256 500

f3 408 1000

TABLE II
TOKEN BUCKET PARAMETERS

topo

nodes 8

0,node:10.33.0.102:255.0.0.0,3,switch

3,switch,1,node:10.33.0.103:255.0.0.0

3,switch,2,node:10.33.0.104:255.0.0.0

3,switch,4,switch

4,switch,5,node:10.33.0.105:255.0.0.0

4,switch,6,node:10.33.0.106:255.0.0.0

4,switch,7,node:10.33.0.107:255.0.0.0

#

flows

0, node, { (TokenBucket, 1024, 7.25,

10.33.0.106, normal(0.202, 0.04)) ) }

1, node, { (TokenBucket, 256, 62.5,

10.33.0.106, normal(0.202, 0.04)) ) }

2, node, { (TokenBucket, 408, 125,

10.33.0.107, normal(0.202, 0.04)) ) }

#

Listing 1. Example Description of Topology and Flows

3; the token bucket rates are given in Table II. The topology

section contains the number of nodes and a list of bidirectional

edges. The description of each node may contain further

information such as IP address/mask and type of switch. We

defined the node types node as IP endpoint and switch as an

Ethernet compliant switch. The flow section contains a list of

arrival curves that are to occur in the specified nodes. The first

two entries specify the described node with numerical id and

the type of the node. The remainder contains the arrival curve

descriptions, which conforms to a TokenBucket arrival curve in

this example. Additionally, the destination IP address, as well

as the offset of the arrival curve (being normally distributed)

are given. We provide the following arrival curve descriptions:

TokenBucket, DualTokenBucket, Trace, and MMOnOff . Some

of those are better suited for use in specific back-ends than

others. In particular, it is not easy to generate reasonable

traffic in a Monte Carlo simulation from a pure token bucket



curve due to the fact that the start times do not have a direct

counterpart in the token bucket model. On the other side it

is difficult to abstract an NC arrival curve from a Markov-

modulated on/off process, since the token bucket peak rate

might be very high compared to the average rate arising from

the Markov-modulated on/off process, unless the parametrized

wait times are constant.

C. Performance Calculation Back-Ends

The proposed toolchain has the ability to address different

back-ends that in turn determine performance bounds. At the

time of writing, there exist the following back-ends: Network

simulation with OPNET, NC analysis using the DISCO net-

work analyzer [30], the rare event simulation as given in [6],

and the optimization based approach given in [11].

1) Network Simulation Back-End: Network simulation with

Monte Carlo methods is a well-accepted technique to estimate

performance bounds within a reasonable time, especially when

network topology and use case hardly allow a real setup. This

could be due to the network consisting of a vast number of

participating network nodes or due to the constraints that have

to be applied. In general, establishing a realistic testbed of the

scenario of interest might be too time-consuming and cost-

intensive.

We employ Discrete-Event Simulation based on the Monte-

Carlo method to simulate networks. In the Monte-Carlo

method, the experiment is carried out several times to derive

more meaningful results. Since simulation with computer

systems implies a deterministic calculation of the result, pro-

cesses usually depend on random number generators, that are

initialized with different random seeds.

There are popular network simulators that are based on

this approach, e.g., SSF, OMNeT++ and OPNET to name a

few. The suggested back-end is based on the OPNET network

simulator and uses External Model Access (EMA) to control

OPNET simulations from Matlab. The EMA architecture can

be used to create and simulate network scenarios. For this,

OPNET provides an interface via shared object/DLL to allow

access to the OPNET simulation runtime. Since computation

of several experiments requires high computation time, this

back-end is run in offline mode, which means, that Matlab

gets control back while the simulation is still running. We

provide methods to check, whether the back-end has already

finished and whether results are available from the back-end.

2) Network Calculus Analysis Back-End: NC is an analyt-

ical approach to determine worst case values for delay and

backlog. This approach is based on the work of Cruz [12],

[13] and was enhanced by Le Boudec who wrapped this early

approach into a mathematical framework based on the (min,+)-

algebra [14]. In the NC, we define traffic envelopes of flows

rather than handling the actual arrival and departure processes

known from queuing theory. The key operations in NC are

convolution and deconvolution as given by Definition 3.1 and

Definition 3.2:

Definition 3.1: MIN-PLUS CONVOLUTION [14].

( f ⊗g)(t) = inf
0≤s≤t

{ f (t − s)+g(s)}. (1)

Definition 3.2: MIN-PLUS DECONVOLUTION [14].

( f ⊘g)(t) = sup
u≥0

{ f (t +u)−g(u)}. (2)

The Min-Plus Convolution is primarily used for the concatena-

tion of servers, the Min-Plus Deconvolution is primarily used

for determining the output arrival curve of a forwarding server.

In order to determine worst case values for backlog and de-

lay, we require the definitions of Vertical Deviation (Definition

3.3) and Horizontal Deviation (Definition 3.4).

Definition 3.3: VERTICAL DEVIATION [14].

v( f ,g) = sup
t≥0

{ f (t)−g(t)} (3)

Definition 3.4: HORIZONTAL DEVIATION [14].

h( f ,g) = sup
t≥0

{inf{d ≥ 0 such that f (t)≤ g(t +d)}} (4)

The Vertical Deviation is used to determine worst case values

for the backlog, the Horizontal Deviation is used to determine

worst case values for the delay.

The suggested NC back-end uses the DISCO network

analyzer. With this toolbox, we obtain a valuable network

analyzer class which provides standard network algorithms as:

(a) Dijkstra’s shortest path algorithm, (b) an implementation

of the turn prohibition algorithm [31], and (c) a topology

converter that converts network graphs to server graphs. The

developers of the toolbox made a lot of progress in last years

in terms of tight NC bounds [23], [32], such that standard

tightening approaches as Pay Bursts Only Once (PBOO) and

Pay Multiplexing Only Once (PMOO) are supported by this

toolbox.

When addressing the end-to-end performance bounds in

switched Ethernet, an essential topic is the mapping of the

store-and-forward delay of switches, since fluid flow models

do not have a direct counterpart of variable-sized packets.

More precisely, we have the following options known from

standard NC literature (e.g., [14]). The alternatives discrete

burst (DB) and rate latency (RL) were already summarized in

[11].

• The packet is described as a DB that is already active

at time 0. A staircase or (σ ,ρ)-constrained arrival curve

can be used to model this traffic.

• A RL service curve of the form βC,lmax/C is applied with

C being the capacity of the discussed link and lmax being

the packet size of a maximum sized frame that is able to

delay the flow of interest.

• A packetizer (PKT) is introduced that acts as an addi-

tional delay element which releases the whole packet if

completely received (cf. [14]).



The PKT is also a concept of the early NC. However, in

order to safely apply PKT to an edge-by-edge analysis, having

shown more accuracy (cf. [23]), the PKT is usually realized

by a RL service curve, a service curve that delays flows by a

maximum sized frame. Unfortunately an additional delay of a

maximum sized frame at each server yields more pessimistic

bounds compared to the original packetizer developed for

the node-by-node analysis. An approach that captures this

inaccuracy is given by the mixed integer program (MIP) back-

end.

3) MIP Analysis Back-End: In order to determine the

exact worst case in switched Ethernet, the recently introduced

packetizer has to know the packetization sequence a priori.

Especially when links run at different wire speed, the presented

analytical methods cannot model the exact worst case. This

observation is similar to the pitfall of Pay Multiplexing Only

Once SFA (PMOO-SFA) as given in [32] and also outlined

in [33]. Due to the commutativity of the (min,+)-convolution,

the burstiness of the traffic is always paid for at the rate of

the slowest server.

Consider the following example: Three packets (size 125,

250 and 500 bytes) are transmitted over the two subsequent

servers S1 and S2, where S2 has a faster service rate than

server S1. Furthermore, we are interested in the worst case

latency of the 125 byte packet. The results of the cumulative

arrivals are given in Figure 4 and Figure 5.
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Fig. 4. 250 byte packet prior to
500 byte packet
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Fig. 5. 500 byte packet prior to
250 byte packet

We observe the following situation: The packet of interest

is of size 125 bytes and is delayed by one 500 byte packet

and one 250 byte packet. Depending on whether the 250

byte packet or the 500 byte packet is transmitted at the first

place, we observe different worst cases with the packetization

approach. Since any packet sequence is conceivable, the high-

est worst case latency of all sequences has to be taken into

account. Without having the information of the packetization

sequence yielding the exact worst case, an additional delay of

a maximum sized frame has to be assumed (RL approach).

The given MIP back-end is able to capture this situation

accurately and was introduced in [11]. The presented pack-

etized traffic model describes the worst case schedules in a

single MIP instance and thus benefits from the advantage of

both edge-by-edge analysis and packetized model, yet with

additional effort. The exhaustive enumeration of schedules is

similar to techniques known from model checking and allows

the calculation of worst case bounds. The basic idea is to

model the case that one packet is delayed by another packet

with a boolean (integer) variable. If this variable is true, i.e.,

one, the worst case delay is increased by the transmission

delay of the previous packet, otherwise it is increased by

zero. Compared to the techniques from NC, this model allows

better bounds in terms of tightness yet requiring additional

computational effort since we solve an NP-hard problem.

4) Rare Event Simulation Back-End: The technique of

performing a rare event simulation from token bucket NC

arrival curves was shown in [6]. Within this back-end, we

try to simulate the rare event that packets are delayed by all

other packets and use the technique of importance sampling.

In the pure network simulation back-end, the traffic generating

nodes have their start time set according to random number

generators. However, the method of how start times are chosen

is extremely important because worst case queuing situations

of token bucket shaped traffic are only provoked, if the offset to

each other is at the worst position. For arrival curves in token

bucket form, quite a few simulation runs are required to pro-

voke worse case queuing, since offsets are usually not aligned

in the most pessimistic way. In this back-end, we determine

pessimistic offsets according to the network topology and the

traversing traffic flows. When having these pessimistic offset,

we run a parametrized simulation that allows shifting the worst

observed latencies determined by the simulation towards the

exact worst case.

D. DIMTOOL Architecture

Figure 6 shows the architecture of the DIMTOOL. On the

right we see the tools based around the topology description. In

order to provide a convenient graphical user interface, we built

some import routines for the network editor Network Notepad

[34] as well as for an only internally used program. Within this

tool we can easily assemble cabin network configurations that

match with different airplane types and setups. The Topology

Generator is mainly used for research and advance develop-

ment in the field of the aircraft cabin and allows the simulation

of various cabin scenarios. This is of special interest when

new techniques shall be elaborated, such as new scheduling

algorithms in the switches or synchronization mechanisms.

The Configuration contains the actual bandwidth reservation,

VLAN rules or routing entries. The configuration can then be

distributed with standardized management protocols as Simple

Network Management Protocol (SNMP) and Web Based En-

terprise Management (WBEM). The Topology Description is

a system independent format based on XML that contains the

actual topology as well as the devices hosted in the network.

The Topology Description is exported to a CSV format that

contains both the topology and the flows through the system.

Currently, all mentioned export routines and transformations

are provided by a C++ class library based on the Ultimate++

framework [35] that showed good portability. The CSV-based

Topology and Flow Description is passed to the DIMTOOL that

creates reports from performance calculator back-ends. These

reports are either in diagram form or represented by text files

that are in turn required by certification processes.
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NetworkCalculation

+max(in aggregation:Aggregation): NetworkCalculation

+min(in aggregation:Aggregation): NetworkCalculation

+avg(in aggregation:Aggregation): NetworkCalculation

+median(in aggregation:Aggregation): NetworkCalculation

+optimizeTopo()

+optimizeFlows()

+use(in topo:Topology,in flows:Flows)

+use(filename:String)

+printDelay()

+printBacklog()

+printReport()

+printVersion()

+getFirstDelay(): CurveData

+getNextDelay(): CurveData

+getFirstBacklog(): CurveData

+getNextBacklog(): CurveData

+using(in method:Integer): NetworkCalculation

+of(in flows:Flows): NetworkCalculation

+run()

+method(in amethod:Integer): NetworkCalculation

+fifo(afifo:Integer): NetworkCalculation

+speed(aspeed:Double): NetworkCalculation

+proc(in aproc:Double): NetworkCalculation

+isFinished(): Boolean

+finalize()

Fig. 7. Class Network Calculation

The remainder of this section shows the available methods

of the DIMTOOL as given in the NetworkCalcution class

shown in Figure 7. These methods address the following

tasks: Computational Methods, Execution Methods, Finaliza-

tion Methods, Result Methods, Global Parametrization Meth-

ods and Optimization Methods.

Computational Methods: The expected parameter aggrega-

tion of the Computational Methods thereby defines how the

determined delay bounds will concretely be assembled, e.g.,

whether to identify the jitter, the delay difference versus varia-

tion (in case of multicast flows) or the sum. More precisely we

introduce the following methods: (a) min, (b) max, (c) avg, and

(d) median. The respective functions determines minimum,

maximum, average and median values for delay and backlog.

Execution Methods: The execution methods are used to con-

trol performance calculation, i.e., which back-end to choose,

which topology and cross traffic flows to use, which flows

to investigate. The run method actually triggers the back-

end and performs computation or simulation. We introduce

the following methods: (a) method use specifies topology and

flows to be used, (b) method of defines the addressed flows,

(c) method using chooses the used back-end, and finally (d)

method run, which triggers the actual computation/simulation.

Finalization Methods: Some back-ends provide instanta-

neous performance calculation as being provided by the NC

back-end, i.e., returning from the run method call implies that

NC results are available. The other back-ends currently use an

offline computation, since the computation is very intensive

compared to the NC back-end such that the calling Matlab

instance would be blocked. For the back-ends that run in

offline mode, we provide the finalization methods to check

whether the back-end has already finished so that results can

be read from the back-end. We provide the following methods:

(a) method isFinished returns true when simulation/analysis

is finished, otherwise isFinished returns false, and (b) method

finalize which finalizes the back-end. When finalize was called

on a finished back-end, the Result Methods can be executed

to read the results from the back-end.

Result Methods: The result methods are used to process

information as detected by the back-ends. These methods

can be called when isFinished from the previously stated

Finalization Methods returns 1. In order to process the results,

we provide print methods and get methods. Print methods

create textual representations of the results while the returned

objects of the get methods can be used for plotting in

Matlab. More precisely we introduce the following methods:

(a) method printDelay prints the delay report, (b) method

printBacklog prints the backlog report, (c) method printReport

prints both delay and backlog report, (d) methods getFirstDe-

lay/getNextDelay allows iteration over delay curves, and (e)

methods getFirstBacklog/getNextBacklog allows iteration over

backlog curves.

Global Parametrization Methods: The global parametriza-

tion methods are used to set parameterizable topology options

globally. This allows the central parametrization of the FIFO

assumption, parametrization of the link speed and setting



processing delay in intermediate switch nodes. We provide

the following methods: (a) method fifo sets FIFO processing

order globally, (b) method speed sets link speed globally, and

(c) method proc sets processing delay globally.

Optimization Methods: The optimization methods act as

entry point for implementing optimization algorithms for flows

and topology. These optimization algorithms are intended to

invoke the provided back-ends in order to optimize aspects of

topology and flows. In the current version, the Optimization

Methods optimizeTopo for topology optimization and optimize-

Flows for flow optimization are provided.

Matlab Functions: We embedded the given architecture

into Matlab and provide seamless integration through Matlab

interfaces. Currently the following functions are supported by

our framework:

• dimtool init — initializes DIMTOOL temporarily

• dimtool install — installs DIMTOOL permanently

• dimloadtf — loads topology and flow description

• dimnc — returns instance of class NetworkCalculation

• dimbar — plots bar graph of delay results

• dimbarbacklog — plots bar graph of backlog results

• dimplot — plots graph of delay results

• dimplotbacklog — plots graph of backlog results

• dimprinttofile — writes results to file

The entry point of all calculation or simulation runs is

an instance of NetworkCalculation, which is returned by

dimnc. The interface functions can be called directly on

this return value. The function dimloadtf loads the topology

and flow description of the form described in Section III-B.

This function takes an optional parameter to add standard

values for the interframe gap and preamble seen in switched

Ethernet networks. When the NetworkCalculation class has

been parameterized, the simulation or analysis can be triggered

by calling nc.run(). If nc.isFinished() returns true, the results

are available and can be can be processed further by dimbar,

dimplot and dimprinttofile methods.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the usage of the DIMTOOL

in the context of industrial real-time systems. In particular,

we address the performance bounds of an Ethernet-based

aeronautic cabin network in Section IV-A and Section IV-B.

A. Cabin Server Intra-Communication

This section addresses the performance bounds as observed

in the intra-server communication scenario. The communica-

tion inside the Cabin Server (CS) is also mandatory when

regarding higher safety levels. Besides scheduling and dis-

tribution of processes in ARINC 653 [36] partitions, we

are interested in hard performance bounds of the inter CPU

communication. These worst case delays can then be provided

to real time analysis tools like ChronVal [7] and SymTA/S

[8] in order to optimize the scheduling and distribution of

processes.

Figure 8 shows a discussed architecture of the intra-server

communication. The cabin server consists of two dual-core
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CPUs being interconnected by Ethernet. The following func-

tions and use cases are covered by the cabin server: (a) audio

announcements like boarding music, safety briefing, or audio

announcements, (b) cabin illumination with different light

scenarios, (c) reading lights, (d) the entertainment system that

provides video, Internet and games as well as (e) the cabin

control. Each of those use cases has a direct counterpart in

the CS: (a) is covered by process Prerecorded Audio (PRAM)

and Passenger Address (PA), (b) is covered by process Cabin

Illumination (CIL), (c) is covered by process Reading Lights

(RL), (d) is covered by process In-Flight-Entertainment (IFE),

and (e) is covered by process Flight Attendant Panel (FAP).

Table III briefly lists the expected traffic flows.

Each of these functions is realized as a partition in the

ARINC 653 compliant operating system, which run on CPU

0 to CPU 2. The sequencer on CPU 3 controls and manages

the communication to the end devices that are connected by

Line 1 to Line n. The sequencing unit acts as a gateway to the

cabin network, such that the communication between partition

and end devices will pass a protocol converter.

Figure 9 outlines the result of our worst case analysis

toolchain. We determined the following bounds for the end-

to-end delay: Non-FIFO NC bound, FIFO NC bound, and the

bound determined by network simulation.We observe that the

NC bounds are relatively tight compared to the worst case

observed in the network simulation. The reason for that is

that the number of traversed servers has direct impact on the

tightness of the achieved bounds [37], [38]. In this scenario,
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Flow BW Max Priority

[bytes/ms] [bytes]

PRAM → Seq 86.40 864 5

PA → Seq 1.60 64 7

CIL → Seq 1.28 64 7

RL → Seq 0.64 64 7

IFE → Seq 3125.00 1522 0

FAP → Seq 125.00 1522 7

Seq → PA 1.60 64 7

TABLE III
PARAMETERS IN INTRA-SERVER COMMUNICATION

tf = dimloadtf(’intraserver.txt’, 0)

nc = dimnc

agg = Factory.getSumAggregation

nc.use(tf.getTopo, tf.getFlows)

nc.max(agg).of(tf.getFlows).using(2).

method(2).fifo(1).proc(0.012)

nc.run

Listing 2. NC Analysis with DIMTOOL, Intra-Server, FIFO

only one server is traversed by the traffic flows.

The results were obtained by executing the code shown in

Listing 2 using our DIMTOOL platform: The code invokes

Network Calculus Analysis on the Intra-Server communication

network. The Matlab calls are forwarded to the wrappers

which in turn invoke the chosen back-end, in this case the

DISCO network analyzer using the Separated Flow Analysis

(SFA) algorithm [30]. We set the processing delay used by

DISCO to 12µs and to calculate the FIFO bound.

The remaining curve of Figure 9, i.e., non-FIFO bound

and simulation, is determined by Matlab calls similar to that

mentioned above. The parameter of the method using decides

which back-end to choose.

B. Aircraft Cabin Network

In this use case we study the worst case delays of a switched

version of the Cabin Management System (CMS) using DIM-

TOOL. The employed topology is a step towards a commercial-

of-the-shelf (COTS)-enabled CMS and was already discussed

in [39], where first simulation results were introduced. The

basic topology setup is shown in Figure 10. Up to 22 lines

are foreseen in a typical airplane with a maximum depth of 15

Ethernet hops. In this example, 105 high priority flows traverse

one line of the simplified cabin network with 13 daisy-chained

Ethernet switches. One of those flows acts as a multicast flow

from the cabin server to the end devices. The others flow from

the end devices back to the server. In fact, we connected 7

Service Units (SUs) and 1 handset to each switch employing

the traffic patterns shown in Table IV.

Figure 11 shows the results for the back-ends network

simulation, WCS, and NC analysis. The delays from the WCS

are shifted towards the NC bounds by about 10% compared

to the standard network simulation. Furthermore, the FIFO
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bound of the NC analysis does not hold—at least at the first

switch. In this scenario we do need the non-FIFO bound to be

absolutely sure that delays greater than the analytical bound

cannot be observed. In addition, we observe that the worst

case bounds from the NC analysis are getting worse with the

number of traversed switches. The results confirm the results

from previous work such as [37], [38], which means, that

we are lacking tightness when traffic flows traverse several

servers.

The results were obtained using the proposed DIMTOOL

platform. Listing 3 shows the NC analysis of the non-FIFO

bound. The remaining curves of Figure 11, i.e., SIM, WCS

and FIFO bound, are determined by Matlab calls similar to that

mentioned above. The parameter of the method using specifies

the chosen back-end.

Flow BW Max Priority

[bytes/ms] [bytes]

Srv → EndDevices 3456.0 108 7

SU → Srv 25.5 108 7

Handset → Srv 204.0 64 7

Bulk Traffic 1000.0 1518 0

TABLE IV
PARAMETERS IN AIRCRAFT CABIN
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tf = dimloadtf(’cms.txt’, 0)

nc = dimnc

agg = Factory.getSumAggregation

nc.use(tf.getTopo, tf.getFlows)

nc.max(agg).of(tf.getFlows).using(2).

method(1).fifo(0).proc(0.003)

nc.run

Listing 3. NC Analysis, Aircraft Cabin, Non-FIFO

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel platform to determine per-

formance bounds in computer networks. Compared to previous

tools, we provide several performance estimation approaches

within a single toolbox. By this we can provide comparable

and transparent performance bounds, which in turn helps to

find flaws in performance modeling. In the experiments, we

investigated an Ethernet-based topology of the aircraft cabin

that covers safety-relevant functions, and verified, that the

FIFO bound as determined by the NC analysis does not

hold. For this we used a WCS, which is — to the best of

our knowledge — unique for the platform DIMTOOL. This

approach helped us to get a realistic view on worse cases as

they are likely to occur in the switched aircraft cabin. For the

intra-server communication, we determined dependable worst

case bounds, that are provided to process scheduling tools such

as chronVAL or SymTA/S. In the next steps we will address

further scenarios in the field of aeronautic networks, but also

real-world scenarios considering arbitrary computer networks.
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