
Algorithmic approach to series expansions around
transient Markov chains with applications to paired

queuing systems
Koen De Turck, Eline De Cuypere, Sabine Wittevrongel, and Dieter Fiems
Department of Telecommunications and Information Processing, Ghent University

St-Pietersnieuwstraat 41, 9000 Gent, Belgium
Email: {kdeturck,emdcuype,sw,df}@telin.UGent.be

Abstract—We propose an efficient numerical scheme for the
evaluation of large-scale Markov chains, under the condition that
their generator matrix reduces to a triangular matrix when a
certain rate is sent to zero. A numerical algorithm is presented
which calculates the first N coefficients of the MacLaurin series
expansion of the steady-state probability vector with minimal
overhead.

We apply this numerical approach to paired queuing systems,
which have a.o. applications in kitting processes in assembly
systems. Pairing means that departures from the different buffers
are synchronised and that service is interrupted if any of the
buffers is empty. We also show a decoupling result that allows
for closed-form expressions for lower-order expansions. Finally
we illustrate our approach by some numerical examples.

I. INTRODUCTION

In this paper, we consider the following problem. What is
the steady-state solution of a given a family of (continuous-
time) Markov processes {Xε(t)} over a finite state space X
of size M , depending on a parameter ε in such a way that the
corresponding generator matrix can be written as follows:

Qε = Q(0) + εQ(1),

with which we associate the corresponding transition proba-
bility matrix Pε(t) in the usual way. As is well-known, solving
the invariance equation of this Markov chain

πεQε = 0,

leads to the stationary distribution πε of the Markov chain,
provided it exists, from which subsequently many performance
characteristics can be derived. Numerical computation of the
steady-state vector has an asymptotic time complexity of
O(M3) which means that models suffering from state-space
explosion generally stay out of reach of a numerical analysis.

In this paper, we investigate cases for which numerically
efficient computation of πε is possible through a Taylor
series expansion around ε = 0 (also known as a MacLaurin
expansion in ε). In order for such an expansion to make sense,
the vector πε is required to be analytic in a neighbourhood of
ε = 0. For finite state spaces (in contrast to infinite ones, see
e.g. [2], [9]), this is fairly easy to establish. Finding the steady-
state distribution is in this case essentially a finite-dimensional
eigenproblem. If a matrix depends analytically on a parame-
ter, then the corresponding eigenvalues and eigenvectors are

also analytic in case of null-space perturbation [1]. Another
possible path towards proving analyticity is via V -uniform
ergodicity of the unperturbed Markov process with generator
Q(0) (see a.o. [2]), which is equivalent to the existence of
a spectral gap (the distance between eigenvalue 0 of the
generator matrix Q(0) and the eigenvalue that is its nearest
neighbour). For finite Markov chains, there is a spectral gap
as long as there is only one recurrent class. Let π(i), i ∈ N
denote the subsequent terms in the series expansion of πε, i.e.

πε =

∞∑
i=0

εiπ(i).

Provided that Q(0) is a generator matrix with one recurrent
class (this condition is also denoted as ‘regular perturbation’,
as opposed to ‘singular perturbation’), we can determine the
first term π(0) by means of the equation:

π(0)Q(0) = 0.

Every subsequent term π(n) can be found by identifying equal
powers of ε in the invariance equation, which leads to the
following recursive equation for consecutive terms of πε:

π(n+1)Q(0) = −π(n)Q(1). (1)

As we now have to solve a linear system of equations for
each term π(i) in the expansion, plus an additional vector-
matrix product, it appears that we have not gained very
much. However, if we impose the extra condition that Q(0)

is triangular for some ordering of the state space (say upper
triangular without loss of generality), then the resulting linear
systems of equations can be solved by backward substitutions,
which considerably reduces the computational complexity: as
a worst case, its computation time is O(M2), but in practice
it often occurs that Q(0) has a sparse structure, thus reducing
the time complexity to close to linear. Of course, matrix Q(1)

must in this case also have a sparse structure, in order to have
the same favourable asymptotic time complexity for an entire
iteration.

Note that the power iteration method constitutes an alter-
native to the method described in this paper for large and
sparse Markov models, with similarly low computation cost
per iteration. Advantages of our approach include the fact that
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we obtain an expansion (i.e. an entire curve) instead of a single
point.

We show that in very diverse situations (see Sec. II for
a non-exhaustive list of examples), a decomposition into a
suitable Q(0) and Q(1) with a favourable structure (sparse and
triangular for Q(0) and sparse for Q(1)) is possible.

Remark 1: A triangular structure in ε = 0, implies that
the chain is transient and that there is only one final state.
We expect that the conditions of this paper can be relaxed
somewhat to for example a block triangular structure for Q(0),
and also more than one recurrent class for ε = 0. This brings
it into the realm of singular perturbations, whose additional
complexities are expected to be manageable if the number of
recurrent classes remains small.
There exists a multitude of work on series expansions of
stochastic models. The first work seems to be by Schweitzer in
1968 [4]. For an overview, we refer the reader to [6] and [7].
Ever since, it has been applied in many forms and flavours,
and is known under various names such as perturbations,
light-traffic expansions, Taylor-series expansions and so on.
This technique is in principle not confined to the Markov
framework (see e.g. [8], which utilises Palm theory), although
many interesting examples indeed fall within this framework.

There are roughly three methods to establish series ex-
pansions of stochastic models. The first makes use of the
direct derivation sketched above and forms the basis of the
computational method that we propose in this paper and will
evaluate in subsection III.

The second makes use of sample-path arguments. Consider
the case that ε denotes a particular event rate. For example,
for light-traffic approximations, ε denotes the arrival rate; in
the worked-out example of section 3, the parameter denotes
the service rate, and hence constitutes a ‘low-service rate’
approximation. An important result for this strand of research
is what we can call the n events rule, which states that for
an nth order expansion, only sample paths with n or fewer
of such events must be considered. This can be intuited from
the non-rigorous reasoning that a sample path containing n
such events has a probability of order εn. However due to the
fact that the number of sample paths is uncountable and thus
the probability of every individual path is zero, making this
rigorous is non-trivial. For series expansions revolving around
a Poisson process with a small rate, to which the examples
in this work essentially belong, this was made rigorous by
Reiman and Simon [5]. Important work extending this to a
Palm calculus context was performed in [8]. We will show
the power of this n-events rule in the decoupling result of
Sec. III-D, which we regard as the second contribution of
this work. Using this decoupling result, we get lower order
expansions for various performance measures of the paired
queuing system practically for free. This sometimes leads to
good approximations in itself, and in other cases leads to
substantial qualitative insight into the system.

The third approach to series expansions is via the following
updating formula, which has been established in general

Markov settings, see eg. [9], [10]:

πε = π0

∞∑
k=0

[εQ(1)D]k.

where D denotes the deviation matrix of Q(0). In this case,
a successful application revolves around finding this deviation
matrix D = [dij ], i, j ∈ X , whose elements are defined as
follows:

dij =

∫ ∞
0

([P0(t)]ij − πj)dt. (2)

As the matrix D is closely related to Poisson’s equation
for Markov chains, this technique is sometimes also denoted
as such [3]. Note that the matrix D pertains strictly to the
unperturbed Markov chain, so that in this updating formula
we see another justification for the n events rule: Indeed, as
the events are in fact nothing else than the transitions recorded
in Q(1), transitions which do not occur in Q(0) and hence nor
in D, it follows that in the vector π(n) = π(0)(Q(1)D)n, only
those states that can be reached with n events (or less) can be
non-zero. To the best of our knowledge, a formal identification
of the sample-path method and the updating formula has not
yet been attempted.

The structure of the rest of this paper is as follows. In
Sec. II, we show a number of examples drawn from diverse
applications for which the methodology of this paper can be
utilized, and in Sec. III, we focus on the particular example
of paired queues, for which we detail the resulting equations,
show numerical results and establish a decoupling result which
leads to closed form expressions for expansions up to a certain
order.

II. EXAMPLES

The numerical perturbation technique at hand can be applied
in various situations. Some examples are given below.

Example 1: Paired queues: Consider a system of K finite
capacity queues, customers arriving in accordance with a
Poisson process in each of the queues. Both arrival rate and
capacity may be chosen freely for every queue. Service is
paired, meaning that service only starts if none of the queues
is empty. Upon service completion, a customer from each
queue departs. Assume that the service times are exponentially
distributed with mean 1/µ. The state of the paired queuing
system is then described by a vector whose ith element denotes
the queue content of the ith queue. Lexicographically ordering
the state vectors implies that the state only decreases when
there is a departure. Hence, the perturbation technique applies
for µ. This example is investigated in detail in section III.

Example 2: Weighted fair queuing: Again, a system with
K finite capacity queues is considered. Customers arrive at
the different queues in accordance with Poisson processes; the
arrival rates at the different queues may depend on the state
of the queuing system such that one can account for routing
policies like join the shortest queue. The service rate equals
µ and is divided over the different queues, according to some
policy which depends on the queue content at these queues.



As for the preceding example, the state of this queuing system
is described by a vector whose ith element denotes the queue
content of the ith queue. For the perturbation technique in
µ, the lexicographical order can again be used. This ensures
that the state of the queuing system always decreases upon
departure of a customer, and does not decrease upon arrivals.
The generator is sparse, as for every state, at most 2K
transitions are possible (one arrival and one departure from
every queue).

Example 3: Controlled branching with migration: Consider
a continuous-time branching process in which individuals enter
the system in accordance with a Poisson process, and remain
there for an exponentially distributed amount of time with
mean 1/µ. During their lifetime, each individual produces
offspring with rate α(n), n being the number of individuals
in the system. Any offspring of an individual remains for
an exponentially distributed amount of time with mean 1/µ
as well. There are no assumptions on the rates α(n), apart
from α(n) = 0 for n exceeding some fixed L denoting
the maximum number of individuals. Assuming the natural
ordering of the state space {0, 1, . . . , L}, the state of the
system decreases upon departures of individuals and increases
for all other events.

Example 4: Epidemic model: Consider the following SIR
(susceptible, infected, recovered) branching model. We have
a location where at most L individuals can be present. In-
dividuals arrive in accordance with a Poisson process and
may be susceptible, infected or recovered. Individuals remain
at the location for an exponentially distributed amount of
time (with mean 1/µ) and then leave. During their time at
the location, susceptible individuals may become infected and
then possibly recover. The infection rate and recovery rate of
each individual depend on the number of infected individuals
present. The state of this epidemic model is described by
the numbers of susceptible s, infected i and recovered r
individuals. Let the state be represented by a vector (r, i, s),
then the lexicographical order can be used if one applies
the perturbation technique in µ. In this way, a departure
always yields a decrease of the state, whereas any other event
(arrivals, infections: (r, i, s) → (r, i + 1, s − 1), recovery:
(r, i, s)→ (r + 1, i− 1, s)) yields an increase.

Example 5: Peer-to-peer: Consider the following peer-to-
peer scenario, inspired by [11]. A swarm of peers (denoted as
swarm in this context) wishes to spread a file consisting of
M parts. The maximal number of peers in a swarm set set to
be L. New users arrive according to a Poisson process with
rate λ. According to a Poisson process with rate µ, two peers
are chosen in a uniformly random way, which serve as source
and destination respectively. If the source peer possesses a part
of the file which the destination peer has not, the destination
peer acquires (exactly one) such part. In order to ensure that
every peer eventually gets a complete copy of the file, we
assume the existence of a seed, which by definition holds all
parts of the file and can serve as a source node. A peer leaves
the system upon acquiring all parts. Each peer can thus be in
2L−1 different states, depending of which parts it has already

acquired. A complete state description of the system consists
of a tally of how many peers are in each state. If we impose
an ordering of the state space that counts the number of peers
present in the system, then an expansion around λ = 0 works.

III. A PAIRED QUEUING SYSTEM

The numerical approach at hand is best illustrated by a
practical example. We now study Example 1 — the paired
queuing system — in detail. We first recall the modelling
assumptions and introduce the necessary notation.

We consider a system of K queues, each queue having
finite. Let Ci denote the capacity of the ith queue. Moreover,
for each of the queues, customers arrive in accordance with
an independent Poisson process, let λi > 0 denote the arrival
rate in queue i. Departures from the different queues are paired
which means that there are simultaneous departures from all
queues with rate µ as long as all queues are non-empty. If one
of the queues is empty, there are no departures.

The queuing system at hand is motivated by kitting pro-
cesses in assembly systems. A kitting process collects the
necessary parts for a given end product in a container prior
to assembly. While conceptually simple, kitting comes with
many advantages. Kitting clearly mitigates storage space re-
quirements at the assembly station since no part inventories
need to be kept there. Moreover, parts are placed in proper
positions in the container such that assembly time reductions
can be realized [13], [17]. A kitting process obviously relates
to a paired queuing system: the inventories of the different
parts that go into the kit correspond to the different buffers,
the kitting time corresponds to the service time and kitting is
blocked if one or more parts are missing.

Paired queuing systems have been studied by various
authors. Harrison studies stability of paired queuing under
very general assumptions: K ≥ 2 infinite-capacity buffers,
generally distributed interarrival times at the different buffers
and generally distributed service times. He shows that it is
necessary to impose a restriction on the size of the buffer to
ensure stability of the queuing system [14]. In particular, the
distribution of the vector of waiting times (in the different
queues) of the components of a paired customer is shown to
be defective. The inherent instability was also demonstrated
in [16] where the excess — the difference between the queue
sizes — is studied in the two-queue case. Assuming finite
capacity buffers, Hopp and Simon developed a model for
a two-buffer kitting process with exponentially distributed
processing times for kits and Poisson arrivals [15]. The ex-
ponential service times and Poisson arrival assumptions were
later relaxed in [19] and [12], respectively. For paired queuing
systems with more than two finite buffers, the size of the state-
space of the associated Markov chain grows quickly, even
when assuming Poisson arrivals and exponential service times.
Hence, most authors focus on approximations; a recent account
on approximations of multi-buffer paired queuing systems can
be found in [18].



A. Balance equations

As arrivals in the different queues are modelled by Poisson
processes and the service time distribution is exponential, the
state of the system is described by a vector i ∈ C whose kth
element corresponds to the queue size of the kth buffer. Here
C = C1×. . .×CK denotes the state space of this Markov chain,
with Ck = {0, 1, . . . , Ck} being the set of possible levels of
queue k. Let π(i) be the steady-state probability vector of
this chain, i ∈ C. These steady-state probabilities satisfy the
following set of balance equations,

π(i1, i2, . . . , iK)

(
µ

K∏
`=1

1{i`>0} +

K∑
`=1

1{i`<C`}λ`

)
=

π(i1 + 1, i2 + 1, . . . , iK + 1)µ

K∏
`=1

1{i`<C`}

+

K∑
`=1

π(i1, . . . , i`−1, i` − 1, i`+1, . . . , iK)λ`1{i`>0} , (3)

for all i = (i1, i2, . . . , iK) ∈ C and where 1{x} is the indicator
function which equals one if x is true and equals zero other-
wise. While the former system of equations is easily solved if
there are only a few queues with low capacity, the state space
explodes for moderate number of queues and reasonable queue
capacities and a direct solution is computationally infeasible.

B. Perturbation

We now apply the numerical approach introduced above.
First, note that the Markov chain for µ = 0 only has one
ergodic class. Indeed, for µ = 0, all states are transient but
the state (C1, C2, . . . , CK) as in absence of service, all queues
will eventually fill up completely. Hence, a series expansion is
justified; see Section 1. Now, let πn(i) be the nth component
in the expansion,

π(i) =

∞∑
n=0

πn(i)µ
n .

Substituting the former expression in the balance equations
yields,

∞∑
n=0

πn(i1, i2, . . . , iK)µn

(
µ

K∏
`=1

1{i`>0} +

K∑
`=1

1{i`<C`}λ`

)
=

∞∑
n=0

πn(i1 + 1, i2 + 1, . . . , iK + 1)µn+1
K∏
`=1

1{i`<C`}

+

∞∑
n=0

K∑
`=1

πn(i1, . . . , i`−1, i`−1, i`+1, . . . , iK)λ`µ
n1{i`>0} .

(4)

For i ∈ C∗ = C \ {[C1, C2, . . . , CK ]}, comparing the terms in
µ0 on both sides of the former equation yields,

π0(i1, i2, . . . , iK) = 0 , (5)

whereas comparing the terms in µn for n > 0 gives,

πn(i1, i2, . . . , iK) =
1∑K

`=1 1{i`<C`}λ`
×

(
1{n>0}πn−1(i1 + 1, i2 + 1, . . . , iK + 1)

K∏
`=1

1{i`<C`}

+

K∑
`=1

πn(i1, . . . , i`−1, i` − 1, i`+1, . . . , iK)λ`1{i`>0}

− 1{n>0}πn−1(i1, i2, . . . , iK)

K∏
`=1

1{i`>0}

)
, (6)

For i = [C1, C2, . . . , CK ], such a comparison does not yield
an expression for πn(i). To determine the remaining unknown,
we invoke the normalisation condition:∑

i∈C

π0(i) = 1 ,
∑
i∈C

πn(i) = 0 .

Solving for πn([C1, C2, . . . , CK ]) then yields,

π0([C1, C2, . . . , CK ]) = 1 ,

πn([C1, C2, . . . , CK ]) = −
∑
i∈C∗

πn(i) .

Once the series expansions of the steady state distribution is
obtained, the expansion of various performance measures di-
rectly follows. Let random variable x be distributed according
to distribution π, then for a performance measure

J = E[f(x)] =
∑
i∈C

f(i)π(i)

we have,

J =

∞∑
n=0

Jnµ
n , Jn =

∑
i∈C

f(i)πn(i) . (7)

As such, any term Jn in the expansion of a performance
measure J can be calculated from the corresponding vector
πn of the expansion of the steady-state vector. Performance
measures of interest include amongst others the `th order
moment of the queue content of the kth queue (f(i) = i`k),
the blocking probability (f(i) = 1 −

∏K
j=1 1{ij>0}) and the

throughput (f(i) = µ
∏K
j=1 1{ij>0}).

C. Computational complexity

From (6), calculation of πn(i) takes at most K+2 additions
and one division (assuming the rate sums are known). Hence,
the computational complexity of calculating πn is O(KM),
with M = |C| the size of the state space. Having the same
complexity for every additional term in the expansion, calcu-
lating the first N coefficients then has complexity O(KMN).

As the size of the state space is very large, limited memory
consumption is equally important. To limit memory consump-
tion to the size of storing only one steady-state vector one
can proceed as follows. Assuming one is mainly interested in
the expansion of a number of performance measures, note that
once the nth term of the expansion of the steady state vector



is determined, the corresponding terms in the expansions of
various performance measures can be determined as well;
see (7). Hence, there is no need to keep track of previous
terms of the expansion of steady-state probabilities unless
they are required for further calculations. From (6) one sees
that πn(i) is expressed in terms of πn−1(j), with j larger
then i (lexicographically). This means that the coefficients of
the vector πn−1 can be overwritten progressively during the
calculation of πn and only memory for one vector of size M
is needed.

D. Decoupling result

While scrutinising numerical results of the algorithm, we
noticed a peculiar pattern, which we will explain and establish
in the following. To this end, we first derive the series
expansion of the mean queue content of a M/M/1/C queue
with arrival rate λ and departure rate µ, for small µ. As
almost anything about this queuing system can be derived in
closed-form, the mean queue content not being an exception,
this derivation is rather straightforward. Indeed, recall that the
mean buffer content Q is equal to [20]:

Q =
ρ

1− ρ
− (C + 1)ρC+1

1− ρC+1
,

where ρ = λ/µ. As we are interested in small µ, we introduce
r = ρ−1 = µ/λ and write in powers of r:

Q = − 1

1− r
+

C + 1

1− rC+1

= −
∞∑
k=0

rk + (C + 1) +
∑
n=0

(C + 1)r(C+1)n. (8)

This leads to repeating coefficients in the series expansion in
r: C,−1,−1, · · · ,−1, C,−1, · · · .

We noticed this exact series expansion for the first few
terms of the mean queue content of any queue in a paired
queuing system. This can be explained as follows. Assume
without loss of generality that C1 ≤ C2 ≤ · · · ≤ CK and
suppose we are interested in the mean queue content of the
ith queue. For series expansions up to µn, with n < C1, we
find the same series expansion as for the single M/M/1/Ci
queue with arrival rate λi and service rate µ. This is because
of the n events rule: the nth order coefficient is determined by
sample paths in which n of fewer departures occur. This means
that the smallest queue never gets empty (hence no queue
gets empty) and thus the ith queue considered in isolation
is indistinguishable from said M/M/1/Ci queue. It is possible
to take this argument a bit further: for a series expansion of
the mean content of the ith queue up to order n, we can
consider an adapted paired queuing system that has a size that
is certainly not larger than the original system and includes:
all queues j for which Cj ≤ n plus the ith queue itself, and
compute the series expansion for this adapted system. Hence,
for the smallest queue, the expansion up to the order C2 follow
the pattern of Eq. (8).
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Fig. 1. Mean queue content for a symmetric paired queuing system.
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Fig. 2. Blocking probability for a symmetric paired queuing system.

This result is not limited to just the mean queue content, but
holds for any performance measure that can be derived from
the marginal distribution of a single queue.

E. Numerical results

To illustrate our numerical approach, we now assess its ac-
curacy by means of some numerical examples. First, consider a
system with K = 5 paired queues, each queue having capacity
C = 10. Moreover, the arrival intensity at each queue is equal
to λ = 1. Hence, the paired queuing system is symmetric and
performance measures are equal for all queues. Figures 1 and
2 depict the mean queue content and the blocking probability
in a queue versus the service rate µ, respectively. For both
figures, series expansions of various orders are depicted as
indicated (N = 1, 2, 5 for figure 1 and N = 10, 11, 12
for figure 2), as well as simulation results which allow for
assessing the accuracy of the series expansions. As expected,
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Fig. 3. Mean of the queue content of an asymmetric paired queuing system.
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Fig. 4. Variance of the queue content of an asymmetric paired queuing
system.

the mean queue content decreases and the blocking probability
increases as the service rate µ increases. Moreover, for µ = 0,
the queues are completely filled as there is no service. From
figure 1, it is observed that the approximation method at hand
is accurate for low orders of the expansion (N = 5) whereas
more terms are needed to accurately determine the blocking
probability (N = 12); see figure 2. As the computation time
of the series expansion is linear in the number of terms in the
expansion, accurately assessing the blocking probability takes
more than twice the computation time of assessing the mean
queue content.

Figure 3 depicts the mean of the queue content of the first
and second queue out of 5 paired queues, whereas figure
4 depicts the corresponding variances. For both figures, the
expansion of order N = 20 is compared with simulation
results. The capacity equals 10 for all queues, and the arrival

C \ N 5 10 20 50 100
10 0.340 0.376 0.415 0.534 0.735
20 0.796 1.237 2.144 4.678 8.960
30 3.783 6.842 12.984 32.856 64.660
40 14.640 30.422 53.202 128.375 257.236

TABLE I
COMPUTATION TIME IN SECONDS.

intensity in all but the first queue equals λi = 1, i = 2, . . . , 5.
The arrival rate in the first queue is lowered to λ1 = 0.8.
In comparison with the symmetric paired queuing system of
figure 1, the mean queue content increases for the second
queue. This does not come as a surprise. Decreasing the arrival
rate in the first queue implies that this queue is empty more
often, thereby blocking service in the other queues. Finally,
note that the variance increases for increasing µ, µ = 0
corresponds to the case that the queue content deterministically
equals the queue capacity for all queues, hence the variance
is zero.

Next, as an indication for the evaluation speed or our
approach, table I shows the computation time for calculating
the first N terms in a paired queuing system with 5 queues
of capacity C as indicated. The algorithm is implemented in
ANSI C, compiled with gcc 4.3 with flag ’-O2’ and run on an
Intel Core i7-620M (3.33GHz) processor.

Finally, we show what can be obtained by merely using
the decoupling result of section III-D (hence without any
computational cost at all). In figure 5, the mean number of
items of the queue with capacity C1 = 5 of a 5 paired
queueing system versus the service rate is depicted. We notice
an excellent correspondence with the simulation results up
to µ = 0.3 for a 5 paired queue with capacity Ci = 5,
i = 1, . . . , 5 and up to µ = 0.5 for a 5 paired queue with
capacity C1 = 5 and Ci = 10, i = 2, . . . , 5. This is partially
due to the fact that we can use the expansion up to order 10 in
the asymmetric case instead of up to 5 in the symmetric case
such that a more accurate expansion is found to approximate
the M/M/1/C1 queue.
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