
Analysis of TTL-based Cache Networks

N. Choungmo Fofack∗†

∗University of Nice Sophia Antipolis,

and †Inria Sophia antipolis

2004 Route des Lucioles BP 93,

06902 Sophia Antipolis Cedex, France

nicaise.choungmo fofack@inria.fr

Philippe Nain†

Inria Sophia Antipolis

philippe.nain@inria.fr

Giovanni Neglia†

Inria Sophia Antipolis

giovanni.neglia@inria.fr

Don Towsley

Univ. Massachusetts at Amherst

towsley@cs.umass.edu

Abstract—Many researchers have been working on the per-
formance analysis of caching in Information-Centric Networks
(ICNs) under various replacement policies like Least Recently
Used (LRU), FIFO or Random (RND). However, no exact results
are provided, and many approximate models do not scale even
for the simple network of two caches connected in tandem. In
this paper, we introduce a Time-To-Live based policy (TTL),
that assigns a timer to each content stored in the cache and
redraws the timer each time the content is requested (at each
hit/miss). We show that our TTL policy is more general than
LRU, FIFO or RND, since it is able to mimic their behavior
under an appropriate choice of its parameters. Moreover, the
analysis of networks of TTL-based caches appears simpler not
only under the Independent Reference Model (IRM, on which
many existing results rely) but also with the Renewal Model
for requests. In particular, we determine exact formulas for the
performance metrics of interest for a linear network and a tree
network with one root cache and N leaf caches. For more general
networks, we propose an approximate solution with the relative
errors smaller than 10

−3 and 10
−2 for exponentially distributed

and constant TTLs respectively.

I. INTRODUCTION

Caches are widely used in networks and distributed systems

for improving performance. They are integral components of

the Web [5], DNS [17], and Content Distribution Networks

(CDNs) [25]. More recently there has been a growing em-

phasis on content networks (i.e. CCNs) where content or data

is centric and host-to-content interaction is the common case

[24]. Many of these systems give rise to hierarchical (tree)

cache topologies and to even more general irregular topologies.

The design, configuration, and analysis of these cache systems

pose significant challenges. An abundant literature exists on

the performance (e.g. hit probability, search cost) of a single

cache running the LRU replacement policy or, its companion,

the Move-to-Front (MTF) policy (see [3], [18], [11], [2], [1],

[10], [8], [12], [13] for i.i.d. requests and [7], [15], [14] for

correlated requests). With few exceptions, exact models of

even single caches are computationally intractable, resulting in

the reliance on approximations [8], [13]. Networks of caches

are significantly more difficult to analyze and no exact solution

has been obtained so far for even the simple configuration

of two LRU caches in series. A few approximations have

been proposed, instead, for a simple two-level LRU cache

network [5] and a general LRU network [23]. However, their

inaccuracies can be significant as reported in [23] where the

relative error reaches 16%.

In this paper, we focus on a class of caches referred to

as Time-To-Live (TTL) caches. When an uncached data is

brought back into the cache due to a cache miss, a local TTL is

set. The TTL value can be different for different data, but also

for the same data at different caches1. All requests to that data

before the expiration of the TTL are successful (cache hit); the

first request for that data to arrive after the TTL expiration will

yield a cache miss. In that case, the cache may forward the

request to a higher-level cache, if any, or to the server. When

located, the data is routed on the reverse-path and a copy is

placed in each cache along the path. We strongly support the

idea that a TTL policy can be an interesting alternative to more

popular schemes like LRU or FIFO for two reasons. First, a

TTL policy is more configurable and in particular can mimic

the behavior of other replacement policies for an opportune

choice of its parameters (the timeout values, see Section III-B).

Second, networks of TTL caches appear to be simpler to study

analytically, while networks of LRU or FIFO caches have

defeated until now modeling attempts. As we shall show, our

TTL policy is general enough and fully configurable, and it

appears to be a suitable unified framework for the performance

analysis of heterogeneous caching networks where caches may

run under different replacement policies.

We develop in particular a set of building blocks for the

performance evaluation of hierarchical TTL cache networks

with general topologies and where TTLs are set with every

request. These blocks allow one to model exogenous requests

at different caches as independent renewal processes and

to allow for TTL duration to be described by an arbitrary

distribution as long as they are independent of each other.

The building blocks consist of:

• a renewal theoretic model of a single content TTL cache

when fed by a renewal request stream,

• a renewal process approximation of the superposition of

independent renewal processes.

The first block forms the basis for calculating cache metrics

such as miss and hit probabilities/rates but also for charac-

terizing the output sequence of requests (the miss process) of

1This is then different from the TTLs in DNS system where the TTL for a
given data is in general set to a common value determined by the authoritative
name server.
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a cache, while the second block is used to characterize the

resulting process of the superposition of exogenous requests

and those resulting from a miss process if any. We apply these

blocks to the case when TTL values are either exponentially

distributed or constant. Then, we focus primarily on linear

TTL networks, two level TTL tree networks and combinations

of the two. We derive exact results for some cases but when

they are not, the relative errors are extremely small and less

than 10−3 in the case of exponentially distributed TTLs and

10−2 in the case of constant TTLs. Thus, we believe our

approach is promising and capable of accurately modeling a

richer class of network topologies.

In the literature, the paper closer to our approach is [16],

where the authors consider a single TTL-based cache fed by

i.i.d. requests to a single data. They obtain the hit rate for

a constant TTL via the solution of some renewal equation.

Despite the increasing interest in CCNs, previous work has

mainly focused on global architecture design. [4] is probably

the first attempt to model data transfer in CCNs; the authors

develop approximations to calculate the stationary throughput

in a network of LRU caches taking into account the interplay

between receiver driven transport and per-chunk caching.

The paper is organized as follows. In Section II, we intro-

duce notation, the model assumptions, and a key result from

[22] regarding the computation of the marginal inter-arrival

distribution for a superposition of arrival streams modeled as

renewal processes. Section III contains our renewal theoretic

model along with its application to some network topologies

where it leads to exact results. It also shows how the TTL pol-

icy can mimic existing policies. We describe in section IV our

approach to model the combined exogenous and miss streams

as a renewal request process; and the resulting approximations

for a larger class of linear and tree networks. We also report

the accuracy of this approximation. Section VII shows how

the TTL policy behaves under finite size buffer. Conclusions

are found in Section VIII.

Due to space constraints, all the proofs have been omitted as

well as a discussion of the computational complexity of our

analytic approach, but they can be found in the companion

technical report [6] together with more examples and a more

detailed validation section.

II. DEFINITIONS AND ASSUMPTIONS

Throughout this paper we mainly focus on particular in-

stances of TTL cache tree networks with infinite buffers size.

This key hypothesis allow us to decouple the management of

the different contents and study each of them separately. For

this reason, in what follows we will simply refer to a single

content or data chunk (simply called the data). The effect of

finite buffer is considered in Section VII. From now on the

words “node” and “cache” will be used interchangeably. Also,

a cache will always be a TTL cache unless otherwise specified.

New requests for a data can be generated at any node of the

network according to mutually independent renewal processes;

these requests are referred to as exogenous requests or arrivals

and the sequence of these exogenous request instants is called

TABLE I: Glossary of main notation
λ Arrival rate (single cache)
1/µ Expected TTL (single cache)
F (t) CDF exogenous arrivals (single cache)
G(t) CDF inter-miss times (single cache)
T (t) CDF TTL duration (single cache)
λn Exogenous arrival rate at cache n
Λn Overall arrival rate at cache n
Λn,k Overall arrival rate at cache n

for content k
1/µn Expected TTL at cache n
Fn(t) CDF exogenous arrivals at cache n
Hn(t) CDF overall arrivals at cache n
Hn,k(t) CDF of overall arrivals at cache n

for content k
Gn(t) CDF inter-miss times at cache n
Tn(t) CDF TTL duration at cache n
hP,n, mP,n Hit, miss probability resp. at cache n
hR,n, mR,n Hit, miss rate resp. at cache n
πn Occupancy of cache n (stationary

probability content is in cache n
πn,k Occupancy of cache n for content k
qn Average size of cache n

(= πn if single content in network)
hP , mP Hit, miss probability resp. (single cache)
hR, mR Hit, miss rate resp. (single cache)
C(n) Set of children of cache n
χ∗(s) LST of CDF χ(t)

the exogenous request process. If upon the arrival of a new

request the data is not present in the cache, the request is

instantaneously forwarded to the next level of the tree and

the process repeats itself until the data is found. In case the

data cannot be found along the path toward the root, the root

retrieves it from a server. Once the data is found, either at a

cache or at a server, a copy of it is instantaneously transmitted

to each cache along the path between the cache where the

data was found and the cache that issued the request2. A

new TTL is set for each new copy of the data and the TTL

is redrawn at the cache, if any, where the data was found

(by convention, the TTL at the server is infinite). This is in

contrast with the model in [16] where there is no TTL reset

upon a cache hit. Resetting the TTL also at each cache hit

increases the occupancy and the hit probability specially for

popular contents (high request rate). This choice is motivated

by the CCN paradigm of moving popular documents as close

as possible to the users.

We define the miss process at a cache as the successive

instants at which misses occur at this cache, namely, the times

at which the data is requested and is not found in the cache.

Let us denote by C(n) the set of children of cache n. The

(overall) request process, also called the arrival process, at

cache n is the superposition of the miss processes of caches

in C(n) and of the exogenous request process at cache n,

if any. We assume that successive TTLs at each cache are

i.i.d. random variables, that TTLs at different caches are

mutually independent, and that all TTLs are independent of the

exogenous arrivals. If Λn is the arrival rate of requests at cache

2We observe that our TTL-based policy could be used also in conjunction
with other strategies that do not keep a copy at every cache along a path, like
those in [20].



n, hP,n (resp. mP,n = 1 − hP,n) and hR,n = ΛnhP,n (resp.

mR,n = Λn(1 − hP,n)) denote the stationary hit (resp. miss)

probability and the stationary hit (resp. miss) rate at cache n,

respectively. We denote by πn the steady-state probability that

the data is in cache n and we call it the occupancy of cache

n. Hence, we just have to calculate hP,n and Λn.

For t ≥ 0 and any non-negative random variable X with

Cumulative Distribution Function (CDF) χ(t) = P (X < t),
χ̄(t) = 1−χ(t) is the Complementary Cumulative Distribution

Function (CCDF), χ⋆(s) = E[e−sX ] =
∫∞

0 e−stdχ(t) (s ≥ 0)

denotes its Laplace-Stieltjes Transform (LST), and χ̂(s) =
∫∞

0 e−stχ(t)dt (s > 0) denotes the Laplace Transform (LT)

of χ(t).
The following result, taken from [22, Formula (4.1)], will

be repeatedly used in this paper .

Theorem 2.1: The CDF R(t), of the inter-event times of the

point process resulting from the superposition of K mutually

independent renewal processes, is given by

R̄(t) =

K
∑

k=1

αk
∑K

k=1 αk

R̄k(t)

K
∏

j=1,j 6=k

αj

∫ ∞

t

R̄j(u)du,

with Rk(t) and αk > 0, the CDF of the inter-event times and

the arrival rate of process k, respectively.

III. EXACT RESULTS

A. Single cache

We consider a single TTL cache. Requests arrive at the

cache according to a renewal process. Without loss of gener-

ality, we assume that the first request arrives at time t = 0 and

finds an empty cache. We denote by X a generic inter-arrival

time with CDF F (t) and density f(t). We also denote by

T a generic TTL duration, with CDF T (t). Since successive

inter-arrival times and successive TTLs form two independent

renewal sequences and since a miss triggers a new TTL, miss

times are regeneration points of the state of the cache. This

implies that inter-miss times form a renewal process, with

generic inter-miss time denoted by Y and CDF G(t). The

stationary hit probability, hit rate and miss rate denoted by

hP , hR and mR, respectively, are given by

hP = P (X ≤ T ) =

∫ ∞

0

F (t)dT (t), (1)

hR = λhP , mR = 1/E[Y ] = λ(1 − hP ) (2)

respectively, with λ := 1/E[X ] the arrival rate.

Propositions 3.1 and 3.2 (Proofs in [6]) respectively give the

cache occupancy π and the CDF G(t) for the most general

result (with arbitrary CDFs F (t) and T (t)).
Proposition 3.1 (Stationary cache occupancy):

π := λE

[

∫ X

0

(1 − T (t))dt

]

. (3)

Proof. Let V be the time during which the document is in

the cache between two consecutive request arrivals. We have

π = E[V ]/E[X ] = λE[V ] by renewal theory. Let us find

E[V ]. Define the binary rv U(t) to be one if the document

is in the cache at time t and zero otherwise. Without loss

of generality consider the interval [0, X ] corresponding to the

inter-arrival time between the first and the second request. We

have

E[V ] = E

[

∫ X

0

U(t)dt

]

= EX

[

∫ X

0

E[U(t)|X ]dt

]

=

= EX

[

∫ X

0

(1 − T (t))dt

]

where the last equality follows from E[U(t)|X ] = E[U(t)] =
P (U(t) = 1) = P (T > t). ⋄
Proposition 3.2: . The CDF G(t) of inter-miss times is the

unique bounded solution of the integral equation

G(t) =

∫ t

0

G(t − x)T̄ (x)dF (x) +

∫ t

0

T (x)dF (x). (4)

Proof. Let X1 (resp. Y1, T1) denote the first inter-arrival

time (resp. first inter-miss time, first TTL) after t = 0. Since

Y1 ≥ X1, the event {Y1 < t} may only occur if X1 < t.
Therefore,

G(t) = P (Y1 < t, X1 < t, X1 ≤ T1)

+P (Y1 < t, T1 < X1 < t)

= P (Y1 < t, X1 < t, X1 ≤ T1) + P (T1 < X1 < t)(5)

= P (Y1 < t, X1 < t, X1 ≤ T1) +

∫ t

0

T (x)dF (x) (6)

where (5) follows from the fact that the event {Y1 < t} is

true when T1 < X1 < t. It remains to evaluate the probability

P (Y1 < t, X1 < t, X1 ≤ T1) in (6). By conditioning on X1

and T1 we obtain

P (Y1 < t, X1 < t, X1 ≤ T1) = (7)
∫ t

x=0

∫ ∞

τ=x

G(t − x)dF (x)dT (τ)

=

∫ t

0

G(t − x)(1 − T (x))dF (x), (8)

where the first equality is due to the fact that the TTL is

renewed at each request and then Y1 − X1 conditioned to

X1 ≤ T1 has the same distribution of Y1.

Suppose that there are two solutions G1(t) and G2(t)
satisfying (4). Then G1(t)−G2(t) =

∫ t

0
(G1(t)−G2(t))(1 −

T (x))dF (x). By Laplace transforming both sides of this

equality, it appears evident that G∗
1(s) − G∗

2(s) = 0 and then

the solution is unique. ⋄
If TTLs are exponentially distributed with rate µ, then

π =
λ(1 − F ∗(µ))

µ
(9)

from (3). Given that T (t) = 1 − e−µt, hP = F ∗(µ) from

(1), which in turn implies from (2) that hR = λF ∗(µ) and

mR = λ(1 − F ∗(µ)). Taking the Laplace transform of both

sides of (4) yields

G∗(s) =
F ∗(s) − F ∗(s + µ)

1 − F ∗(s + µ)
. (10)



(a) Line of caches (b) Simple tree network

Fig. 1: Network architectures

We can check from (10) that mR = −(dG∗(s)/ds|s=0)
−1.

If the TTL is a constant, equal to T , (4) becomes

G(t) =

∫ t∧T

0

G(t−x)dF (x)+(F (t)−F (T ))1(t > T ) (11)

with a∧b = min(a, b). In this case the hit probability is F (T ).

B. Relation with other replacement policies

Consider a single cache with capacity B and M contents,

whose request processes are independent Poisson processes

with different rates λk for k = 1, 2, . . . , M . We shall tune

the TTL policy (i.e. the timer rate µk for the k-th content)

in order to get the same performance metrics of common

replacement policies like LRU, FIFO or RND. Without loss

of generality, we consider a LRU cache and we denote by

pk the corresponding stationary cache occupancy for content

k. This distribution and the corresponding one for FIFO have

been calculated in [18]. For the exponentially distributed TTL

cache, the stationary occupancy of the k-th content is given by

πk = λk(1−F ∗
k (µk))/µk, where F ∗

k (s) = λk/(λk +s). It ap-

pears evident that, for the infinite capacity TTL cache we can

always select µk = λk(1/pk−1) such that πk = pk. However,

under storage constraints like finite capacity B, we can still

take µk = λk(1/pk − 1) such that
∑

k pk = B =
∑

k πk as

we shall see in Sec.VII for the practical TTL policy. From the

equality of the stationary cache occupancies, the equality of

hit/miss probabilities and rates follows thanks to the PASTA

property of request processes. In this sense, the TTL policy

is more general than LRU and FIFO, since it can mimic their

behavior3.

C. Line of caches

Consider the linear cache network in Fig.1a composed of

N TTL caches labeled 1, . . . , N , without exogenous requests

at caches 2, . . . , N . Requests arrive to cache 1 according

to a renewal process with generic inter-arrival time X and

arrival rate λ. TTLs at all caches are mutually independent

and exponentially distributed random variables with rate µn at

cache n.

The arrival process at cache n is the miss process at cache

n − 1 since there are no exogenous arrivals. Moreover, it is

easily seen that the miss times at cache n−1 form regeneration

points, so that the miss process at this cache, and therefore the

3We observe that the inter-miss time distributions are very different if timers
are exponential, but if we select different TTL distributions we could match
also them.

arrival process at cache n, is a renewal process. We can then

apply recursively the results obtained for a single cache. In

particular, if we denote by G∗
n(s) the LST of the inter-miss

times at cache n, we may apply formula (10) where the LST

of the inter-arrival times is G∗
n−1(s). We obtain

G∗
n(s) =

G∗
n−1(s) − G∗

n−1(s + µn)

1 − G∗
n−1(s + µn)

(12)

for n = 1, . . . , N , where G∗
0(s) = F ∗(s). At the cache

n the hit probability hP,n = G∗
n−1(µn), the miss rate

mR,n = mR,n−1(1 − hP,n) and hit rate hR,n = mR,n−1hP,n

are derived by using (12)

mR,n = λ

n−1
∏

i=0

(1 − G∗
i (µi+1)), (13)

hR,n = λ

n−2
∏

i=0

(1 − G∗
i (µi+1)) G∗

n−1(µn), (14)

with mR,0 := λ. The occupancy of cache n is given by

applying (3) with F (t) = Gn−1(t) and λ = mR,n−1, hence

πn = mR,n−1

(

1 − G∗
n−1(µn)

µn

)

. (15)

D. Simple tree

Consider the tree network in Fig.1b with one root (labeled

N + 1) and N children (leaves) labeled n = 1, . . . , N . The

exogenous requests arrive at the n-th node according to a

Poisson process with rate λn. While the TTL is exponentially

distributed with rate µn at the n-th leave, we assume an

arbitrary CDF TN+1(t), with LST T ∗
N+1(s) for the TTL at

the root. Using the results in Section III-C to study caches

n = 1, . . .N in isolation, and Theorem 2.1 to calculate the

CDF of the overall request inter-arrival time at cache N + 1,

we can derive all metrics of interest [6].

IV. APPROXIMATE RESULTS

The exact results in Section III cannot be easily extended

to general networks. In fact, in the presence of exogenous

requests, the aggregated (overall) arrival process at a cache is

not a renewal process. Hence, we cannot apply Proposition

3.2 that allows us to characterize the miss requests process.

However, we can still determine all performance metrics (e.g:

see Sec. III-D) at the cache by calculating the CDF of the

inter-arrival times (Theorem 2.1). In this section we develop an

approximation method to overtake this limitation. The solution

derived produces highly accurate approximations under more

general networks for all metrics considered in Section III

(hit/miss probabilities, hit/miss rate, cache occupancy). The

quality of the approximation is assessed in [6] and it is based

on the following statement:

Approximation A1: the overall arrival process at each node

is a renewal process.

As a consequence of A1 and Prop. 3.2, we approximate the

miss process at a node by a renewal process. With a slight

abuse of notation we will use the notation of Section III to



denote the corresponding approximate values calculated under

Approximation A1. For example, Hn(t) is used to denote

the approximate CDF of the overall inter-arrival times and

similarly Gn(t), Λn, mR,n, hP,n and hR,n are used to denote

approximate quantities at node n. Regarding the total rate Λn,

note that

Λn = λn +
∑

i∈C(n)

mR,i (16)

where C(n) is the set of children of node n. As in Section III,

exogenous arrivals at each node n form a renewal process,

with CDF Fn(t). Thanks to A1, we invoke Theorem 2.1 to

get

Hn(t) = 1 − λn

Λn

F̄n(t)
∏

i∈C(n)

νi

∫ ∞

t

Ḡi(u)du

−
∑

i∈C(n)

νi

Λn

Ḡi(t)λn

∫ ∞

t

F̄n(u)du

×
∏

j∈C(n)
j 6=i

νj

∫ ∞

t

Ḡj(u)du. (17)

An approximation of the CDF of the inter-miss times at cache

n is obtained from Proposition 3.2

Gn(t) =

∫ t

0

Gn(t − x)T̄n(x)dHn(x)

+

∫ t

0

Tn(x)dHn(x) (18)

where Tn(t) the CDF of the TTL duration at cache n.

Eqs (17)-(18) provide a recursive procedure for calculating,

at least numerically, approximations of the CDFs Gn(t) and

Hn(t) for each cache n of a general network topology, from

which we can derive approximate formulas for all metrics.

However, even for small networks the numerical complexity

of this procedure can be very high as it requires calculating

integrals over infinite ranges (see Eq. (17)) and solving integral

equations (see Eq. (18)).

In order to show that this complexity can be significantly

reduced, we focus on a particular class of tree networks, class

N and we give explicit results. The TTL at each node n is

exponentially distributed with rate µn. A network belongs to

class N if, in addition to A1, the following approximation

holds:

Approximation A2: The node n is fed by the superposition

of two independent request arrival processes: one (stream 1)

is the miss rate of a child of cache n and is a generic renewal

process and the other one (stream 2) is a renewal process with

CDF of the form

Kn(t) = 1 −
Mn
∑

m=0

αn,me−βn,mt (19)

where 0 ≤ Mn < ∞ and {βn,m}m is a set of non negative

numbers.

In what follows we assume without loss of generality that

stream 1 originates from a cache child labeled n− 1 and then

we denote the CDF of the inter-miss times in stream 1 as

Gn−1(t) and the miss rate as νn−1. From (19) the arrival

rate of stream 2 is ηn :=
∑Mn

m=0 αn,mβn,m, the total arrival

rate at node n is Λn = νn−1 + ηn. Approximations A1 and

A2 together yield the following procedure for approximating

G∗
n(s) and H∗

n(s).
Proposition 4.1 (Approximation for class N ): Under

Approximations A1 and A2, for each node n,

H∗
n(s) = 1 − s

ηn

Λn

Mn
∑

m=0

αn,m

s + βn,m

(20)

−s2 ηnνn−1

Λn

Mn
∑

m=0

αn,m(1 − G∗
n−1(s + βn,m))

(s + βn,m)2βn,m

and

G∗
n(s) =

H∗
n(s) − H∗

n(s + µn)

1 − H∗
n(s + µn)

. (21)

Proof.

Hn(t) = 1 − ηnνn−1

Λn

Mn
∑

m=0

αn,m

×
(

Ḡn−1(t)

∫ ∞

t

e−βn,mudu + e−βn,mt

∫ ∞

t

Ḡn−1(u)du

)

from which we deduce (20). (21) is obtained from (10). ⋄
The hit probability is simply hP,n = H∗

n(µn), the total arrival

rate Λn = νn−1 +ηn and the miss rate νn = Λn(1−H∗
n(µn))

are

νn =

n
∑

i=1

ηi

n
∏

j=i

(1 − H∗
j (µj)), (22)

Λn =

n−1
∑

i=1

ηi

n−1
∏

j=i

(1 − H∗
j (µj)) + ηn, (23)

Relations (20)-(21) and (22)-(23) provide a recursive proce-

dure for calculating Λn and H∗
n(µn) for each n, from which

we obtain approximations for the hit probability, hit rate, miss

rate and stationary occupancy at node n:

hP,n = H∗
n(µn), hR,n = ΛnH∗

n(µn), (24)

mR,n = Λn(1 − H∗
n(µn)), πn = Λn

(

1 − H∗
n(µn)

µn

)

.

The latter result follows from (9).

In [6], we show that the network in Fig. 2 belongs to

the class N , when TTLs are exponentially distributed and

exogenous request processes are Poisson.

V. VALIDATION

In this section we investigate the accuracy of the approxima-

tion method developed in Section IV. Recall that the method

consists in assuming that all internal arrival processes at a

node (i.e. processes formed of the miss processes of the node’s

children) are renewal processes and to use Eq. (17) to calculate

the CDF of the inter-arrival times of the superposed process.

The miss process at this node can then be characterized by



Fig. 2: Line of simple tree networks

using Eq. (18) and the procedure is repeated at the node’s

parent.

We focus our validation on the case when the TTLs are

exponentially distributed, but we also provide some results

for constant TTLs.

A. Exponential timers

We start by observing that it is possible to model a class

N network with N caches as an irreducible Markov process,

with state x(t) = (x1(t), . . . , xN (t)) ∈ E = {0, 1}N , where

xn(t) = 1 (resp. xn(t) = 0) if the document is present

(resp. missing) at time t at node n. Once the steady-state

probabilities (p(x)) have been calculated, the exact values

of the performance metrics of interest can be obtained by

conveniently combining the stationary probabilities and the

rates. For example the stationary occupancy of cache i is

πM
i =

∑

x∈E,xi=1 p(x) (the superscript “M” stands for

“Markov”) . For a line of caches the hit probability and the

miss rate at cache 1 are respectively hM
P,1(1) = p(1, ∗) and

mM
R,1 = λ1p(0, ∗), while for cache 2 it holds

hM
P,2 =

λ1p(0, 1, ∗) + λ2(p(0, 1, ∗) + p(1, 1, ∗))
λ1(p(0, 0, ∗) + p(0, 1, ∗)) + λ2

and mM
R,2 = λ1p(0, 0, ∗) + λ2(p(0, 0, ∗) + p(1, 0, ∗)), where

p(i, ∗) =
∑

x2,...,xN∈{0,1} p(i, x2, . . . , xN ) and p(i, j, ∗) :=
∑

x3,...,xN∈{0,1} p(i, j, x3, . . . , xN ) are the stationary proba-

bilities that cache 1 is in state i ∈ {0, 1} and caches (1, 2) are

in state (i, j) ∈ {0, 1}2, respectively. Due to space constraints

we omit the general expressions for these quantities for a

generic cache in the line and those for a line of simple tree

networks that can be similarly calculated.

In the rest of this section we compare our approximate

results versus the exact ones that can be obtained studying

the Markov process. A comparison of the computational costs

of the two approaches is in Section VI. We consider first

the line network in Fig. 3: it has four nodes (N = 4),

exogenous arrivals and exponentially distributed TTLs at node

n with rate λn and µn, respectively. We have calculated the

Fig. 3: Line of four caches

absolute relative errors at cache n for the hit probability

(EHP,n), the miss rate (EMR,n) and the occupancy probability

(EOP,n). The exact value is calculated through the analysis

of the Markov process, e.g. EHP,n := |hM
P,n − hP,n|/hM

P,n.

Fig. 4 shows the CDFs of the relative errors at cache 4 for

1001 different parameter vectors ((λn, µn), n = 1, . . . , 4).
The values of the exogeneous arrival rates (resp. TTL rates)

have been selected in the interval [0.001, 10] (resp. [0.1, 2])
according to the FAST (Fourier Amplitude Sensitivity Test)

method (see [21, Sec. VI-C] and references therein). We can

observe that the approximation is very accurate: in 99% of the

different parameter settings the relative error is smaller than

2 × 10−5.
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Fig. 4: CDF of EHP,4, EMR,4, EOP,4 for network in Fig.3
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Fig. 5: EHP,4, EMR,4, EOP,4 for network in Fig.3 with ho-

mogeneous nodes (λn = λ = ρµ = ρµn)

Fig. 5 shows how the error changes for different request

loads. In this case we have considered the homogeneous

scenario where all the caches have the same TTL and the

same exogenous arrival rate, i.e. µn = µ and λn = λ for

each n. The error is shown as a function of the normalized

load ρ = λ/µ. We can observe that the largest error (about



Fig. 6: Linear tree network
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Fig. 7: CDF of EHP,2, EMR,2, EOP,2 for network in Fig. 6

2 × 10−4) is obtained when arrival rates and timer rates have

comparable values (ρ ≈ 1). In this case the different request

processes superposed at a node have similar time scales and

then the inter-arrival times of the overall request process are

more correlated (see also comments below).

We have also investigated the accuracy of the approximation

for the line of simple tree networks (defined in Section

III-D) shown in Fig. 6: where nodes 11, 12, 13 (resp. nodes

21, 22, 23) have identical arrival rates and identical TTLs rates.

Since the approximation results are exact for all nodes but

node 2 we only report results for that node. The empirical

CDFs of EHP,2, EMR,2 and EOP,2 are shown in Fig. 7. Like

for Fig. 4 exact results have been obtained by considering

the Markov process associated with this line of simple trees

network. Different request and TTL rates have been selected

according to the FAST method respectively in the intervals

[0.001, 10] and [0.1, 2]. We used 4921 samples for each rate.

Results are analogous to those for a line of caches. The relative

errors can be larger in this scenario, but they are probably

negligible for most of the applications (< 3×10−4 in 99% of

the cases). We have also considered the homogenous scenario

also for this topology, the relative errors have the same order

of magnitude (< 10−3).

We have shown that Assumption A1 leads to very accurate

results when exogenous arrival processes are Poisson and

TTL are exponentially distributed. This let us think that the

superposition of the request arrival processes at every cache

is very ‘close’ to a renewal process. In order to justify such

Fig. 8: Tree network

statement, we have calculated the first autocorrelation lag (r1)

for the actual arrival process at node 2 in Fig. 3 using Eq. (6.4)

in [22]. This autocorrelation lag depends on the arrival rates λ1

and λ2 and the timer µ1. We have found that for any possible

choice of these parameters 0 > r1 > −0.015. Simulation

results show that the autocorrelation is even less significant at

larger lags. We can then conclude that the inter-arrival times

are weakly coupled.

B. Deterministic Timers

When timers are deterministic we need to rely on the general

procedure described in Section IV and based on Eqs (17)

and (18). There are two sources of errors in this procedure.

Firstly, the aggregate request process at a cache is not a

renewal process and it is not correct to apply the renewal

equation (18). Secondly, both the steps (17) and (18) introduce

some numerical errors. Two parameters determine the entity

of the numerical error: 1) the time interval (τ ) from which

the CDF samples are taken, 2) the time distance between

two consecutive samples (∆). Clearly the larger τ and the

smaller ∆ the smaller the numerical error, but also the larger

the computational cost.

We have implemented a Matlab numerical solver that it-

eratively determines the CDFs in the network as described

above, and then the metrics of interest for a cache network.

The integrals appearing in Eqs. (17) and (18) are approximated

as simple sums and for simplicity the same values τ and ∆
have been considered for all the CDFs. These parameters are

selected as follows: our solver first obtains an approximated

solution for the whole network assuming that all the request

processes are Poisson and set the parameter τ to 5 times

the largest expected inter-arrival time in the network. The

parameter ∆ is set to one thousandth of the minimum of

the TTL values and the expected interarrival times of the

exogenous request processes.

We present some preliminary results for the tree network

of Fig. 8 in the following situation: infinite capacity caches,

asymmetric traffic conditions and non-exponential (i.e con-

stant) life times. More specifically, the exogenous request

processes are Poisson processes with rates λi (i = 5, 6, 7, 8, 9)

and TTL values are Ti (i = 1, 2, . . . 9). In order to evaluate

the relative error of the estimated metrics, we have considered

as correct values those obtained through a long simulation.

For example if our method predicts the value hP,n for the hit



probability rate at node n and the 99% confidence interval,

calculated by simulation, is [hS
P,n − ǫ, hS

P,n + ǫ], the relative

error is calculated as |hP,n − hS
P,n|/hS

P,n. The relative incerti-

tude of the simulation (ǫ/hS
P,n) is at most 0.3× 10−4. For all

the performance metrics and all the caches the relative error

of our approach is less than 10−2.

VI. COMPUTATIONAL COST

In this section we perform a preliminary analysis of the

computational cost of our approach.

We first address the case of a class N network, and in

particular we consider a line of simple tree networks with N
trees and M nodes in total as in Fig. 2. Since the computational

cost for all the metrics is roughly the same, we focus here on

the hit probability. In order to calculate the hit probability

at one of the roots of the simple trees, say it cache n, we

need to evaluate the LST H∗
n(µn) (Eq. (24)). This requires a

number of operations proportional to the number of children

of cache n (Rn) and the evaluation of the LST of the miss rate

coming from cache n − 1 in µn, i.e G∗
n−1(µn) (Eq. (20)). In

turn G∗
n−1(µn) can be calculated evaluating H∗

n−1(s) in two

points (µn and µn + µn−1) (Eq. (21)) and so on recursively.

This implies that the cost to calculate the hit probability at

cache n is O(αRn+2n) for some constant α. When evaluating

the hit probability at other caches the same LSTs needs to be

evaluated, but in general at different points, then we have that

the total cost is O(
∑N

n=1 αRn + 2n) = O(αM + 2N). Then,

depending on the topology of the network, the cost can be

mainly linear in the number of nodes (for a network with

small depth, e.g. when there are a few trees each with a lot

nodes) or exponential in the number of nodes (for a network

with large depth, e.g. for the linear network in Fig. 1).

It is interesting to compare this cost with alternative ap-

proaches. For the line of simple tree networks, all the metrics

can be exactly calculated solving a Markov process as we

mentioned in Section V. The size of the state space is 2M ,

then the cost of determining the steady-state distribution by

solving the linear equation system is O(23M ) and this is

much larger than the cost of our method O(αM + 2N ). A

different approach is to obtain an approximated steady-state

distribution of the Markov process using an iterative method.

This approach takes advantage of the fact that most of the

transition rates have value zero. In fact a state change is

triggered by an exogenous request arrival at a cache that does

not have the data or by a timer expiration at a cache with

the data, i.e. from a given state we can only reach other M
states. Then the number of non-zero rates is equal to M2M

and each iteration of the method requires O(M2M ) operations.

The total cost of the iterative method is then O(KM2M ),
where K is the number of iterations until termination and

depends on the spectral gap of the matrix used at each iteration

and on the required precision, but in general we can expect

O(KM2M ) << O(23M ). Assuming that this is the case,

we can observe that our method, even in the worst case of

the linear network, is still more convenient than solving the

Markov process, because O(2M ) < O(KM2M ).
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Fig. 9: Running time comparison

Fig. 9 shows the ratio of the computation times to calculate

our approximation (T A) and to solve the Markov chain (T M )

for a line of N caches (with N = 1, 2, . . . 9). Both the

methods have been implemented in Matlab, in particular the

function linsolve has been used to determine the steady-state

distribution of the Markov chain.

Let us now consider the case of a general tree network with

constant TTLs (equal to T ). In this case there is no exact solu-

tion to compare our approach with, so we consider simulations

as an alternative approach. We perform an asymptotic analysis.

A meaningful comparison of the computational costs needs to

take also into account the incertitude of the solution: both

the simulations and our method can produce a better result

if one is willing to afford a higher number of operations. In

order to combine these two aspects in our analysis we consider

as metric the product precision times number of operations.

Intuitively the larger this product the more expensive is to get

a given precision. For the simulations the computational cost is

at least proportional to the number of events that are generated,

let us denote it by nE . The incertitude on the final result can

be estimated by the amplitude of the confidence interval, that

decreases as 1/
√

nE , then the product precision times number

of operations is proportional to
√

nE for the simulations. In

the case of our approach, the heaviest operation is the solution

of the renewal equation. If we adopt the same τ and ∆ for

all the integrals, we need to calculate the value of the CDF of

the miss rate (G(t)) in nP = τ/∆ points and then we need

to calculate nP integrals. The integration interval is at most

equal to the TTL duration T (see Eq. 11), then each integral

requires a number of operations proportional to n′
P = T/∆.

If the value of τ is selected proportionally to T , then the cost

of our method is proportional to n2
P . A naive implementation

of the integral as a sum of the function values leads to an

error proportional to the amplitude of the time step and then

inversely proportional to n′
P or nP . In conclusion the product

precision times the number of operations is proportional to

nP . Then, for a given precision, our method would require

a number of points much larger than the number of events

to be considered in the corresponding simulation (at least

asymptotically). The comparison would then lead to prefer the

simulations at least when small incertitude is required (then

large nE and nP ). In reality integrals can be calculated in

more sophisticated ways, for example if we adopt Romberg’s



method, with a slightly larger computation cost, we can get

a precision proportional to n−2
P . In this case the product

precision times number of operations is a constant for our

method, that should be preferred.

VII. A PRACTICAL TTL POLICY

While the model considered above allows for an arbitrarily

large number of contents, a real cache will have a finite

capacity B. In this section, we consider a possible practical

implementation (TTL Impl) of the ideal TTL policy (TTL

Model) we have studied above. The cache uses timers for each

content as described above but it does not discard contents

whose timer has expired as long as some space in the buffer

is available. If a new content needs to be stored and the cache

is full the content to be erased is the content whose timer has

expired since a longer time (if any) or the content whose timer

is going to expire sooner.

We have compared the performance of the TTL Impl with

that of our TTL Model (in Sec. III-C) for a line of two caches

with same capacities B1 = B2 = 20 where the requests

for each content k = 1, . . . , M = 200 arrive only at the

first cache. The request processes are independent Poisson

processes with rates distributed according to a Zipf law with

parameter α = 1.2. The timers are i.i.d. exponential random

variables with rate µ1 and µ2 respectively at the two caches.

Each timer rate has been selected so that the expected buffer

occupancy for both the TTL Impl and the TTL Model equals

the corresponding cache capacity. In other words, µn at cache

n = 1, 2 is chosen such that
∑M

k=1 πn,k = Bn. Results show

that the performances of the two policies are very similar. The

aggregate hit probabilities at the two caches are respectively

hP,1 = 0.5584 and hP,2 = 0.4663 for the TTL Model and

ĥP,1 = 0.5618 and ĥP,2 = 0.4124 for the TTL Impl. At the

content granularity, the matching is even accurate at cache 1,

so that we just report in Fig. 10 the results at cache 2. These

preliminary results suggest that our analysis can be useful to

study TTL policies when caches are constrained.

Fig. 10: TTL-policy model and its implementation

VIII. CONCLUSION

In this paper, we introduced a novel Time-To-Live replace-

ment policy for buffering routers of ICN and we have devel-

oped a set of building blocks for the performance evaluation

of TTL cache networks based on simple renewal arguments.

We derived exact results and closed form formulas to as-

sess the metrics of some hierarchical caching networks like

the linear and the simple tree networks. We also provided

a recursive and approximate procedure to study a general

network topology. For a large class of tree networks with

exponentially distributed and deterministic TTLs, we showed

that our approximation is highly accurate with relative errors of

10−3 and 10−2 respectively. Our approach scales easily and

it is promising since it appears as a simple unifying model

for accurately modeling a richer class of networks such as

heterogeneous caching networks under different replacement

policies. We have also demonstrated that our TTL model can

be implemented and used to optimize a multi-content cache

network under realistic constraints such as the cache size

limitation. Ongoing research is investigating the effect of finite

capacity cache networks, how to reduce the computational cost

of our approach in the case of constant TTLs and how to

take into account correlated request processes by using semi-

Markov processes.
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