
Continuous PEPA Queues: Individual behaviour in
continuous queueing networks

Ashok Argent-Katwala
Dept. of Computing, Imperial College London

180 Queen’s Gate, London SW7 2BZ, UK
ashok@doc.ic.ac.uk

Jeremy T. Bradley
Dept. of Computing, Imperial College London

180 Queen’s Gate, London SW7 2BZ, UK
jb@doc.ic.ac.uk

ABSTRACT
The PEPA Queues formalism augments queueing networks
with customers that have behavioural characteristics de-
fined in the popular stochastic process algebra, PEPA. Net-
works of PEPA Queues suffer from the traditional state
space explosion that affects both closed queueing networks
and PEPA models. We present a technique that converts a
discrete extension of PEPA Queues into a continuous state
space approximation. We show how Continuous PEPA Queues
can be analysed using ordinary differential equations, the so-
lution of which provides a time-series plot of the number of
components in a particular state in a particular buffer.

Keywords
PEPA, queueing networks, continuous approximation, ODEs

1. INTRODUCTION
Queueing networks are a well-used mechanism for capturing
interrelated contention for resources in computer and com-
munication systems [1, 2]. In particular, queues are useful
when the contention has to be managed and ordered to give
fair, often first-come-first-served, access to a service. Many
extensions have been created and analysed to simulate indi-
vidual or class behaviour to jobs or customers in queueing
nodes. PEPA Queues seek to add specific behaviour in a
systematic and component-oriented way.
A PEPA Queues network [3] is a behavioural extension of
a closed queueing network in a similar sense that PEPA
nets [4] is a behavioural extension of stochastic Petri nets.
In PEPA Queues, the customers and servers are modelled
as PEPA components which may evolve independently. The
servers can cooperate with queueing customers to determine
how they are routed to other queues in the system.
We presented the first steps for a continuous model for PEPA
Queues in [5]. Here we develop that approach by formally
introducing to PEPA Queues the notion of layers or ranks of
customers within each queueing node’s buffer. Rank mea-
sures the distance that a customer is away from service. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools ’07, October 23-25, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

a standard queue, the rank is the queueing position of a cus-
tomer and we define a customer with rank 0 to be in service.
In our extension, many customers can share the same rank
and when an individual customer completes service, one cus-
tomer from each rank is chosen to progress to the rank in
front, thus creating system of managed overtaking.
We additionally present a well-defined semantics for discrete
PEPA Queues with ranks. We outline a mechanical gener-
ation of the ordinary differential equations that represent a
network of PEPA Queues and thus provide the ability to
perform systematic continuous state-space analysis of large
PEPA Queues models.
In Section 2, we give an overview of the supporting technolo-
gies, PEPA and PEPA Queues. Section 3 extends PEPA
Queues to allow several customers to share a queueing posi-
tion or rank. In Section 4, we build a continuous analogue of
these PEPA Queues, and how we describe a network of Con-
tinuous PEPA Queues, including a translation into ordinary
differential equations. A short example modelling a Web
server with a waiting pool of clients follows in Section 5. We
discuss future work and conclude in Section 6. Appendix A
contains the syntax and structural operational semantics of
Continuous PEPA Queues.

2. BACKGROUND

2.1 PEPA
PEPA [6] is a parsimonious stochastic process algebra that
can describe compositional stochastic models. As in all pro-
cess algebras, systems are represented in PEPA as the com-
position of components which undertake actions. In PEPA
the actions are assumed to have a duration, or delay. Thus
the expression (α, r).P denotes a component which can un-
dertake an α action at rate r to evolve into a component P .
Here α ∈ A where A is the set of action types and P ∈ C
where C is the set of component types. The rate r repre-
sents the parameter of an exponential distribution, and the
duration is assumed to be a random variable.
PEPA has a small set of combinators, allowing system de-
scriptions to be built up as the concurrent execution and
interaction of simple sequential components. The syntax of
the type of PEPA model considered in this paper may be
formally specified using the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ��
L

P | P/L | C

where S denotes a sequential component and P denotes a
model component which executes in parallel. C stands for a

constant which denotes either a sequential component or a
model component as introduced by a definition. CS stands
for constants which denote sequential components. The ef-
fect of this syntactic separation between these types of con-
stants is to constrain legal PEPA components to be cooper-
ations of sequential processes. The shorthand || is used to

represent cooperation over the empty set, ��
∅

. More infor-
mation including the structured operational semantics for
PEPA can be found in [6].

2.2 Immediate actions and SM-PEPA
In this paper, we use an extension to PEPA which includes
immediate actions. We take a subset of semi-Markov PEPA,
which allows a limited form of generally distributed delays
giving rise to an underlying semi-Markovian process. We
limit these general delays to immediate delays, and have
just two priority levels. If there are any enabled immediate
actions, they take precedence. Where there is a choice of im-
mediate evolutions, we make a probabilistic choice according
to weights assigned to the actions. We do not allow coop-
eration between the immediate priority level and ordinary
timed, Markovian activities.
Semi-Markov PEPA [7] (SM-PEPA), is a version of PEPA
that allows general distributions as well as exponential dis-
tributions from the standard PEPA model. The syntax for
SM-PEPA is given below:

P ::= (a[n], D).P P + P P ��
L

P P/L A

where:

D ::= λ ω : L(s)

where λ is the standard PEPA exponential rate parameter:

λ ∈ IR+ ∪ {r⊤ | r ∈ Q, r > 0}

The action a is annotated with a priority n ∈ IN (where
a larger n indicates a higher priority). SM-PEPA intro-
duces a notion of priority enabling where an action is prior-
ity enabled only if it is enabled in the normal PEPA sense
and there are no higher priority actions that are enabled
at the same time. The D variable indicates a duration,
either an exponential rate or a weighted general distribu-
tion. The general distribution is specified in terms of its
Laplace transform for numerical convenience. The weights,
ω, are used to select probabilistically between concurrently
priority-enabled generally distributed actions.
The use of priorities in activities (action-duration pairs)
is restricted so that within a particular priority level, ei-
ther Markovian activities are available (containing standard
PEPA) or generally-distributed activities are. This pre-
vents the simultaneous racing of exponential and generally-
distributed distributions. A detailed semantics for SM-PEPA
can be found in [7].
The immediate transition model required for use with PEPA
Queues can be derived from a subset of SM-PEPA; it uses a
similar approach as that used in generalised stochastic Petri
nets (GSPNs) [8]. For this purpose only two priority levels
are required, level 1 for Markovian activities and level 2 for
immediate actions. We use the standard PEPA prefix no-
tation (a, λ).P to mean (a[1], λ).P in SM-PEPA and the re-

duced immediate prefix notation a.P to mean (a[2], 1 : 1).P
(mainly used in the translation Appendix B). This gives
each immediate transition equal weight. The immediate

transition aspect is represented by the Laplace transform,
L(s) = 1.

2.3 PEPA Queues
PEPA Queues (presented in detail in [3]) uses PEPA to
provide a rich description of customers and service centres
within a queueing network. They go beyond traditional
mechanisms to allocate a simple class to an otherwise opaque
customer by giving a clear description of the behaviour of
a customer in isolation. All the customers and servers may
evolve independently, according to their PEPA description.
A customer in service cooperates with the server compo-
nent at a queueing node, over a set of actions. Customers
waiting in a queue cannot perform actions in that queue’s
cooperation set.
For example, a very simple PEPA Queue, as depicted in Fig-
ure 1, consists of a server component, S, cooperating with
the head of the queue, P, over a set of actions, L, while
several customers, P′, P′, P′′, wait their turn.

P
′′

P
′

P
′

P S

L

Figure 1: A single PEPA Queue.

Customers move through the queueing network according to
where the server sends them. Each queue’s server may have
a number of routing actions, which determine the destina-
tion queue of the customer when it is served. There are no
losses in the network, if a destination queue has no room
for new customers then that route is simply blocked. For
example, Figure 2 depicts a small PEPA Queues network.
There are three customers waiting at first queue, and just
one (and two empty slots) at the second. The P customer
can be sent by the first server if it performs a send action.
However, the P′ customer, waiting at the front of the second
queue, cannot be served because the first queue is full. If
send was in the cooperation set, L, then customer P and
server R would need to cooperate to complete the service
and send P to the other queue.

P′′ P′′ P − − P′R S
L L

(send ,⊤)

(repeat,⊤)

Figure 2: A small network of PEPA Queues.

3. PEPA QUEUES WITH RANKS
In PEPA Queues, the state of a queue is given by the state
of all of the customers, in order, together with the state
of the server component. For long queues, expressing the
exact order of the waiting customers leads to a very large
state space. As a compromise, in the extension presented in
this paper, we allow customers to share queueing positions.

3.1 Overview
We do this by extending PEPA Queues to have several ranks
of waiting customers. Here the ranks have an ordering down

which a customer must progress, before reaching rank 0
where it can be serviced. Within a rank, which may contain
many customers, there is no ordering of customers.
By choosing ranks all of size one, we obtain the original
PEPA Queues. However, by using larger ranks we can group
many similar states together. This allows the modeller to
choose an appropriate balance between precision and com-
plexity. For example, we may wish to represent the first few
queueing positions exactly, but further back in the buffer
we may be happy to aggregate those states with the same
customers but a slightly different order.
Consider the system pictured in Figure 3. Each of the ranks
has a fixed size. When a customer from the first rank is
served, this creates a space at the server rank. One customer
is chosen at random from the rank behind to replace them,
and so on back through all the ranks.

P′′

P′

P
′

P

P′′

P

P
′

P

P′

P
′′

P′

P′

P
′

P

P

P

S

L

Figure 3: A queue with customers waiting in ranks.

3.2 Extended Syntax to include Ranks
While the picture above is a useful one, we also want a
precise syntax for our systems. The description of a system
of PEPA Queues has three distinct parts:

• The customers and servers that inhabit the network
are described in standard PEPA.

• The routing between queues within the network, de-
scribing the actions and rates of the routing actions
and where they lead.

• The initial state of the system, including how many
ranks there are at each queue and the size of each
rank, is part of the queueing network system equation.

The routing description contains one definition for each queue
in the network, with routing actions with rates leading to
particular queues. This is as in the original PEPA Queues.
If the only routing action out of queue A is an α-action, at
rate r , leading to queue B, then we would say:

Q:A
def
= (α, r) → Q:B

The queueing network system equation is a little different
than in the earlier PEPA Queues, since we need to describe
the ranks of waiting customers at each queue. We do this by
representing the state of a queue’s buffer using a multiset for
each of the ranks. The queue pictured in Figure 3 is written:

[{P ′′, P ′, P ′, P}|{P ′′, P ′, P ∗2}|{P ′′, P ′∗3}|{P ′, P ∗3}] ��
L

S

P ∗3 is a shorthand to represent three copies of P. If we omit
the braces, we are implicitly defining ranks of size one. We
use bars to separate the different ranks here. Alternatively,
the ranks may be separated by commas, as in the original
PEPA Queues syntax.
So a simple system of two queues would be described as
follows. We omit the server and customer descriptions for
brevity:

Q:A
def
= (α, r) → Q:B

Q:B
def
= (α, r) → Q:A

QNet:Sys
def
= (Q:A[{− ∗ m}|{P}] ��

L
SA)

|| (Q:B[{− ∗ nw}|{P ∗ ns}] ��
L

SB)

The first queue has a single space at the server, with an
empty buffer of m spaces of places to wait. The second
queue has ns P-customers in service, and space for nw to
wait. The two queues are composed in parallel, but we could
allow them to synchronise on a set of actions, which would
be useful in modelling a system with communicating servers.

3.3 Translation
To analyse a network of PEPA Queues we translate it into
an equivalent, flat PEPA model and analyse that. The full
details of the translation are given in Appendix B. In this
section we focus on how we fairly promote a single customer
from each rank to the rank in front.

P
′

P′

P′

P
P′

−

−

−

−
P′S1 S2

L L

Queue A Queue B

(send ,⊤)

(repeat,⊤)

Figure 4: A small network of PEPA Queues with

ranks.

Each queue in the system depicted in Figure 4 has three
ranks of customers: the service rank has one slot, the two
waiting ranks have two slots.
Our translation represents each customer as a single com-
ponent. The state of the component represents both the
customer’s internal state, and also their position within the
queueing network. Thus, a P′ customer in rank 1 of queue
A is represented by P′

A1 in the flat model. There are no
explicit components to represent the blank spaces.
As part of our flat model, we have a cooperation of each
of these customers, cooperating over all the actions which
route customers in the network, Lc:

Customers
def
= P′

A2
��
Lc

P′
A2

��
Lc

P′
A1

��
Lc

PA1

��
Lc

PA1 ��
Lc

PA0 ��
Lc

PB0

When the P at the head is served, we would like to pick one
of the customers in rank 1 to replace it. In the original PEPA
Queues each waiting customer cooperated on the routing ac-
tions for its queue. When a waiting customer witnessed a
service, it moved forward a place in the queue. Now, how-
ever, we want just one of the waiting customers in a rank
to move forward. We do this using immediate actions. We
have the same cooperation as before, but instead of moving
forward a place, all the customers in the rank move to an
intermediate state. In the intermediate state each offers a
choice of immediate actions, either to fall back to the previ-
ous rank, or move forward to the rank in front.
In the component descriptions that follow, the labels inA and
outA are shorthand for a choice of all the routing actions
into and out of queue A. In this example the inA actions
will correspond to the send actions, and outA to the repeat
actions. In the translation we have a distinct action-type
for each rank of the destination queue. This ensures that we
move a customer to the first rank with space in, and never

leave gaps in front of a waiting customer. This is detailed
explicitly in Appendix B.

forwardA2

backA2

inA

Figure 5: Example of a customer moving from rank

2 to 1 of queue A.

This collection of components cooperate with RankA1, de-
picted in Figure 6, over forwardA1 and backA1 . This ensures
that exactly one of the components moves forward, and all
the rest fall back.

backA1

nonemptyA1

inA

forwardA1

emptyA1

inAbackA1

Figure 6: Governing component for Rank A1.

The governing components for each rank cooperate over all
the routing actions for that queue. Thus, it is important
that when there are no components in the rank that it still
allows those actions to take place, without trying to move
a customer forward. To achieve this, the population tracker
for queue A signals to each rank when it becomes empty or
non-empty, as depicted in Figure 7.

outA

inA

outA

inA

outA inA

outA

inA

outA inA

nonemptyA0

nonemptyA1

nonemptyA2

emptyA0

emptyA1

emptyA2

Population

0

1

2

3

4

5

Figure 7: Population tracker for queue A in exam-

ple.

In the whole system, we have one of these governing com-
ponents per rank, cooperating with one another over the
routing actions for their queue.

4. CONTINUOUS PEPA QUEUES

When the PEPA Queue ranks hold many customers of the
same type, we can sensibly approximate the state of an in-
dividual rank using real counts of the number of component
types, rather than integers. This gives us a continuous rep-
resentation of PEPA Queues. This is based on the same
principle as presented in [9], where components of the same
type in a parallel cooperation are represented as a tuple
of real variables, one variable for each distinct component
state. We adopt a similar approach below.

4.1 An individual Continuous PEPA Queue
Suppose we have an isolated Continuous PEPA Queue, with
just two ranks for customers: in service, or waiting. We have
arrivals from some external source of P components at a rate
λ, as depicted in Figure 8.
The customers and server are defined as follows. The P
components decay to P′ independently, but must cooperate
with the server to go back to being P.

P
def
= (decay , µ).P′

P′ def
= (reset ,⊤).P

S
def
= (reset , ν).S + (send ,⊤).S

P

P′

−

P

P
′

S
(send ,γ)

{reset}

P cpts

rate λ

Figure 8: A graphical representation of an individual

Continuous PEPA Queue, where P components are

arriving at rate λ.

The state of this queue can be given by the number of P,
P′ and blank spaces there are in each of the ranks. We
denote the number of P components in rank i of queue A at
time, t, as n(A, i, P, t). Rank 0 contains the customers who
are in service. As with discrete PEPA Queues, each rank
has a fixed size, so n(A, i) = n(A, i, P, t) + n(A, i, P ′, t) +
n(A, i,−, t) is constant for a given queue A and rank i. For
this reason, when writing down the differential equations
describing the evolution of n(A, i, X, t) we omit the equation
for empty slots in a rank, since it can be derived from the
other equations.
The differential equations for the single PEPA queue of Fig-
ure 8 are set out below:

n′(A, 0, P, t) = T (A, 0, t)λ + n(A, 0, P ′, t)ν − n(A, 0, P, t)µ

− Ra(A, 0, P, t)γ + Ra(A, 1, P, t)γ

n′(A, 0, P ′, t) = −n(A, 0, P ′, t)ν + n(A, 0, P, t)µ

− Ra(A, 0, P ′, t)γ + Ra(A, 1, P ′, t)γ

n′(A, 1, P, t) = T (A, 1, t)λ − n(A, 1, P, t)µ − Ra(A, 1, P, t)γ

n′(A, 1, P ′, t) = n(A, 1, P, t)µ − Ra(A, 1, P ′, t)γ

where T (A, i, t) = 1 if rank i of queue A is capable of accept-
ing a new component and 0 otherwise. Ra(A, i, X, t) repre-
sents the ratio of X components in the ith rank of queue
A relative to the other non-blank components. It is used
to determine the rate of advancement of components from

one rank to the next when a quantity of components leaves
the head of the queue, rank 0. Both of these quantities are
defined formally below.

4.2 Translating to differential equations
Based on the top level PEPA Queue model, we can construct
coupled differential equations to describe how the number
of each X-component, n(Q, r,X, t) varies in each queue, Q,
rank r, with time t. In general, this construction is generated
for r > 0:

n′(Q, r, X, t)

= − rate of change of X to X ′ in rank r

+ rate of change of X ′′ to X in rank r

− rate of departure of X from rank r to r − 1

+ rate of arrival of X from rank r + 1 to r

+ rate of arrival of X from upstream queue

into rank r

and for r = 0:

n′(Q, r, X, t)

= − rate of change of X to X ′ in rank r

+ rate of change of X ′′ to X in rank r

− rate of departure of X to downstream queue

+ rate of arrival of X from rank r + 1 to r

+ rate of arrival of X from upstream queue

into rank r

The rate of change of a component type within a rank is
determined by the allowed component evolutions within the
context of the PEPA Queue it is in. The rate of departure of
a component type from a rank is either the rate of departure
of that component type from the queue if it is in the 0 rank or
the rate of transfer of that component type to a lower rank.
For the 0 rank, the component that may depart the queue is
defined by the PEPA Queue process. For a component type
in one of the higher ranks, the rate of flow into the next lower
rank is a proportion of the total component exit rate from
the queue, that is, as components leave the queue (from the
0 rank), this will trigger a flow of components from higher to
lower ranks within the PEPA Queue. The exact proportion
of the overall departure rate that governs this flow is given
by the proportion of components of that type that exist in
that rank, Ra(Q, r, X, t), defined below.
The T -function used in the earlier example is expressed in
terms of indicator functions, I(Q, r, t). The indicator func-
tion determines whether there is any space in the rank r for
components in rank r + 1 to flow into; defined by:

I(Q,r, t) = I(n(Q, r,−, t) > 0)

n(Q, r,−, t) = n(Q, r) −
X

i

n(Q, r, Xi, t)

| {z }

no. of blank slots available in rank r at time, t

where n(Q, r) is the static size of rank r as before. This
allows us to define the T -function more formally. For rank
r = 0, T (Q, 0, t) = I(Q, 0, t) and for rank r > 0:

T (Q, r, t) = I(Q, r, t) ×

r−1Y

i=0

(1 − I(Q, i, t))

Finally, we can formally define Ra(Q, r, X, t) which gives
the ratio of component X that currently exists in the rank
r relative to all the other components in the same rank.

Ra(Q, r,X, t) =
n(Q, r, X, t)

P

i n(Q, r,Xi, t)

5. EXAMPLE
The network depicted in Figure 9 has a pool of up to m Web
clients waiting to connect to a Web server. After connecting,
they send a request and receive a page in return, after which
they return to the pool of waiting clients. The cooperation
set at each queue is L = {send page , send request}. Since
Distributor never performs a send page , and Server never
performs send request , those actions are effectively blocked
when at the respective queue.

m nw ns

Distributor Server

L L

Pool WebServer

send page

send request

Figure 9: A Web server with a pool of waiting

clients.

Client
def
= (dns lookup, λdns).Clientready

Clientready
def
= (tcp connect , λconn).Clientconnected

+ (dns expire , λexpire).Client

Clientconnected
def
= (send request , λreq).Clientwaiting

+ (tcp close, λclose).Clientready

Clientwaiting
def
= (send page ,⊤).Clientconnected

Distributor
def
= (send request ,⊤).Distributor

Worker
def
= (page update , µupdate).Workerwriting

+ (send page, µsend).Workersent

Workerwriting
def
= (write page , µwrite).Worker

Workersent
def
= (write log , µwritelog).Worker

Server
def
= Worker[ns]

Q:Pool
def
= (send request ,⊤) → Q:WebServer

Q:WebServer
def
= (send page ,⊤) → Q:Pool

QNet:Sys
def
= (Q:Pool[{Client ∗ m}] ��

L
Distributor)

|| (Q:WebServer[{− ∗ nw}|{− ∗ ns}]

��
L

Server)

Clients wait in the pool, and must make a DNS lookup, then
establish a connection with the server. Only then can the
client send the request, in cooperation with the distributor,
and join the queue for service. After being serviced, the
client may re-use the same connection for the next request,
or the connection may be closed, and the client will need to
re-connect. The server has the capacity to serve ns clients,
and a further nw can be waiting in the server’s buffer. Once

those buffers are full, clients cannot send their requests until
some space becomes available.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

C
om

po
ne

nt
 c

ou
nt

s

Time, t

Pool, Client
Pool, ClientConnected

Pool, ClientReady

Figure 10: Example solutions of the number of com-

ponent types in the Pool queue from the web server

example.

The server process is made up of ns worker threads, each of
which may process any of the customers in service. After
serving a customer with the send page action, the worker
thread performs some housekeeping tasks (write log) before
returning to service other customers. An individual thread
may also update some local information, so be unavailable
to service customers until writing the changes back to disk.
Figure 10 shows some example solutions of the ODEs from
the web example. We can obtain plots of the numbers of
component-types in particular queues: in this case the Pool
queue. The web example was run with m = 30 client com-
ponents, and buffer sizes of nw = ns = 5. The explicit state
space of even this modest model far exceeds the ability of
existing discrete state-space analysers. This model alone
would require at least 4m ×4nw ×4ns discrete states to keep
track of all the possible combinations of states of client in
each of the 3 client queueing locations.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented and extended the PEPA
queues formalism as a methodology for describing process
behaviour in a queueing environment. Our main extension
has seen the introduction of ranks, where components of
the same rank in a queue are seen as a fixed distance away
from service. This idea extends the normal queueing no-
tion of queueing position by essentially allowing many cus-
tomers to occupy the same queueing position. We further
introduce an analysis technique to cope with the large state
spaces generated by the ranked PEPA queues. This analysis
technique, based on the PEPA model continuisation of [9],
allows PEPA queues to be transformed into a series of ordi-
nary differential equations. These ODEs can be solved using
standard techniques to return plots of component counts in
given queues in a network.
This represents preliminary work in a new area of behavioural
queues, and we would like to develop it by formalising the
generation of ODEs. As future work, we would also like to
perform comparisons with modelling styles and results from
related fluid formalisms such as fluid queueing networks [10],
FSPNs [11, 12] and continuous Petri nets [13]. Although, in

these cases we will not need most of the behavioural features
of Continuous PEPA Queues.

7. REFERENCES
[1] L. Kleinrock, Queueing Systems, Volume I: Theory.

John Wiley & Sons, 1975.

[2] L. Kleinrock, Queueing Systems, Volume II: Computer
Applications. John Wiley & Sons, 1976.

[3] A. Argent-Katwala and J. T. Bradley, “PEPA Queues:
Capturing customer behaviour in queueing networks,”
in QAPL’07, 5th Workshop on Quantitative Aspects of
Programming Languages (Preliminary Proceedings),
pp. 7–23, March 2007.

[4] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo,
“PEPA nets: A structured performance modelling
formalism,” Performance Evaluation, vol. 54, no. 2,
pp. 79–104, 2003.

[5] A. Argent-Katwala and J. T. Bradley, “A Continuous
State Space Approximation for PEPA Queues,” in
Process Algebra and Stochastically Timed Activities
2006, June 2006.

[6] J. Hillston, A Compositional Approach to Performance
Modelling, vol. 12 of Distinguished Dissertations in
Computer Science. Cambridge University Press, 1996.

[7] J. T. Bradley, “Semi-Markov PEPA: Modelling with
generally distributed actions,” International Journal of
Simulation, vol. 6, pp. 43–51, January 2005.

[8] M. Ajmone Marsan, G. Conte, and G. Balbo, “A class
of generalized stochastic Petri nets for the
performance evaluation of multiprocessor systems,”
ACM Transactions on Computer Systems, vol. 2,
pp. 93–122, May 1984.

[9] J. Hillston, “Fluid flow approximation of PEPA
models,” in QEST’05, Proceedings of the 2nd
International Conference on Quantitative Evaluation
of Systems, (Torino), pp. 33–42, IEEE Computer
Society Press, September 2005.

[10] A. J. Field and P. G. Harrison, “An Approximate
Compositional Approach to the Analysis of Fluid
Queue Networks,” in Performance’07, 26th
International Symposium on Computer Performance,
Modelling, Measurements and Evaluation, (Cologne),
Elsevier, 2007. (To appear).

[11] G. Horton, D. Nicol, V. Kulkarni, and K. Trivedi,
“Fluid stochastic Petri nets: Theory applications and
solution techniques,” European Journal of Operational
Research, vol. 105, pp. 184–201, February 1998.

[12] G. Ciardo, D. Nicol, and K. Trivedi, “Simulation of
fluid stochastic Petri nets,” IEEE Transactions on
Software Engineering, vol. 25, pp. 207–217,
March/April 1999.

[13] M. Silva and L. Recalde, “Petri nets and integrality
relaxations: A view of continuous Petri net models,”
IEEE Transactions on Systems, Man, and
Cybernetics, vol. 32, no. 4, pp. 314–327, 2002.

APPENDIX

A. SEMANTICS
These rules describe how a system of PEPA Queues with
ranks evolves. We represent the buffer of an individual queue

as a list of multisets. Each element of the list represents a
single rank, and through any evolution of the network will
always have the same size. The items in the multiset are
customer components, or the blank (−) type to explicitly
represent free space in the rank.

Definition A.1. elem(R) selects one of the non-blank el-
ements of the multiset at random, with a probability propor-
tionate to the number of that element in the multiset. It is
undefined if R only contains blanks.

Definition A.2. rα(P) is the apparent rate function, as
defined in [6].

Definition A.3. r′α(A) is a secondary apparent rate func-
tion, for queue routing actions. α must be a routing action
for Q:A and r′α(A) is the sum of the rates of all the enabled
α-activities in the queueing network, for Q:A in the present
state. It does not include routing actions leading to a queue
with a full buffer.

Customer alone

This rule governs a customer evolving independently, any-
where in the queue. Note that this only allows actions that
are not in the queue’s cooperation set. Customers that are
not in service may not perform those actions, and customers
that are in service perform them via rule Local cooperation.

P
(α,λ)
−→ P ′

P∈R,α/∈L

Q : A[. . . |R| . . .] ��
L

S
(α,λ)
−→ Q : A[. . . |R′| . . .] ��

L
S

where R′ = R − {|P |} + {|P ′ |}
Server alone

The server process may perform actions not in the queue
cooperation set independently, no matter the state of the
buffer.

S
(α,λ)
−→ S′

α/∈L

Q : A[. . .] ��
L

S
(α,λ)
−→ Q : A[. . .] ��

L
S′

Local cooperation

Only the head of the queue may cooperate with the server
process for actions in L, and they must perform them to-
gether.

P ��
L

S
(α,λ)
−→ P ′ ��

L
S′ Q : A 6

α
7−→

α∈L,P∈R

Q : A[. . . |R] ��
L

S
(α,λ)
−→ Q : A[. . . |R′] ��

L
S′

where R′ = R − {|P |} + {|P ′ |}
Server routing 1

Declares that in order for a customer to move between queues,
the server component at the first queue must perform a rout-
ing action, leading to a queue which has a rank with at least
one space. R is the rank closest to the front with any spaces.
By filling up from the front we ensure that any ranks behind
R (denoted with the shorthand Xs) are completely empty.
n is the largest such n to describe the blank spaces in Q : B.
Routing actions may not appear in the inter-queue cooper-
ation set, LQ. The definition of rate is explained below.

SA
(α,λ)
−→ S′

A Q : A
(α,λq)

7−→ Q : B

α /∈ LA, α /∈ LQ,

n > 0, P ∈ R0,
− ∈ R

(Q : A[Rn| . . . |R0] ��
LA

SA) ��
LQ

(Q : B[Xs|R| . . .] ��
LB

SB)
(α,rate)
−→

(Q : A[R′
n| . . . |R

′
0] ��

LA
S′

A) ��
LQ

(Q : B[Xs|R′| . . .] ��
LB

SB)

where:

rate =
λ

rα(SA)

λq

r′α(A)
min(rα(SA), r′α(A)))

Ci = elem(Ri) for 0 < i ≤ n

R′
n = Rn − {|Cn |} + {| − |}

R′
i = Ri − {|Ci |} + {|Ci+1 |} for 0 < i < n

R′
0 = R0 − {|P |} + {|C1 |}

R′ = R − {|− |} + {|P |}

Server routing 2

As Server routing 1 but where the routing action leads to
the same queue. Again, R is the foremost rank with an
empty slot, with Xs representing any completely empty
ranks behind R. The n + 1 ranks in front of R are denoted
Ri, 0 ≤ i ≤ n. We must take particular care in the case
where R is completely empty, as P then actually joins rank
Rn. We require that there is an empty slot, even though the
customer does not fill it, to avoid unduly prioritising local
routing. Otherwise, a customer could be allowed to move
to the back of the queue it has just left even while arrivals
from other queues are disallowed.

SA
(α,λ)
−→ S′

A Q : A
(α,λq)

7−→ Q : A
α/∈LA, n>0

(Q : A[Xs|R|Rn| . . . |R0] ��
LA

SA)
(α,rate)
−→ (Q : A[Xs|R′|R′

n| . . . |R
′
0] ��

LA
S′

A)

where:

rate =
λ

rα(SA)

λq

r′α(A)
min(rα(SA), r′α(A)))

Ci = elem(Ri) for 0 < i < n

CR =

(

P if R is completely empty

elem(R) otherwise

R′
n = Rn − {|Cn |} + {|CR |}

R′
i = Ri − {|Ci |} + {|Ci+1 |} for 0 < i < n

R′
0 = R0 − {|P |} + {|C1 |}

R′ =

(

R if R is completely empty

R − {|− |} + {|P |} otherwise

Coop routing 1

For a routing action that is also in the queue’s cooperation
set, the action must occur in cooperation between the lead
customer and the queue’s server. Again, routing actions may
not appear in the inter-queue cooperation set, LQ. Other-
wise, the only difference with Server Routing 1 is that P
evolves to P ′, so we place P ′ in R′, rather than P .

P ��
LA

SA
(α,λ)
−→ P ′ ��

LA
S′

A Q : A
(α,λq)

7−→ Q : B

α ∈ LA, α /∈ LQ,

n > 0, P ∈ R0,
− ∈ R

(Q : A[Rn| . . . , R0] ��
LA

SA) ��
LQ

(Q : B[Xs|R| . . .] ��
LB

SB)
(α,rate)
−→

(Q : A[R′
n| . . . |R

′
0] ��

LA
S′

A) ��
LQ

(Q : B[Xs|R′| . . .] ��
LB

SB)

where:

rate =
λ

rα(SA)

λq

r′α(A)
min(rα(SA), r′α(A)))

Ci = elem(Ri) for 0 < i ≤ n

R′
n = Rn − {|Cn |} + {| − |}

R′
i = Ri − {|Ci |} + {|Ci+1 |} for 0 < i < n

R′
0 = R0 − {|P |} + {|C1 |}

R′ = R − {|− |} + {|P′ |}

Coop routing 2

Just as for Coop routing 1, but routing to the same queue.
The equations are the same as for Server routing 2, except
the new customer is P ′, not P .

P ��
LA

SA
(α,λ)
−→ P ′ ��

LA
S′

A Q : A
(α,λq)

7−→ Q : A α ∈ LA, α ∈ LQ,
n > 0

Q : A[Xs|R|Rn| . . . |R0] ��
LA

SA
(α,rate)
−→ Q : A[Xs|R′|R′

n| . . . |R
′
0] ��

LA
S′

A

where:

rate =
λ

rα(SA)

λq

r′α(A)
min(rα(SA), r′α(A)))

Ci = elem(Ri) for 0 < i < n

CR =

(

P ′ if R is completely empty

elem(R) otherwise

R′
n = Rn − {|Cn |} + {|CR |}

R′
i = Ri − {|Ci |} + {|Ci+1 |} for 0 < i < n

R′
0 = R0 − {|P |} + {|C1 |}

R′ =

(

R if R is completely empty

R − {|− |} + {|P′ |} otherwise

For the last four rules, rate represents the rate of active
cooperation between the service component and the queue-
ing network. As in PEPA, it reflects the rate of the slower
component in the cooperation.

B. TRANSLATION
We analyse our discrete PEPA Queues by translating the
network into a completely flat PEPA model. To do this we
create a number of components to track the state of the
servers and buffers, together with an instance of each cus-
tomer component for each of the possible queueing positions
in the network.
Let Rin (X) be the set of routing actions in to queue X;
Rout (X) be the routing actions out of queue X and Ranks(A)
be the number of non-service ranks at queue A (so the ranks
are indexed 0..Ranks(A)). RSize(A, i) is the number of
queueing positions in rank i or queue A. QNames is set
containing the names of all the queues in the system.
The population trackers for a queue, A, are as follows. There
are two indices, the first is the furthest-forward (i.e. lowest
numbered) rank with an empty slot, the second is the num-
ber of customers in that rank. Recall that an action name
with no associated rate, e.g. nonemptyA1 , denotes an imme-
diate action, as described in Section 2.2. These will coop-
erate only with other immediate actions, never with timed
activities.

QA0,0
def
=

X

a∈Rin (A)

(aA0 ,⊤).QA0,1

QAi,0
def
=

X

a∈Rin (A)

(aAi ,⊤).nonemptyAi .QAi,1

+
X

A
(d,r)
7−→ B

Ranks(B)
X

k=0

(dBk ,⊤).QAi−1,RSize(A,i−1)

where 0 < i < Ranks(A)

QAi,1
def
=

X

a∈Rin (A)

(aAi ,⊤).QAi,2

+
X

A
(d,r)
7−→ B

Ranks(B)
X

k=0

(dBk ,⊤).emptyAi.QAi−1,0

where 0 < i < Ranks(A)

QAi,j
def
=

X

a∈Rin (A)

(aAi ,⊤).QAi,j+1

+
X

A
(d,r)
7−→ B

Ranks(B)
X

k=0

(dBk ,⊤).QAi,j−1

where 0 < i < Ranks(A); 1 < j < RSize(A, i)

QAi,RSize(A,i)
def
=

X

a∈Rin (A)

(aAi ,⊤).QAi+1,0

+
X

A
(d,r)
7−→ B

Ranks(B)
X

k=0

(dBk ,⊤).QAi,RSize(A,i)−1

where 0 < i < Ranks(A)

QARanks(A),Full
def
=

X

A
(d,r)
7−→ B

Ranks(B)
X

k=0

(dBk ,⊤).QARanks(A),Full−1

where Full = RSize(A, Ranks(A))

The server components are altered to account for the ex-
panded names for routing actions and to ensure that the
local cooperation actions are distinct for each queue. So, for
a server component, S, residing at queue A, we make a new
component SA. The local cooperation set at A is LA. For
each action-type, a, that S performs, there are three cases:

1. a /∈ Rout (A) ∧ a /∈ LA

2. a /∈ Rout (A) ∧ a ∈ LA

3. a ∈ Rout (A)

For case 1, we don’t need to modify the action at all. For
case 2, we add the queue name to the action name, to ensure
this action cannot occur when a customer is at a different
queue. For case 3, we replace each occurrence of a with a
choice of new action-types representing all the destination
ranks the action could lead to. We denote these four sets of
action names L1, L2, L3 respectively.

SA
def
=

X

S
(a,r)
−→S′∧a∈L1

(a, r).S′
A

+
X

S
(a,r)
−→ S′∧a∈L2

(aA, r).S′
A

+
X

S
(a,r)
−→ S′∧a∈L3

X

A
a

7−→B

Ranks(B)
X

k=0

(aBk , r).S′
A

We repeat the above translation for all the derivative states
of S.
For each queue, A, with 0 ≤ i ≤ Ranks(A):

RankAi
def
= emptyAi .Rank′

Ai + backAi .RankAi

+
X

c∈Rout (A)

(cA,⊤).Rank′′
Ai

Rank′
Ai

def
= nonemptyAi .RankAi + backAi .Rank′

Ai

+
X

c∈Rout (A)

(cA,⊤).Rank′
Ai

Rank′′
Ai

def
= forwardAi .RankAi

Thus for each queue, A, with n = Ranks(A) and L =
Rout (A):

RanksA
def
= RankA0 ��

L
RankA1 . . . ��

L
RankAn

For each customer component, P we make a version of that
component in each queueing position of each queue. PA0
represents the customer, P, in service at queue A; PAi , for
1 ≤ i ≤ Ranks(A) is customer P waiting in rank i of A.
When in service, the translated component has all the be-
haviour of P, but routing actions lead to the appropriate
next queueing rank. While a customer waits, we passively
allow all routing actions, and promote one of the customers
in the rank using the mechanism described in Section 3.
We partition the actions a customer performs into three sets
at each queue, A:

LA
C1 : Actions that are not in the local cooperation set and

are not outbound routing actions. a /∈ LA∧a /∈ Rout (A).

LA
C2 : Actions that are in the local cooperation set, but are

not outbound routing actions. a ∈ LA ∧ a /∈ Rout (A).

LA
C3 : Actions that are outbound routing actions. a ∈ Rout(A).

The customer at the front gets to actually perform the ac-
tions, and change state. For actions in LA

C1 , waiting cus-
tomers also perform the actions in straightforward manner.
For actions in LA

C2 waiting customers cannot perform them,
but must passively witness any of the local cooperation ac-
tions for any queue. Actions in LA

C3 are the most compli-
cated. Waiting customers must passively witness these ac-
tions, then potentially move forward to the rank in front.
For this we use the intermediate ‘pot’ state, which imme-
diately offers both forward and back actions. This is as
described in Section 3.

PA0
def
=

X

P
(a,r)
−→P′∧a∈LA

C1

(a, r).P′
A0

+
X

P
(a,r)
−→P′∧a∈LA

C2

(aA, r).P′
A0

+
X

P
(a,r)
−→P′∧a∈LA

C3
∧A

a
7−→B

Ranks(B)−1
X

k=0

(aBk , r).P′
Bk+1

PAi
def
=

X

P
(a,r)
−→P′∧a∈LA

C1

(a, r).P′
Ai

where 1 < i ≤ Ranks(A)

+
X

X∈QNames

X

a∈LX

(aX ,⊤).PAi

+
X

P
(a,⊤)
−→ P′∧a∈LA

C3
∧A

a
7−→B

Ranks(B)−1
X

k=0

(aBk ,⊤).Ppot
Ai

Ppot
Ai

def
= backAi .PAi + forwardAi .PAi−1

Inspecting the queueing system equation of the original model,
we place the customers at the correct initial positions. Thus
the customers are represented by a cooperation over all of
the routing actions, Lr .

Customers
def
= PXi ��

Lr
. . . P′

Yj

Lr =
[

Z∈QNames

[

c∈Rin(Z)

[

0≤i≤Ranks(Z)

{cZi}

Suppose QNames = {A, B, C, . . . , Z}, with server compo-
nents is SA, SB, . . . , SZ and the intra-queue cooperation set
is LQnet . The foremost rank with spaces in in queue X is
xX , and there are yX customers waiting in that rank. The
servers, population trackers and queue rank managers are
defined as follows:

Servers
def
= SA ��

LQnet
SB . . . ��

LQnet
SZ

Trackers
def
= QAxA,yA

��
Lr

QBxB ,yB
��
Lr

. . . ��
Lr

QZxZ ,yZ
��
Lr

Ranks
def
= RanksA ��

Lr
RanksB . . . ��

Lr
RanksZ

The trackers and ranks communicate with one another over
all the routing actions, and also the signals for empty and
nonempty at each rank. We call this set Ltrack :

Ltrack = Lr ∪
[

X∈QNames

Ranks(X)
[

i=0

{emptyXi ,nonemptyXi}

Queues
def
= Trackers ��

Ltrack

Ranks

The servers, queues and customers cooperate over all the
routing actions, with the union of all the cooperation sets at
each queue. Recall that these local cooperation actions were
decorated with the name of the queue where they operate.

Lsys = Lr ∪
[

X∈QNames

[

a∈LX

{aX }

The whole system is then given by:

Sys
def
= Customers ��

Lsys
(Servers ��

Lsys
Queues)

