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ABSTRACT
We consider a Markovian multiserver queue with two types
of impatient customers, high and low priority ones. The
first type of customers has a non-preemptive strict priority
over the other type. After entering the queue, a customer
will wait a random length of time for service to begin. If
service has not begun by this time he will renege and be
lost. We focus on deriving performance measures in terms
of the sojourn times of customers in queue, either before
starting service, or before reneging. We provide an exact
analysis for systems where customers within each type are
served under the FCFS discipline of service.

Keywords multiserver queues, queueing delays, reneging,
non-preemptive priority.

1. INTRODUCTION
In this paper, we consider a Markovian multiserver queue-

ing system with two types of impatient customers and a
non-preemptive priority schema. Temporal limitation or
reneging (or also abandonment) is an important feature in a
wide variety of situations that may be encountered in real-
time computing, manufacturing systems of perishable goods,
telecommunication systems, call centers, etc. Models incor-
porating reneging are therefore closer to reality, and neces-
sary to obtain more accurate analysis. The authors in [13]
define the impatience through three different forms. The
first is balking, that is, the reluctance of a customer to join
a queue upon arrival. The second is reneging, which means
the reluctance to remain in queue after joining and wait-
ing. Finally, the third is jockeying between separate queues.
Jockeying means that one customer has the possibility to
change to one queue while he is waiting in another. In this
paper, we only consider the second form of impatience. In
[21], the author refines the definition of the second form of
impatience by distinguishing two models. In the first model,
a customer keeps his deadline only until the beginning of his
service, and will remain in system while being served until
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he completes all service requirements. In the second model,
a customer retains his deadline until the end of service, so
he may interrupt his service because he has missed his dead-
line. In this paper, we are dealing with the former model of
customer behavior, i.e., once customers get access to a server
they are no longer impatient. To underline the importance
of the abandonment modeling in the call center field, the au-
thors in [11] and in [20] give some numerical examples that
point out the effect of abandonment on performances.

The literature on queueing models with reneging focuses
especially on performance evaluation. We refer the reader
to [2], [12], and references therein for simple models assum-
ing exponential reneging times. In [12], the authors study
the subject of Markovian abandonments. They suggest an
asymptotic analysis of their model under the heavy-traffic
regime. Their main result is to characterize the relation be-
tween the number of servers, the offered load and system
performances such as the probability of delay and the prob-
ability to abandon. This can be seen as an extension of
the results of [14] by adding reneging. The author in [8]
derived the limiting distribution of the virtual waiting time
in a GI/G/1 queue. A simpler form of the latter distribu-
tion is obtained by [10] for an M/G/1 queue. A number
of approximations for the probability to abandon are devel-
oped in [4]. The author have considered a simple Marko-
vian multiserver queue but with generally distributed im-
patience times. Other works have treated the impatience
phenomenon under various assumptions. Related studies
include those by [1], [3], [5], [26], and references therein.

The second central feature of the model under consider-
ation in this paper is the priority schema. Priority mecha-
nisms are a useful scheduling method that allows different
customer types to receive differentiated performance levels.
Priority queueing comes up in many applications such as
communication networks with differentiated services, call
centers with VIP and less important customers, and more.
Priority schemes are in addition known for their ease of
implementation which explain their prevalence in practice.
Much of queueing literature is devoted to analyzing priority
queues. Most papers are restricted to two priority classes.
There are two possible refinements in priority situations,
namely preemption and non-preemption. In the preemptive
case, a customer with high priority is allowed to enter ser-
vice immediately even if another one with lower priority is
already present in service at his arrival epoch. On the other
hand, a priority discipline is said to be non-preemptive if
there is no interruption. A customer with higher priority just



goes to the head of the queue and waits for his turn. In this
work, we are dealing with non-preemptive priority policies.
In the following, we mention some of research works on pri-
ority queues. We refer the reader to [18] and [9] for a simple
Markovian non-preemptive queue where all classes have the
same mean service time. The author in [25] considers mul-
tiserver non-preemptive priority systems with a Markovian
arrival process, service times having phase type distribu-
tions and both finite and infinite queueing space. Other ref-
erences considering more complicated models include those
by [17], [22], and [24]. As for preemption schemes, we re-
fer the reader to [15], and [23] references therein. In [23],
the authors derived approximations for a wide range of rel-
evant performance characteristics, such as the moments of
the number of customers of a certain type, in a Markovian
queue where customers have different mean values of service
times. The work in [15] introduces a new technique to reduce
the Markov chain dimensionality of an M/PH/s model with
an arbitrary number of preemptive-resume priority classes.

Although reneging and priority systems have each received
attention separately, few papers have addressed both of them.
We refer the reader to [7], where the authors derived several
performance measures for an M/M/1 queue with two classes
of impatient customers in which class 1 customers have im-
patience of constant duration, and class 2 customers have
no impatience and low priority level. An extension of the
latter model is done in [6] for general distributed impatience
times.

In this paper, we consider a Markovian multiserver queue
with two classes of impatient customers, high and low pri-
ority ones. We assume common exponential distributions
for service times as well as times before reneging for both
customer types. We derive various performance measures
related to queueing delays. To the best of our knowledge,
the derived formulas for low priority customers are new in
the literature.

The remainder of this paper is structured as follows. In
Section 2, we describe the queueing model under considera-
tion. In Section 3, we give the definitions of the performance
measures of interest and develop some preliminary results
that would help us in the rest of the analysis. In Sections 4
and 5, we present the results of performance evaluation when
high and low priority customers are served under the FCFS
basis, respectively. In Section 6, we give some concluding
remarks.

2. BASIC MODEL
Consider a queueing model with two classes (types) of

customers: important customers type A, and less impor-
tant ones type B. The model consists of two infinite queues
type A and B, and a set of s parallel, identical servers. All
servers are able to handle all types of customers. The sys-
tem is work-conserving, i.e., a server is never forced to be
idle with customers waiting. So upon arrival, a customer is
addressed by one of the available servers, if any. If not, the
customer must join one of the queues. The scheduling policy
of service assigns customers A and B to queues A and B,
respectively. Customers A (waiting in queue A) have prior-
ity over customers B (waiting in queue B) in the sense that
agents are providing assistance to customers A first. The
priority rule is non-preemptive, which simply means that a
server currently serving a B customer, while a new type A
arrival enters system, will complete this service before turn-

ing to queue A customer. Within each queue, customers are
served in order of their arrivals, i.e., under the FCFS man-
ner. Arrival processes of type A and B customers follow a
Poisson process with rates λA and λB , respectively. Let λT

be the total arrival rate, λT = λA + λB . Successive service
times are assumed to be i.i.d., and follow a common expo-
nential distribution with rate µ for both types of customers.
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Figure 1: Basic Model

In addition, we let customers be impatient. After entering
the queue, a customer will wait a random length of time for
service to begin. If service has not begun by this time he will
renege (leaves the queue). Times before reneging, for both
customer types, are assumed to be i.i.d. and exponentially
distributed with a common rate, say γ. Finally, retrials
are ignored, and reneging is not allowed once one customer
starts his service. Following similar arguments, the behav-
ior of the system can be viewed as a two-class M/M/s + M
queueing system. The symbol M after the + is to indi-
cate the Markovian assumption for times before reneging.
The resulting model is referred to as the Basic Model, and
is shown in Figure 1. Note that owing to abandonments
(reneging), the system is unconditionally ergodic.

3. NOTATIONS AND PRELIMINARIES
In this section, we first present notations and definitions

of the performances we are interested in. The performance
measures are defined in terms of the waiting time in queue.
Second, we present some preliminary derivations that we
will need along the way.

3.1 Notations
We denote by m the type of one customer, m ∈ {A, B}.

In a distant future, we define the following random variables.

• Qm is the stationary mean number of type m cus-
tomers in queue m.

• X is the unconditional stationary queueing delay of a
customer (regardless of his type).

• Xm is the stationary queueing delay of type m cus-
tomers.

• Xm
s is the conditional stationary queueing delay of a

type m customer, given that he will enter service. We
denote by P m

s the stationary probability to enter ser-
vice for type m new arrivals.

• Xm
r is the conditional stationary queueing delay of a

type m customer, given that he will renege in queue.



Also, let P m
r be the stationary probability to abandon

while waiting in queue for type m customers.

• Xm
d is the conditional stationary queueing delay of a

type m customer, given that he has to wait (all servers
are busy). The probability that a new arrival has to
wait is type of the customer independent and is re-
ferred to as the probability of delay, say Pd.

• Xm
s,d is the conditional stationary queueing delay of

a type m customer, given that he will enter service
and that he was queueing. We denote by P m

s,d the
probability that a type m waiting customer in queue
will enter service.

In this paper, we compute the moments of the distribu-
tions of Xm

s and Xm
r . We also derive the expressions of

the probabilities Pd and P m
r . By doing so, one may easily

deduce the analysis for all remaining random variables we
have defined. For k ≥ 0, we denote by E(Y k) the kth order
moment of a given random variable Y .

Since the arrival processes are Poisson, the probability
that a new arrival is of type m is λm

λA+λB . So,

E(Xk) =
λA

λA + λB
·E(XA,k) +

λB

λA + λB
·E(XB,k), k ≥ 0.

(1)
A customer who does not renege will necessarily enter

service, then P m
s + P m

r = 1. For m ∈ {A, B}, one may
write

E(Xm,k) = P m
s · E(Xm,k

s ) + P m
r · E(Xm,k

r ), k ≥ 0. (2)

Upon arrival, a customer is immediately addressed by one
of the available servers, if any. If not, he has to wait and
joins one of the queues (with probability Pd). Thus,

E(Xm,k
d ) =

E(Xm,k)

Pd

, k ≥ 0. (3)

For a customer who joins the queue, there are two possi-
bilities: either he reneges while waiting in queue, or he gets
service. So, Pd = P m

r + P m
s,d. Also

E(Xm,k
d ) = P m

s,d · E(Xm,k
s,d ) + P m

r · E(Xm,k
r ), k ≥ 0, (4)

which allows to determine E(Xm,k
s,d ), for k ≥ 0.

3.2 Preliminaries
We start by computing the stationary probabilities of sys-

tem states. We denote by nA, nB and nT the numbers
in queues of customers type A, type B and the total one
nT = nA+nB , respectively. Computing the stationary prob-
abilities for nB or the couple (nA, nB) is a hard task. We
only consider the processes {nT (t), t > 0} and {nA(t), t > 0}
and compute their corresponding stationary probabilities.
Recall that all stationary probabilities exist due to the er-
godicity condition (which holds for any γ > 0). For the rest
of the paper, an empty sum is being interpreted as zero, and
an empty product is being interpreted as one.

Let us start by considering the process {nT (t), t > 0}.
Service times as well as times before reneging are memory-
less and common for both types of customers. Thereafter
due to the work-conserving property of our system, the to-
tal number of customers in queue does not depend on the
discipline of service. With regard to the stationary probabil-
ities of nT , our system is equivalent to a single multiserver
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Figure 2: Birth-death process of the total number

of customers in system

queue with a single class of customers. The arrival process is
Poisson with intensity λT = λA +λB . Taking the associated
birth-death process as shown in Figure 2, one may obtain in
the long run a set of infinite recursive relations relating the
steady state probabilities. Proceeding to solve by iteration
and using the normalization condition, we get the solutions
p(nT ) = q(nT + s), where

q(i) =
λi

i! µi
q(0), for 0 ≤ i ≤ s, (5)

q(i) =
λi

s!µs
Qi−s

j=1(s µ + j γ)
q(0), for i > s,

and q(0) is the stationary probability to have no customers
in system (in service and in queue). It is given by

q(0) =

 

s
X

i=0

λi

i! µi
+

1

s! µs

∞
X

i=s+1

λi

Qi−s

j=1(s µ + j γ)

!

−1

. (6)

So, the probability of delay Pd can be determined by

Pd = 1 −

s−1
X

k=0

q(k). (7)

To compute the stationary probabilities for {nA(t), t > 0},
we consider a special two-dimension Markov chain as shown
in Figure 3. The state of the system is defined by the total
number of customers in system (regardless of their type) if
less than s customers are in system (i.e., all customers are
in service), and by the couple (nA, nB) if s customers or
more are in system (i.e., all servers are busy). During the
stationary regime, we have from the Markov chain presented
in Figure 3

p(nA = k) =
(λA)k

Qk

j=1 (sµ + jγ)
p(nA = 0), for k ≥ 0,

(8)
where p(nA = 0) is the probability to have all servers busy
and no type A customers waiting in queue.

To get p(nA = 0), we come back to the modeling of our
system using the birth-death process of Figure 2. It is clear
that the probability to be in state i, 0 ≤ i ≤ s − 1, in
the Markov chain of Figure 3 is equivalent to that already
derived in Equation (5) for the birth-death process of Figure
2, q(i). The normalization condition for our Markov chain
may be written as

s−1
X

i=0

p(i) +
∞
X

k=0

∞
X

i=0

p(nA = k, nB = i) = 1. (9)

Recall that p(nA = k) =
P

∞

i=0 p(nA = k, nB = i), for k ≥ 0.
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Figure 3: Markov chain for the number of customers

in queue

Combining thereafter Equations (8) and (9) leads to

s−1
X

k=0

q(k) +

 

∞
X

k=0

(λA)k

Qk

j=1(sµ + jγ)

!

· p(nA = 0) = 1, (10)

or equivalently

p(nA = 0) =

 

1 −

s−1
X

k=0

q(k)

!

·

 

∞
X

k=0

(λA)k

Qk

j=1(sµ + jγ)

!

−1

.

(11)
Having in hand p(nA = k) and p(nT = k) for k ≥ 0, the

stationary mean number in queue of type A customers, QA,
and that of both customer types, QT , are therefore given by

QA =
∞
X

k=1

k · p(nA = k), and QT =
∞
X

k=1

k · p(nT = k). (12)

As a consequence, the stationary mean number in queue of
type B customers, QB , may be deduced by QB = QT −QA.

We are now ready to compute the stationary probability
to renege and that to enter service for a type m new arrival.
The quantity P m

r can be viewed as the proportion of cus-
tomers who renege, i.e., the fraction of the stationary mean
rate of abandoned customers over that of arrivals. Thus, it
is calculated as

P m
r =

γ · Qm

λA
. (13)

The probability to enter service is only the complementary
probability (no possible events of blocking or balking). A
customer who does not indeed renege, will necessarily enter
service. So,

P m
s = 1 − P m

r . (14)

4. ANALYSIS FOR HIGH PRIORITY CUS-
TOMERS

In this section, we tackle the quantitative analysis for high
priority customers, namely type A customers. In [27], the
author has derived the first and second moments of the dis-
tributions of the random variables XA

s and XA
r in the case of

a finite single queue with a single class of customers. Owing
to his higher priority, the quantitative analysis of XA

s and
XA

r for our two-class model is not far from that analysis.
Our approach is based on system state probabilities seen

by a randomly chosen new arrival A. From the PASTA
property (Poisson Arrivals See Time Averages), these prob-
abilities coincide with those seen by an outside random ob-
server, i.e., simply the probabilities that the system is in a
given state at a random instant. The PASTA property is
based on the memoryless property of the Poisson process,
which allows to generate a sequence of arrivals that take a
random look at the system. We refer the reader to [19] for
further explanation, and [28] for a rigorous proof.

Consider a new arrival A who finds all servers busy and
nA waiting customers ahead of him in queue A, nA ≥ 0. It
goes without saying, for the remaining cases (at least one
server is idle), that our customer will get service immedi-
ately. Because of their lower priority, type B customers
already waiting in queue B, as well as those who will arrive
after our arrival A of interest, will not affect the sojourn time
in queue of the latter. Conditioning on the system state, the
new arrival will start his sojourn at position nA +1 in queue
A. Two cases are possible. The first is that the customer of
interest does not renege until starting service with a given
conditional probability, say ΨnA+1. The second case is that
he reneges at one of the positions he occupies during his
sojourn in queue A, with probability (1 − ΨnA+1). Such
a situation may be analyzed by a pure death process with
state-dependent death rates, see Figure 4. We do not con-
sider birth rates because all future type A arrivals have no
priority over the customer of interest (queue A is working
under the FCFS discipline of service).
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Figure 4: A new type A arrival who finds nA cus-

tomers in queue A

The process moves from state i to state i−1, 1 ≤ i ≤ nA+
1, further to a departure event, i.e., further to either a service
completion with rate sµ, or an abandonment with a rate
equal to the number of waiting customers times the reneging
rate, iγ. The memoryless property of service times as well as
times before reneging allows us to state the following claim.
When being in state i, the probability that the process moves
down due to the event of reneging of our customer of interest
is given by γ

sµ+iγ
. Next, the conditional probability, ΨnA+1,

that our customer does not renege while waiting in queue,
given the system state he sees at his arrival epoch, may be



written as

ΨnA+1 =

nA+1
Y

i=1

„

1 −
γ

sµ + iγ

«

. (15)

In other words, the latter event means that our customer
does not renege in all possible queue positions he may oc-
cupy, starting from position nA+1 until position 1 and enters
service afterwards.

Let us now define the conditional random variable UnA+1

denoting the time it takes to empty queue A of nA +1 wait-
ing customers (without considering eventual future arrivals).
Our customer will thereafter enter service with probability
ΨnA+1 in UnA+1 units of times. Conditioning on a state
seen by a new arrival A and averaging thereafter over all
possibilities, the k-th moment of the sojourn time in queue
A and being served afterwards is given by

P

∞

nA=0 p(nA) ·

ΨnA+1 · E(Uk
nA+1), where E(Uk

nA+1) denotes the k-th or-
der moment of UnA+1. Thus, the k-th order moment of the
conditional random variable XA,k

s given service is

E(XA,k
s ) =

P

∞

nA=0 p(nA) · ΨnA+1 · E(Uk
nA+1)

P A
s

. (16)

It remains for us to derive the expression of E(Uk
i ), i ≥ 1.

The random variable Ui can be viewed as the first passage
time at state 0 starting from state i in the pure death process
of Figure 4. Then, the distribution of Ui is the convolution
of i independent exponential distributions with parameters
sµ+γ, sµ+2γ, ..., and sµ+ iγ, which is an hypoexponential
distribution. So, all moments of Ui may be derived in a
closed form. We only give here its mean and variance. They
are

Pi

j=1
1

sµ+jγ
and

Pi

j=1
1

(sµ+jγ)2
, respectively.

Let us now focus on deriving E(XA,k
r ). Assume that our

customer of interest will renege while waiting in queue A,
and let VnA+1 denote the random variable measuring his so-
journ time in queue before reneging. Again, conditioning
on a state seen by a new arrival A and averaging there-
after over all possibilities, the k-th moment of the sojourn
time in queue A and not being served afterwards is given
by
P

∞

nA=0 p(nA) · E(V k
nA+1), where E(V k

nA+1) denotes the
k-th order moment of VnA+1. Thus, the k-th order of the
conditional random variable XA,k

r given reneging is

E(XA,k
r ) =

P

∞

nA=0 p(nA) · E(V k
nA+1)

P A
r

. (17)

Note that computing the moments of Vi involves hypoex-
ponential distributions, and are also easy to derive. One may
see that the probability to abandon at position j, 1 ≤ j ≤ i,
is ( 1 − γ

sµ+iγ
) · (1 − γ

sµ+(i−1)γ
) ... (1 − γ

sµ+(j+1)γ
) · γ

sµ+jγ
.

Knowing that our customer will renege at position j, the
time to abandon, say Vi(j) , is the sum of i− j + 1 indepen-
dent exponential random variables with parameters sµ+ iγ,
sµ+(i−1)γ, ..., and sµ+ jγ, which has an hypoexponential
distribution. Averaging on all possibilities, we get

E(V k
i ) =

i
X

j=1

0

@

i
Y

k=j+1

(1 −
γ

sµ + kγ
)

1

A ·
γ

sµ + jγ
· E(V k

i (j)).

(18)
Up to now, we computed the k-th order moment of the

random variables XA
s and XA

r . As for the stationary uncon-
ditional queueing delay of a customer A, E(XA,k), it is given
using the relation E(XA,k) = P A

s ·E(XA,k
s )+P A

r ·E(XA,k
r ).

To close the analysis for type A customers, we give the ex-
pression of the k-th order moment of the conditional sta-
tionary queueing delay of a customer A, given all servers

are busy. It is simply computed as E(XA,k
d ) = E(XA,k)

Pd
.

5. ANALYSIS FOR LOW PRIORITY CUS-
TOMERS

In this section, we focus on evaluating the performance
measures for type B customers, which is to the best of
our knowledge new. We specifically address the quantita-
tive analysis of XB

s and XB
r . In the following, we start by

deriving the expression of the kth order moment of XB
s .

Knowing that all servers are busy, let nA and nB be the
number of types A and B waiting customers seen by a new
type B arrival in queues A and B, respectively. In our anal-
ysis, we ignore all future type B arrivals because the disci-
pline of service within queue B is FCFS. However, all future
type A arrivals have to be considered because of their higher
priority over the customer of interest. We note that the so-
journ time in queue of this customer does not depend on
the couple (nA, nB) but on the total number of customers
ahead of him, nT = nA +nB (common distribution of times
before reneging for both customer types). Our customer of
interest will start his sojourn in queue B at a total posi-
tion nT + 1 = nA + nB + 1 for both queues. Before leaving
the queue, he will occupy queue positions ahead of position
nT + 1, but also he may occupy those behind his initial po-
sition nT + 1. The associated birth-death process is shown
in Figure 5. The state 0 in the latter corresponds to have no
waiting customers in queues A and B. We ignore the birth
rate at state 0 because we are interested on the first passage
time at that state, starting at state nT + 1. This duration
corresponds indeed to the epoch at which the queue becomes
empty and our customer will therefore start service (in case
he does not renege in between).

Let us now define the random variable RnT +1 as the time
it takes to empty the queue of the nT + 1 already waiting
customers, as well as all future type A customers (who arrive
in between). Recall that a customer leaves the queue by
either starting service, or by reneging.
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Figure 5: A new type B arrival who finds nT cus-

tomers in queues A and B

By considering a general birth-death process, the authors
in [16] gave closed-form expressions for any moment of order
k ≥ 1 of several random variables related to first passage
times. We use their results in our context here to get the
moments of RnT +1. To simplify the presentation, we define
the potential coefficients, say πi, of the birth-death process
presented in Figure 5, as follows.

π0 = 1, and πi =
(λA)i

Qi

j=1(sµ + jγ)
, for i ≥ 1. (19)



From [16], the mean, E(RnT +1), and variance, V ar(RnT +1),
of the random variable RnT +1 are given by

E(RnT +1) =
1

λA

nT +1
X

i=1

1

πi−1

∞
X

j=i

πj , (20)

V ar(RnT +1) =

nT +1
X

i=1

0

@

2

λAπi−1

∞
X

j=i+1

1

λAπj−1

0

@

∞
X

k=j

πk

1

A

21

A

(21)

+

nT +1
X

i=1

 

1

(λA)2π2
i−1

 

∞
X

k=i

πk

!2!

.

Note that one may derive all higher order moments of RnT +1,
which allows us to derive their full distributions. However,
the expressions would be cumbersome. For presentation is-
sues, we content ourself with only the mean and variance.

Conditioning again on a state seen by a new arrival B and
averaging thereafter over all possibilities, the k-th moment
of the sojourn time in queue B and being served afterwards
is given by

P

∞

nT =0 p(nT ) ·ΥnT +1 ·E(Rk
nT +1), where ΥnT +1

is the probability that a new arrival B who finds nT waiting
customers in queues A and B does not renege until starting
service. Hence, the k-th order moment of the conditional
random variable XB,k

s given service is

E(XB,k
s ) =

P

∞

nT =0 p(nT ) · ΥnT +1 · E(Rk
nT +1)

P B
s

, (22)

where the quantities p(nT ) are given using Equations (5) and
(6). To explicitly get E(XB,k

s ), it remains for us to compute
ΥnT +1. Roughly speaking, the quantity ΥnT +1 is the prob-
ability that the customer of interest does not renege in all
the positions he occupies up to starting service. Deriving
ΥnT +1 is more complicated than that for type A customers.
The complexity comes from uncertain future type A cus-
tomers who arrive and get the priority over our customer
B of interest. During his sojourn in queue, the latter will
occupy positions nT + 1, nT , ..., and position 1 at least for
one time. In addition, he may occupy or not any position
(nT + 2, nT + 3,...). In other words, his position may take
any strictly non-negative integer value, see Figure 5. If he
occupies one of those positions, the number of times he did
that is random. To be rigorous, let ri be the discrete ran-
dom variable denoting the number of times the customer of
interest occupies a total position i in queues, i ≥ 1. Saying
that our customer does not renege until being served means
that he does not renege in any position i he may occupy ev-
ery time he visits that position, i.e., ri times. By averaging
on all possibilities (number of visits j at a given position
i), the probability that our customer does not renege at a
position i is

P

∞

j=1 p(ri = j) · (1− γ

sµ+iγ
)j , for i ≥ 1. So, the

probability ΥnT +1 may be written as

ΥnT +1 =

∞
Y

i=1

 

∞
X

j=1

p(ri = j) · (1 −
γ

sµ + iγ
)j

!

. (23)

In what follows, we go on to compute the probabilities
p(ri = j) using the notion of ruin probabilities. We first
start with some preliminaries that will help us to derive these
quantities.

Consider again the birth-death process presented in Fig-
ure 5. Let kηi j be the ruin probability that the particle,

starting at i, reaches j first before k, 1 ≤ j < i < k. More-
over, let kνi j be the ruin probability that the process, start-
ing at i, reaches j first before k, 0 ≤ k < i < j.

One may then deduce the quantities kηi j , for 1 ≤ j < i <
k, and kνi j , for 0 ≤ k < i < j, as follows.

kηi j =
i
Y

m=j+1

kηm m−1, and kνi j =

j−1
Y

m=i

kνm m+1 (24)

We derive kηi i−1, 1 ≤ i < k, and kνi−1 i, 0 ≤ k < i,
using recursive relations. The quantity kηi i−1 is the ruin
probability that the particle, starting at i, reaches i − 1
first before k, 1 ≤ i < k. We denote by µi the death rate
associated to a state i in the birth-death process of Figure
5, i ≥ 1. It is clear that the ruin probability kηk−1 k−2 to
reach k − 2 starting at k − 1, without visiting k, is given by

µk−1

λA+µk−1

. For a given i, 1 ≤ i < k − 1, we define the event
kEi i−1 that the particle reaches first i − 1 starting from
i, without visiting k. Let us calculate now the probability
that kEi i−1 occurs, namely kηi i−1. Starting at state i, two
events may occur: either the process goes down to i−1, say
event kFi i−1, or the process goes up to i + 1 which is the
complementary event of kFi i−1, say kF̄i i−1. Hence, we can
write

Pr(kEi i−1) =Pr(kEi i−1 | kFi i−1) · Pr(kFi i−1) (25)

+ Pr(kEi i−1 | kF̄i i−1) · Pr(kF̄i i−1).

The event kEi i−1 | kFi i−1 is to reach i−1 when being at i−1
without visiting k, which obviously occurs with probability
1 since the process is already in state i − 1. The event
kEi i−1 | kF̄i i−1 is to reach i − 1 first before k when being
at i + 1, which is equivalent to the following: starting at
i + 1, the process reaches i without visiting k, then starting
at i, it reaches i − 1 without visiting k. So, Pr(kEi i−1 |
kF̄i i−1) = kηi+1 i

kηi i−1. Furthermore, the event kFi i−1

occurs with probability µi

λA+µi
, and the event kF̄i i−1 with

probability λA

λA+µi
. These arguments lead to the following

recursive relation

kηi i−1 =
µi

λA + µi

+
λA

λA + µi

kηi+1 i
kηi i−1, for 1 ≤ i < k−1,

(26)
or equivalently

kηi i−1 =
µi

µi + λA(1 −k ηi+1 i)
, for 1 ≤ i < k − 1, (27)

starting with kηk−1 k−2 =
µk−1

µk−1 + λA
.

With a similar approach as described above, we give the
following recursive relation for the ruin probability kνi−1 i.

kνi−1 i =
λA

λA + µi−1(1 −k νi−2 i−1)
, for i > k + 2, (28)

starting with kνk+1 k+2 =
λA

λA + µk+1
.

Let us come back to computing the probability distribu-
tion of ri, i.e., p(ri = j) for i, j ≥ 1. To do so, we further
define the quantity αi = µi

λA+µi
. Consider now the initial

state at which the customer of interest B starts his sojourn,
namely state nT + 1. Saying that our customer visits that
state only one time is equivalent to say that the process in



Figure 5 moves down to state nT , then it reaches state 0
(starting from state nT ) first before nT +1. The probability
of this event is given by p(rnT +1 = 1) = αnT +1 ·

nT +1ηnT 0.
The event in which our customer visits state nT + 1 exactly
two time is equivalent to one of the following events: The
first is that the process moves down to nT starting at nT +1,
then it visits again nT +1 first before 0 starting at nT , then
it moves down to nT starting at nT + 1, it finally reaches
state 0 first before nT + 1. The second event is that, it goes
up to nT +2 starting at nT +1 (with probability 1−αnT +1),
then it moves down again to state nT + 1 (with probability
1 after a finite time), then it moves down to nT starting at
nT + 1, finally it reaches state 0 first before nT + 1. So, the
probability of visiting state nT + 1 exactly two times is

p(rnT +1 = 2) =αnT +1 ·
0νnT nT +1 · αnT +1 ·

nT +1ηnT 0

(29)

+ (1 − αnT +1) · 1 · αnT +1 ·
nT +1ηnT 0.

Continuing with the same reasoning, we get for a state i
such that 2 ≤ i ≤ nT + 1,

p(ri = j) = αi ·
iηi−1 0 ·(αi ·

0νi−1 i +1−αi)
j−1, j ≥ 1. (30)

For state 1, the expression is simpler. We have p(r1 = j) =
α1 · (1 − α1)

j−1, for j ≥ 1.
As for the remaining states, i ≥ nT + 2, the quantities

p(ri = j) for j ≥ 1 has a generic expression slightly different
from that given in Equation (30). For example, the event to
be in position nT + 2 exactly one time is equivalent to say
that the process visits nT + 2 starting at nT + 1 first before
0 (with probability 0νnT +1 nT +2), then starting at nT + 2 it
again moves down to state nT +1 (with probability αnT +2),
finally starting at nT +1 it reaches 0 first before nT +2 (with
probability nT +2ηnT +1 0). So, the probability of the latter
event is p(rnT +2 = 1) = 0 νnT +1 nT +2 ·αnT +2 ·

nT +2ηnT +1 0.
In the same way, we get for i ≥ nT + 2

p(ri = j) =0 νnT +1 i·αi·
iηi−1 0·(αi·

0νi−1 i+1−αi)
j−1, j ≥ 1.

(31)
The probability ΥnT +1 is now determined using Equations
(30) and (31). Finally, it suffices to come back to Equation
(22) in order to explicitly get any kth order moment of the
distribution of the conditional random variable XB

s , given
service.

Let us now move on to address the analysis of the con-
ditional queueing delay of a type B customer given that he
reneges, namely XB

r . This is not quite so simple, because we
have to fully characterize all possible sample paths of a par-
ticle in the birth-death process of Figure 5. In the following,
we only give the mean value of XB

r .
On the one hand, the unconditional stationary mean queue-

ing delay (before reneging or starting service) for type B
customers is related to the quantities E(XB

s ) and E(XB
r )

via the relation E(XB) = P B
s · E(XB

s ) + P B
r · E(XB

r ). On
the other hand, applying the Little law on queue B leads to
λB ·E(XB) = QB . Recall that the stationary mean number
of customer B waiting in queue is given using QB = QT −QA

and Equation (12). Combining the last two relations implies

E(XB
r ) =

QB

λB P B
r

−
P B

s

P B
r

E(XB
s ). (32)

This closes our discussions about the analysis of type B cus-
tomers.

6. CONCLUSIONS
In this paper, we considered a non-preemptive priority

queueing system in which customers wait for service for a
limited time only and leave system if service has not begun
within that time. Practical examples of queueing systems
with customer impatience include real-time telecommunica-
tion systems, inventory systems with perishable items, and
more. We derived several closed-form expressions of useful
performance measures related to queueing delays of high and
low priority customers.

In a future study, it would be interesting to investigate
approximations or numerical methods for computing perfor-
mance measures. This would be helpful to avoid numerical
instabilities given that the closed-form expressions of inter-
est are somewhat cumbersome. We also want to relax some
assumptions: arbitrary number of customer types, different
mean values for customer types service times and times be-
fore reneging, etc.
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