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ABSTRACT
We advocate the use of level crossing ordering of Markov
chains and we present two applications of this ordering to an-
alyze the deflection routing in an all optical packet network.
As optical storage of packets is not available, we assume
that the routing protocol is based on deflection. This rout-
ing strategy does not allow packet loss. However it keeps the
packets inside the network, increases the delay and reduces
the bandwidth. Thus the transport delay distribution is the
key performance issue for these networks. Here, we consider
the deflection routing of a packet in a hypercube. First we
assume that the deflection probability is known and we build
an absorbing Markov chain to model the packet inside the
network. Then we present a more abstract model of the
topology and we show that under weak assumptions bounds
on the deflection probability provide bounds on the end to
end delay. This result is based on level-crossing comparison
of Markov chains. Then we present an approximate model
of the switch to obtain a fixed point system between two
sub-models. The first subsystem describes the global net-
work performance while the other one models the stochastic
behavior of the packet. The fixed point system is solved by
a numerical algorithm and the convergence of this algorithm
is proved using again the theory of level crossing comparison
of Markov chains. Proving convergence is a new application
for the theory of Markov chain comparison and this exam-
ple can be generalized to many algorithms based on Markov
chains.
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1. INTRODUCTION
All optical packet networks have received considerable at-

tention during the last years. However with actual technol-
ogy, all-optical networks do not allow the buffering of pack-
ets inside the network. Fiber delay loops allow to keep some
packets inside a switch for some time but they are not func-
tionally equivalent to a Random Access Memory. Therefore
packets have to be sent immediately to the next switch along
the path. Old algorithms like Deflection Routing [2] have re-
cently received attention to overcome this weakness [9, 11].
This routing strategy does not allow packet loss but it keeps
the packets inside the network, increases the delay and re-
duces the bandwidth. In Shortest-Path Deflection Routing,
switches attempt to forward packets along a shortest hop
path to their destination. Each link can send a finite num-
ber of packets per time-slot: this is the link capacity. If the
number of packets which require a link is larger than the ca-
pacity, only some of them will use the link they ask for and
the other ones have to be misdirected or deflected and they
will travel through longer paths. This is the major draw-
back of this routing technique. The tail of the transporta-
tion delay and the average usable bandwidth are therefore
two major measures of interest. As acknowledgments in net-
working protocols must arrive before some timer expiration,
heavily deflected packets will be considered as lost because
they experience delays larger than the transport time-out.
Packets are never physically lost due to physical errors or
buffer congestion, but they can be logically lost because the
transport delay is too large.

Deflection routing has been studied for a long time but to
the best of our knowledge all the analysis published so far



has studied the average throughput for some simple topology
and simple switch architecture. For instance one can find in
[3, 1] models for networks based on 2 × 2 switching blocks
without the queueing of new packets. Recently, Fabrega and
Muñoz [6] have modeled a network with deflection routing
using an approximate model based on Markov chains. How-
ever, they have only considered 2×2 switches and a topology
such that only one shortest path exists between the source
and the destination. Yao et al. have presented in [14] an
approximate model for a quite restrictive topology which do
not contain any directed cycle. Clearly, all these methods
only provide approximate mean delay or throughput while
the important measure is the tail of the delay distribution.
Therefore, new methods to obtain the distribution of the
delay are still necessary.

As we assume that there is no memory in the switches,
it is difficult to apply classical queueing theory to analyze
the delay. Thus we advocate the use of Markov chain to
build the model of a packet and comparison of chains to ob-
tain upper bounds on the end to end delay in the network.
Instead of the classical sample-path ordering associated to
strong stochastic monotonicity we consider a weaker com-
parison technique: the level crossing comparison of Markov
chains. This new concept has been introduced by Irle and
Gani in [10] to compare stochastic processes, motivated by
word detection in a sequence of independent drawings of
letters over a finite alphabet.

The level crossing ordering of Markov chains is based on
the intuitive idea that the smaller chain should take longer
to cross any fixed level in the state space. Thus it is natu-
rally associated to absorption time. Absorption time com-
putation problem arises naturally in various domains. For
instance the end to end delay of a packet in a network, life-
time of a component of a system or a task duration can be
modeled as an absorbing Markov chain. We have often only
some partial information on the parameters of the model, so
we must find a bounding chain for a family of chains corre-
sponding to all the potential values of unknown parameters.
Of course strong stochastic ordering of Markov chains also
allows to compare distributions of time to reach an absorb-
ing state. But the stochastic monotonicity associated with
this ordering usually implies less accurate bounds.

The remaining of the paper is as follows: in section 2 we
present a brief introduction to the level crossing ordering of
Markov chains. Section 3 is devoted to the description of
the model of a packet routing inside a hypercube. In sec-
tion 4 we prove the comparison theorems to bound the end
to end delay. Then in section 5 we provide a general algo-
rithm which builds a fixed point system on the deflection
probability and we prove the convergence of this algorithm
under some intuitive assumptions. Again this proof is based
on the level crossing comparison of chains and the bounded
convergence theorem. In section 6 we present a simple ap-
proximation to model the deflection probability as the result
of independent packets in a fair competition and we check
the assumptions of the general algorithm we have formerly
proved. We advocate that this proof of convergence may be
generalized to many algorithms based on fixed point systems
on Markov chains which are generally left unproved. To the
best of our knowledge this proof is a new application of the
theory of Markov chain comparison.

2. A BRIEF INTRODUCTION TO LEVEL
CROSSING ORDERING OF MARKOV
CHAINS

Let us first define the strong stochastic ordering of random
variables (“st-ordering” for short). This ordering is defined
by means of the set of increasing functions. We consider here
only discrete (finite or infinite) random variables. Indeed, we
will consider the set {0, 1, 2, . . . , n} for the state space of a
Markov chain or N ∪ ∞ for the comparison of absorption
times. For a far more general introduction to stochastic
orders we refer to [12].

Definition 1. For two random variables X and Y we
say that X is smaller than Y in a strong stochastic sense,
denoted by X ≤st Y , if

E[f(X)] ≤ E[f(Y )],

for all increasing real functions f .

For discrete random variables, we use the following algebraic
equivalent formulation which is far more convenient (see [12]
for the equivalence) :

Definition 2. If X and Y are discrete random variables
having respectively p and q as probability distribution vectors,
then X is said to be less than Y in the strong stochastic
sense, that is X ≤st Y , ifX

j≥k

pj ≤
X
j≥k

qj , for all k.

Let us now illustrate definition 2 by an example:

Example 1. Let α = (0.1, 0.3, 0.4, 0.2) and
β = (0.1, 0.1, 0.5, 0.3). It follows then that α ≤st β since:24 0.2 ≤ 0.3

0.2 + 0.4 ≤ 0.3 + 0.5
0.2 + 0.4 + 0.3 ≤ 0.3 + 0.5 + 0.1

For two Markov chains the st-comparison is usually de-
fined as the comparison at each time step:

Definition 3. Let {Xk}k≥0 and {Yk}k≥0 be two DTMC
on the state space {0, . . . , n}. We say that the chain {Xk}
is st-smaller than {Yk}, denoted by {Xk} ≤st {Yk}, if

Xk ≤st Yk, for all k ≥ 0.

Note that bounds on a distribution imply bounds on perfor-
mance measures that are increasing functions of the state
indices (see definition 1).

We can also compare the transition matrices of Markov
chains. We denote by Pi,∗ row i of matrix P . The st-
comparison of two transition matrices is defined as the st-
comparison of the corresponding rows.

Definition 4 (st-comparison of trans. matrices).
Let P and R be two transition matrices. We say P is st-
smaller than R, denoted by P ≤st R, if Pi,∗ ≤st Ri,∗ for all
i, that is if

Pn
k=j Pi,k ≤

Pn
k=j Ri,k for all i and j between 0

and n.

Definition 5 (st-monotonicity). Let P be a transi-
tion matrix. P is st-monotone if Pi−1,∗ ≤st Ri,∗ for all
i > 1, that is

Pn
k=j Pi−1,k ≤

Pn
k=j Pi,k, for all i between 1

and n and for all j between 0 and n.



It is known for some time that monotonicity and com-
parability of transition probability matrices yield sufficient
conditions for the st-comparison of Markov chains and their
transient and steady-state distributions [12]:

Theorem 1. Let {Xk}k≥0 and {Yk}k≥0 be two DTMC
and P and R be their respective transition matrices. If

• X0 ≤st Y0,

• at least one transition matrix P or R is st-monotone,

• P ≤st R,

then Xk ≤st Yk, for all k ≥ 0. If X and Y have steady-state
distributions πX and πY , then πX ≤st πY .

Transient and steady-state distributions provide often e-
nough informations on the performance of a studied system.
However, in optical networks modeling the far more impor-
tant measure is the end to end delay which can be modeled
as the absorption time in a Markov chain representing the
distance to destination (see section 3). Clearly, the state 0
will be absorbing. Moreover, this is the only absorbing state
of the chain.

Consider now two absorbing DTMC {Xk} and {Yk} with
unique absorbing state 0. Denote by T X and T Y the respec-
tive absorption times into the state 0. Then, under the same
conditions as in theorem 1, we have also the comparison of
distributions of absorption time into 0:

Proposition 1. Let {Xk}k≥0 and {Yk}k≥0 be two ab-
sorbing DTMC with unique absorbing state 0, and let P
and R be their respective transition matrices. If X0 ≤st Y0,
at least one transition matrix P or R is st-monotone and
P ≤st R, then T X ≤st T Y .

Proof. Theorem 1 implies Xk ≤st Yk, ∀k ≥ 0. In par-
ticular, P (Xk ≥ 1) ≤ P (Yk ≥ 1), ∀k ≥ 0. As the state
0 is absorbing, we have the following relation between the
random variables T X and Xk (resp. between T Y and Yk):

T X ≤ k ⇐⇒ Xk = 0 (resp. T Y ≤ k ⇐⇒ Yk = 0).

Therefore, P (T X ≤ k) = P (Xk = 0) = 1 − P (Xk ≥ 1) ≥
1 − P (Yk ≥ 1) = P (Yk = 0) = P (T Y ≤ k), ∀k ≥ 0. Since
P (T X ≥ k) = 1 − P (T X ≤ k − 1) (resp. P (T Y ≥ k) =
1 − P (T Y ≤ k − 1)), the former equation can be rewritten
as:

P (T Y ≥ k) ≤ P (T X ≥ k), ∀k ≥ 1.

Finally, for k = 0 this is trivially verified as P (T X ≥ 0) =
P (T Y ≥ 0) = 1. Thus, T Y ≤st T X .

Unfortunately, the Markov chain we use to model the net-
work is not always st-monotone as we will see in the next
section. For the non-monotone case we will use a similar
result based on level-crossing ordering of Markov chains and
a particular structure of the chain of our model.

Irle and Gani have introduced [10] the level crossing or-
dering of Markov chains based on the intuitive idea that the
smaller chain should take longer to cross any fixed level.

Definition 6 (Level crossing ordering). Let X =
{Xk}k≥0 and Y = {Yk}k≥0 be two DTMC on the state space
{0, . . . , n}. Let SX

i,l (resp. SY
i,l) be the first passage time in

the subset {l, l + 1, . . . , n} for the chain {Xk} (resp. {Yk})
when the initial state is i:

SX
i,l = inf{k ≥ 0 : Xk ≥ l}, SY

i,l = inf{k ≥ 0 : Yk ≥ l},

with notation inf ∅ = ∞. We say that X ≤lc Y if

SY
i,l ≤st SX

i,l, ∀i, l.

Note that we need to verify the above relation only for i < l,
since for i ≥ l we have trivially SX

i,l = SY
i,l = 0. It might

seem not intuitive at the first sight that we say that X is
lc-smaller than Y if SY

i,l ≤st SX
i,l, ∀i, l. However this means

that X takes longer to cross any fixed level, i.e. that the
chain X is slower.

Irle and Gani showed in [10] that under the same condi-
tions of theorem 1 we have also lc-comparison of Markov
chains. Furthermore, they showed that lc-ordering of two
Markov chains can be also established for skip-free chains
that are non-necessarily st-monotone.

Definition 7 (skip free). Let P be a transition ma-
trix of a Markov chain. The transition matrix (and the
chain) is skip free to the right if Pi,j = 0 for all j > i + 1.
The transition matrix (and the chain) is skip free to the left
if Pi,j = 0 for all j < i− 1.

Theorem 2 (theorem 4.1, p. 73 [10]). If two DTMC
X and Y with transitions matrices P and R satisfy the fol-
lowing conditions:

1. P ≤st R

2. X and Y are skip free to the right.

then X ≤lc Y .

Remark 1. Ferreira and Pacheco proved in [7] that only
the slower chain (chain X in theorem 2) needs to be skip-free
to the right.

We are interested here in comparison of absorption times
to 0. Thus we rewrite the above result for the first passage
times into the sets {0, . . . , l − 1, l}. We first define the dual
lc-ordering of Markov chains in which the smaller chain takes
longer to cross any fixed level to the left.

Definition 8. Let X = {Xk}k≥0 and Y = {Yk}k≥0 be
two DTMC on the state space {0, . . . , n}. Let ZX

i,l (resp.

ZY
i,l) be the first passage time in the subset {0, . . . , l − 1, l}

of the chain {Xk} (resp. {Yk}) when the initial state is i:

ZX
i,l = inf{k ≥ 0 : Xk ≤ l}, ZY

i,l = inf{k ≥ 0 : Yk ≤ l},

We say that X ≤∗lc Y if

ZY
i,l ≤st ZX

i,l, ∀i, l.

By taking into account Ferreira and Pacheco’s less restric-
tive assumptions (remark 1) in theorem 2, we can obtain the
following sufficient conditions for ≤∗lc-comparison:

Corollary 1. If two finite DTMC X and Y with tran-
sitions matrices P and R satisfy the following conditions:

1. R ≤st P

2. X is skip free to the left.

then X ≤∗lc Y .



Proof. Let us consider two new chains eX and eY on the
state space {0, . . . , n} obtained from X and Y by inversing

the order of the states (i ↔ n− i, ∀i). Denote by eP and eR
the transition matrices of eX and eY . We have the following

relations between chains X and eX (the equivalent relations

are valid for chains Y and eY ):

• Transition matrices P and eP satisfy:ePi,j = Pn−i,n−j . (1)

• X is skip free to the left if and only if eX is skip free to
the right. This follows directly from (1).

• The first passage time to the set {0, . . . , l − 1, l} for
the chain X starting from i is equivalent to the first
passage time to the set {n− l, n− l + 1, . . . , n} for the

chain eX starting from n− i:

ZX
i,l = S

eX
n−i,n−l, ∀i, l. (2)

Using equation (1) and definition 2 it is easy to show that:

R ≤st P ⇐⇒ eP ≤st
eR.

Since R ≤st P , and P is skip-free to the left, we have eP ≤steR and eP is skip-free to the right. Now theorem 2 and remark

1 imply that eX ≤lc
eY . Finally, equation (2) implies thateX ≤lc

eY ⇐⇒ X ≤∗lc Y .

Let us return now to our problem of comparison of ab-
sorption times to 0. If X and Y are two DTMC with ab-
sorbing state 0, then ZX

i,0 and ZY
i,0 are absorption times to

0 when the initial state is i. Corollary 1 provides thus the
sufficient conditions for comparison of absorption times for
chains knowing that they start from the same state. We
show that this remains valid if we consider that the chains
X and Y have arbitrary initial distributions νX and νY that
are st-comparable. We use the following lemma:

Lemma 1. For a DTMC Y with a transition matrix R
that is skip-free to the left the first crossing times of a fixed
level to the left satisfy:

ZY
i,l ≤st ZY

j,l, for all i ≤ j, for all l.

Proof. Follows directly from the skip-free to the left
structure of the chain. For l ≥ i the above relation is triv-
ial as ZY

i,l = 0. Consider now l < i < j. A chain starting
from a state j > i needs to reach first the state i in order
to cross the level l since the only way to reach the states
{0, . . . , i− 1} is to use the transition (i, i + 1). Thus clearly
ZY

i,l ≤st ZY
j,l.

Proposition 2. Let X and Y be two DTMC with tran-
sitions matrices P and R, and initial distributions νX and
νY . If the chains X and Y satisfy:

1. νX ≤st νY ,

2. P ≤st R,

3. Y is skip free to the left,

then T X ≤st T Y .

Proof. We need to show that:

P (T X ≥ k) ≤ P (T Y ≥ k), ∀k ≥ 0.

Consider k ≥ 0 arbitrary and fixed. We have:

P (T Y ≥ k) =

nX
i=0

P (ZY
i,0 ≥ k)νY

i .

We will show the following relation by induction on m:

P (T Y ≥ k) ≥
mX

i=0

P (ZY
i,0 ≥ k)νY

i +
nX

i=m+1

P (ZY
i,0 ≥ k)νX

i

+ P (ZY
m+1,0 ≥ k)(

nX
i=m+1

νY
i −

nX
i=m+1

νX
i ),

for 0 ≤ m < n. (3)

• Base: m = n − 1. We have trivially P (T Y ≥ k) =Pn−1
i=0 P (ZY

i,0 ≥ k)νY
i + P (ZY

n,0 ≥ k)νX
n + P (ZY

n,0 ≥
k)(νY

n − νX
n ).

• Suppose that the relation is valid for an m such that
0 < m < n. Then it is also valid for m − 1. Indeed,
using lemma 1 we have ZY

m,0 ≤st ZY
m+1,0, thus:

P (ZY
m+1,0 ≥ k) ≥ P (ZY

m,0 ≥ k). (4)

Note that
Pn

i=m+1 νY
i −

Pn
i=m+1 νX

i ≥ 0, since νX ≤st

νY . By using the induction hypothesis and relation (4)
we obtain:

P (T Y ≥ k)≥
m−1X
i=0

P (ZY
i,0 ≥ k)νY

i +
nX

i=m+1

P (ZY
i,0 ≥ k)νX

i

+P (ZY
m,0 ≥ k)(νY

m + (
nX

i=m+1

νY
i −

nX
i=m+1

νX
i ))

=

m−1X
i=0

P (ZY
i,0 ≥ k)νY

i +
nX

i=m

P (ZY
i,0 ≥ k)νX

i

+P (ZY
m,0 ≥ k)(

nX
i=m

νY
i −

nX
i=m

νX
i ).

Thus relation (3) is valid for all m such that 0 ≤ m < n. In
particular, for m = 0 we obtain:

P (T Y ≥ k) ≥ P (ZY
0,0 ≥ k)νY

0 +

nX
i=1

P (ZY
i,0 ≥ k)νX

i

+ P (ZY
1,0 ≥ k)(

nX
i=1

νY
i −

nX
i=1

νX
i ).

From lemma 1 it follows that P (ZY
1,0 ≥ k) ≥ P (ZY

0,0 ≥ k),

and from νX ≤st νY that
Pn

i=1 νY
i −

Pn
i=1 νX

i ≥ 0. Thus:

P (T Y ≥ k) ≥
nX

i=1

P (ZY
i,0 ≥ k)νX

i + P (ZY
0,0 ≥ k)(1−

nX
i=1

νX
i )

=
nX

i=0

P (ZY
i,0 ≥ k)νX

i .

Corollary 1 implies that Y ≤∗lc X. Thus ZX
i,0 ≤st ZY

i,0, ∀i,
i.e.

P (ZY
i,0 ≥ k) ≥ P (ZY

i,0 ≥ k), ∀k.

Therefore P (T Y ≥ k) ≥ P (T X ≥ k), ∀k, i.e. T X ≤st

T Y .



In the following we give two applications of the level cross-
ing ordering. First we provide a bound of the end to end
delay based on a bound of the deflection probability. This
is a rather usual application of Markov chain ordering. We
also consider a quite different approach: we prove that an
approximate analysis has a fixed point solution. The con-
vergence of approximate analysis based on mean interactions
between Markovian submodels is usually not proved and we
show how level crossing ordering can provide such a frame-
work for a proof. Before proceeding with the general case we
introduce first the deflection routing on an hypercube which
is used to illustrate both approaches.

3. DEFLECTION ROUTING ON A HYPER-
CUBE

We model a hypercube of dimension n (see figure 1 for a
hypercube of dimension 4). A hypercube is a simple gen-
eralization of a cube with an arbitrary size. The nodes are
the vectors with n components taking values in {0, 1}. We
consider the directed and symmetrical version of the graph
(see definition 9). Nodes which differ only by one compo-
nent are connected by two directed edges. Thus a hyper-
cube of dimension n has 2n nodes and n2n directed edges
and the switches have an indegree and outdegree equal to n.
The shortest path distance in the hypercube is equal to the
Hamming distance among binary vectors. The diameter of
a hypercube with dimension n is thus n.

Let x and y be two nodes. All the directions such as
xi 6= yi are good directions for the routing algorithm to send
a packet from x to y using shortest paths. All the others
are bad directions. Therefore a packet at distance k of its
destination has k good directions for the next step of routing.
In figure 1 we give an example of a packet with current
position 1011 and destination 0101. Thus the distance to
destination of the packet is 3 and it has 3 good directions
(depicted in bold): 0011, 1111 and 1001.

0100

1111

0110 1101

1100
0011

0000

1110

0101

1011

destination

0010

1010

1000

1001

0111

0001

Figure 1: Routing on a hypercube

As previous authors, we assume that the couples source-
destination of traffic follow an uniform distribution. We also
assume that packets are independent.

Routing algorithm.
The packet will select at random with uniform distribu-

tion one direction among the good ones. If this direction is
not given to the packet by the routing algorithm, the packet
is deflected. We say that this direction is not available. We
consider a two phases algorithm instead of a greedy choice.
During the first phase the packets which are not deflected
are routed and the deflected packets are kept. Then during
the second phase the deflected packets are sent among the
directions which are still available after the first phase. A
deflected packet uses a direction at random with uniform
distribution among all available directions. As all the pack-
ets are equivalent from the probabilistic point of view, we
consider an arbitrary packet in an arbitrary switch. Note
that due to the topology of a hypercube and traffic assump-
tions all the switches are statistically equivalent.

Following the method developed in [8], we represent a
tagged packet by its distance to destination. Thus the states
of a Markov chain modelling the evolution of a tagged packet
are between 0 and n and the state 0 is an absorbing state.

We give first the initial distribution for this chain. The
network has 2n nodes. In an uniform destination model,
all the nodes (other than the source node) have probability

1
2n−1

to be addressed. The number of nodes at distance k
in a hypercube with dimension n is equal to:

C(n, k) =
n!

k!(n− k)!
.

The initial distribution of the probability vector is therefore:

π0 =
1

2n − 1
(0, C(n, 1), . . . , C(n, k), . . . , C(n, n)).

In order to describe the transitions, we will denote by p
the deflection probability in an arbitrary switch. Note that
this probability is constant due to the routing hypothesis
and the symmetry of a hypercube.

• Assume that the packet at distance k is not deflected,
the distance decreases from k to k− 1. This event has
probability (1− p).

• If the packet at distance k is deflected, it remains (k−
1) good directions among (n− 1) available directions.
If the packet uses a good direction, its distance is now
(k − 1); otherwise it is (k + 1). Thus we have the
following transitions:

– k to k − 1 with probability p k−1
n−1

– k to k + 1 with probability pn−k
n−1

When k = 1, the deflected packet always uses a bad
direction. When k = n, whether the packet is deflected
or not, it uses a good direction.

We will denote by R the transition matrix of this chain.
Matrix R is clearly tridiagonal.

Example 2. For a hypercube of dimension n = 7, the
Markov chain has 8 states and the matrix R is:0BBBBBBBBBB@

1 0
1− p 0 p

1− 5p
6

0 5p
6

1− 4p
6

0 4p
6

1− 3p
6

0 3p
6

1− 2p
6

0 2p
6

1− p
6

0 p
6

1 0

1CCCCCCCCCCA



We assume that all optical technology will be used in the
core network, the size of which is typically under 30 nodes
for a national network and under 100 for a European one.
The number of nodes in the graph is quite small and due
to assumptions on the states of the Markov chain, the state
space is also small. Furthermore, the matrix of the DTMC
has a tridiagonal structure thus most of the numerical com-
putations are easier. Unfortunately, it is very difficult to ob-
tain the real value of the deflection probability which may
depend on the topology but also of the load inside the net-
work. Furthermore the number of deflections (and therefore
the deflection probability) for a set of requested links de-
pends on the algorithm used to select the packets [4]. Min-
imizing the number of deflections requires to compute the
maximum matching in a bipartite graph. This problem can
be solved in a polynomial time but due to severe timing
constraints in an optical switch it is not possible to use this
method. One can find in [11] a very efficient algorithm to
solve this routing problem and find the packets to deflect
for some particular topology. Due to these constraints, we
assume that we can find upper and lower bounds of the de-
flection probability rather than exact results and we show
that these bounds provide bounds for the end to end delays.

4. BOUNDING THE END TO END DELAY
We consider now a more general model of the network

topology to prove the comparisons of the chains which de-
scribe the end to end delay. This topology is not completely
characterized as a graph. We just give some necessary as-
sumptions to obtain a tridiagonal DTMC to model the rout-
ing. First we assume that the directed graph is symmetrical,
a quite natural assumption for Wide Area Network model-
ing.

Definition 9. A directed graph (digraph in the follow-
ing) G = (V, E) is symmetrical if and only if :

(x, y) ∈ E =⇒ (y, x) ∈ E, ∀x, y ∈ V.

Because of this property, the evolution of the distance to
destination is now much simpler.

Property 1. Let G = (V, E) be a symmetrical digraph.
We assume that the routing inside G is based on the shortest
path algorithm with deflection. If a packet is deflected (i.e.
it asks a shortest path and its demand is rejected) then the
distance to destination can:

• increase by one,

• decrease by one,

• stay identical.

Proof. Let x be the node with the packet, y the node
finally obtained after the routing algorithm and z the node
required by the packet as the input of the routing algorithm
(figure 2). Let l be the length of the shortest path from x
to the final destination.

• The distance cannot increase by more than 1. Indeed,
assume that the packet is now in y. As the graph
is symmetrical the directed link (y, x) exists and the
packet can go back to x and follow its initial shortest
path. Thus we have a path of length l + 1 and the
shortest path must be smaller or equal to this value.

y

x

z

Figure 2: Deflection in a symmetrical digraph

• It may happen that the directed link (x, y) is also the
first link of a shortest path to the destination. Remem-
ber the case of the hypercube in the former section.
Thus the distance decreases by one because we move
one hop along the shortest path.

destination

z

y

x

Figure 3: Deflection in an odd ring

• Finally, for some digraphs, it may be possible that af-
ter a deflection the packet reaches a node where the
distance is still l. For instance, in an odd ring with
size 2l + 1, if the packet is in a node at distance l to
its destination before the routing, it reaches another
state at distance l if it is deflected. We illustrate this
in figure 3. A packet in node x is at distance 3 to its
destination. His only shortest path direction is node
z. If the packet is deflected, it goes to node y which is
also at distance 3 to destination.

Note that this case only happens for some particular
digraphs (odd rings but not even rings or hypercubes)
and some particular nodes.

We now present the main assumption about the topology,
the traffic and the exact routing algorithm.

Assumption 1. We assume that the traffic is uniform
and that conflicts among packets are ruled by a fair com-
petition where all the packets have the same probability to
win. We also assume the the the choices of links are ran-
dom with a uniform distribution among the possible direc-
tions. These are typical assumptions in network modelling.
Finally we assume that the network topology has many sym-
metries such that it is possible to model the movements of the
tagged packet inside the network by a DTMC whose states
are the distance to destination. Rings and hypercubes are
examples of such networks.

Thus we can build the DTMC and due to property 1 its
matrix is tridiagonal. Let m be the diameter of the digraph
(i.e. the longest shortest path between any couple of states).
Then the state space is {0, . . . , m}, and the state 0 is absorb-
ing. For an arbitrary state i > 0 the transitions are:

• at distance i, the packet request is rejected with prob-
ability pi;



• If the request is rejected, distribution (qi,−1, qi,0, qi,1)
gives the probabilities that the link finally obtained re-
spectively decreases the distance by one, keeps it con-
stant, or increases the distance by one. Obviously,
qm,1 = 0 as m is the maximal distance in the digraph.

The transition probabilities for a state i > 0 are therefore:8<: i −→ i− 1 : 1− pi + piqi,−1,
i −→ i : piqi,0,
i −→ i + 1 : piqi,1, for i < m.

Consider now chains {Xk}k≥0 and {Yk}k≥0 based on prob-
abilities pX

i , (qX
i,−1, q

X
i,0, q

X
i,1) and pY

i , (qY
i,−1, q

Y
i,0, q

Y
i,1). Let us

denote by AX (resp. AY ) the transition matrices of these
chains and by νX (resp. νY ) their initial distribution. Fi-
nally, let T X (resp. T Y ) be the absorption time for chain
{Xk} (resp. {Yk}).

Proposition 3. Transition matrices AX and AY satisfy
AX ≤st AY if :

pX
i ≤ pY

i , i > 0,

qX
i,−1 ≥ qY

i,−1, i > 0,

qX
i,1 ≤ qY

i,1, 0 < i < m.

Proof. Indeed, we have:

X
k≥j

AX
i,k =

8>>>>>>><>>>>>>>:

0, j > i + 1

pX
i qX

i,1 ≤ pY
i qY

i,1, j = i + 1

pX
i (1− qX

i,−1) ≤ pY
i (1− qY

i,−1), j = i

1, j < i

Thus
P

k≥j AX
i,k ≤

P
k≥j AY

i,k, ∀j, i.e. AX ≤st AY and
the proof is completed.

If AX or AY is st-monotone, then we can use the st-
comparison of Markov chains and proposition 1 to establish
the comparison of absorption times. This is restated in the
following theorem for the sake of clarity but it is a simple
corollary of the theory presented in section 2.

Theorem 3. If the following three conditions are satis-
fied:

1. νX ≤st νY

Note that they are usually equal when X and Y model
the same network with the same uniform traffic as-
sumption.

2. AX ≤st AY ,

3. AX or AY is st-monotone

then T X ≤st T Y .

This is typically what has been used in [5] in order to prove
that the deflection routing using a more complex algorithm
on an odd 2D-torus is st-monotone for a partial ordering of
the state space.

However, it may arrive that the st-monotonicity of the
chain is not consistent with the topology of the network.
For instance it is clear that matrix R in the previous section

is not monotone. Due to the tridiagonal structure of the
matrix we can use the level crossing ordering of Markov
chains instead of the strong stochastic ordering and the st-
monotonicity.

Theorem 4. If νX ≤st νY and if AX ≤st AY , then

T X ≤st T Y .

Proof. As matrix AY is tridiagonal it is clearly skip-free
to the left. Thus, by proposition 2, T X ≤st T Y .

Due to theorem 4 and proposition 3 we get:

Corollary 2. If νX ≤st νY and if :

pX
i ≤ pY

i , i > 0,

qX
i,−1 ≥ qY

i,−1, i > 0,

qX
i,1 ≤ qY

i,1, 0 < i < m,

then T X ≤st T Y .

Thus we can obtain upper and lower strong stochastic
bounds on the end to end delay from upper and lower bounds
of pX

i , qX
i,−1 and qX

i,1. More precisely:

• An st-upper bound of T X is obtained from upper bounds
of pX

i and qX
i,1, and lower bounds of qX

i,−1.

• We get an st-lower bound of T X with lower bounds of
pX

i and qX
i,1, and upper bounds of qX

i,−1.

Note that for a hypercube the probabilities qX
i,0 are all equal

to 0. The model is therefore simpler to analyze. We do
not present here a method to obtain bounds of deflection
probabilities.

5. A FIXED POINT SYSTEM, AN ALGO-
RITHM AND ITS PROOF

Let us now turn back again to the hypercube topology to
improve another approach often considered in the literature
(see for instance [14, 6, 8]) to compute an approximation of
the average throughput.

Let the link capacity be f . Assume that the deflection
probability is known. The former model of the end to end
delay gives a relation between deflection probability and the
distribution of the end to end delay. But matrix R can
also be used to get the average delay before absorption (in
this context it is the average end to end delay) and finally
the average load due to Little’s law. Now suppose that we
are able to explain how the load of the links influences the
deflection probability. We get a fixed point system that we
can solve numerically. This is a typical mean interaction
approximation.

However, we can do better that this traditional approach
in performance modeling: due to some qualitative properties
of the level crossing comparison of chains we can prove the
existence of a solution of the fixed point system and provide
a proved algorithm to find a solution, This is an improve-
ment as the convergence of approximate methods based on a
fixed point system is usually not provided. Let us now detail
these results. In this section we give the general technique
and we present in the next section the case of the unitary
link capacity to illustrate the approach.



5.1 Average end to end delay
Let us first establish a new relation between the link uti-

lization u and the deflection probability p.
Let E(X) the expected number of customers in the net-

work, λ the input rate in the global set of nodes from the
electronic buffers and E(T ) the average end to end delay.
E(T ) is the average number of hops (i.e. the average so-
journ time in the optical part of the network). Following
Little’s law we get: E(X) = λE(T ).

The computation of the average time before absorption in
a DTMC is related to the number of visits to every state
before being absorbed. Let Ti,j be the average number of
visits in j before being absorbed, knowing that the initial
state is i. Clearly, E(T ) =

P
i

P
j π0(i)Ti,j . It is proved in

Trivedi [13] that Ti,j is the element with row index i and

column index j in the matrix (I − R̃)−1, where R̃ known as
the fundamental matrix of the absorbing chain is obtained
from R by deletion of the rows and columns associated to
absorbing states. As the remaining chain is transient, matrix
(I − R̃) is not singular.

E(T ) =
X

i

X
j

π0(i)(I − R̃)−1
i,j (5)

As all the links are equivalent due to the hypercube topol-
ogy and the traffic assumptions, we have 2n nodes and each

node has n input links. Thus: u = E(X)
n2n . Finally, if we add

that the link utilization is smaller than the link capacity f ,
we get:

u = min(f,
λE(T )

n2n
). (6)

5.2 A general algorithm and its assumption
Now we need a relation which explains the influence of

the load on deflection probability. To obtain such a relation
we must have a detailed model of the link, how packets can
change their wavelengths and how the deflection algorithm
selects the packets to be deflected. With these two models
we have a fixed point system: the relation proved in the
former section shows how u changes when p moves and the
model of the link explains the evolution of p due to u. We
do not provide such a model in general but we show that
if a very intuitive property is satisfied then we get a proved
algorithm to find a solution of the fixed point system. So we
suppose that such a model exists and that we have proved
that p = g(u).

Assumption 2. We assume that:

• function g is increasing,

• g(0) ≥ 0,

• g(f) < 1.

We have a fixed point system and we must provide a proof
of the existence of a solution and a numerical algorithm. In
order to show the existence of a solution we will define the
following sequence of values for deflection probability p:

1. Initialization: p0 = 0

2. Let pi ∈ [0, 1]. Then pi+1 is obtained as follows:

(a) Compute R̃ with p = pi

(b) Inverse (I − R̃)

(c) Compute E(T ) using equation (5)

(d) Compute u using equation (6)

(e) Compute pi+1 from u using pi+1 = g(u)

The complexity of one iteration of the loop is O(n3) since
we have to inverse a matrix of size n during the first step
of the loop, while the other steps have at most a quadratic
complexity. The number of iterations before convergence
and the computation of function g are obviously unknown.

5.3 Proof
We do not use the Brouwer’s theorem on the existence of

a solution of a fixed point system. We build an increasing
sequence which is upper bounded in a compact subset. The
dominated convergence theorem proves that the solution ex-
ists and is the limit of the sequence.

Lemma 2. When u varies in [0, f ], p is in [0, ∆] with ∆ =
g(f) < 1. And [0, ∆] is compact.

Lemma 3. E(T ) is a non decreasing function of p.

Proof. It is based on the theory of stochastic comparison
of finite discrete time Markov chains. Denote by R(p) the
transition matrix when deflection probability is equal to p.
Clearly, we have the following properties.

Property 2. If p1 ≤ p2 then R(p1) ≤st R(p2).

Property 3. As matrix R(p) is tridiagonal, it is obvi-
ously skip free to the left.

Now from properties 2, 3, and proposition 2 from section
2 we obtain that T is stochastically increasing with p. Thus,
E(T ) is increasing with p as an increasing function of T and
the proof of lemma 3 is completed.

Lemma 4. u is a non decreasing function of E(T ).

Proof. Trivial from equation (6).

Theorem 5. The sequence converges to a fixed point.

Proof. Because of assumption 2 and lemmas 3 and 4, the
sequence of the computed values of p is increasing. Lemma 2
proves that p is upper bounded by ∆. As an increasing and
upper bounded sequence has a limit, there exists a solution
(the limit) which is a fixed point of the system.

The above theorem shows that there is an infinite sequence
that leads to a fixed point of the system. Unfortunately, it
not so easy to give a simple stopping criterion for this iter-
ative computation since the distance between two consecu-
tive iterations does not give any information on the distance
from a fixed point. Therefore we propose to use a dichotomic
search of a fixed point based on the following observations:

1. Let h denote the function that for a given deflection
probability p computes the new deflection probability
value after one iteration. h is increasing as a composi-
tion of increasing functions.

2. For each p0, the sequence pi = h(pi−1), i > 0 is mono-
tone. The sequence is increasing if p0 < p1 and de-
creasing if p0 > p1.



3. For each p0, the sequence pi = h(pi−1), i > 0 con-
verges to a fixed point in [0, 1] and all the points in the
sequence are in [0, 1].

4. Let us suppose that for a given interval [a, b], with
0 ≤ a < b ≤ 1, for each p0 ∈ [a, b] the sequence pi =
h(pi−1), i > 0 converges to a fixed point in [a, b] and
all points in the sequence are in [a, b]. Note that this
is true for a = 0 and b = 1. Define c = a+b

2
. Then

h(c) ∈ [a, b]. Let us now compare c and h(c).

(a) If h(c) > c, then for all p0 ∈ [h(c), b] the sequence
pi = h(pi−1), i > 0 converges to a fixed point
in [h(c), b]. Indeed, this monotone sequence con-
verges to a fixed point p in [a, b]; thus p ≤ b. On
the other hand, p0 ≥ h(c) > c and the fact that h
is an increasing function imply that pi ≥ h(c) >
c, ∀i, by induction on i. Therefore, p ≥ h(c). We
can thus take h(c) as the new value for a.

(b) If h(c) < c, then for all p0 ∈ [a, h(c)], the sequence
pi = h(pi−1), i > 0 converges to a fixed point in
[a, h(c)]. The proof is similar to the previous case.
We can take b = h(c).

(c) Finally, if h(c) = c, then c is a fixed point.

5. Stopping criterion : b − a < ε. This algorithm com-
putes clearly an ε-approximation of a fixed point.

It is worthy to remark that level crossing comparison pro-
vides two qualitative results here. First a reward is an in-
creasing function of a parameter used to define the chain.
And based on this property we can prove an approximation
algorithm.

For our model of a hypercube, it is now sufficient to find
a function g which describes how we get the deflection prob-
ability from the link utilization. Once we get this function,
we must check if assumption 2 is satisfied. We now show
how to proceed when the link capacity is one.

6. AN APPROXIMATE MODEL FOR THE
UNITARY LINK CAPACITY

We develop a new model to obtain a deflection proba-
bility based on independence of packets inside the switches
when the link capacity is one. This assumption only states
that there is no wavelength conversion inside the switches
and we can analyze the network and the switches with one
wavelength. This model provides a relation between the load
and the deflection probability. It is based on the analysis of
packets in conflict with the tagged packet for a given output
link.

Let o1 denote the output link requested by the tagged
packet. The probability of deflection for the tagged packet
is computed by conditioning on all configurations of arrivals.
Let Z be the number of packets requesting o1 other than
the tagged packet. Note that the upper bound for Z is
n−1 because the tagged customer uses one input link of the
switch.

p =

n−1X
i=0

Pr(deflection of the tagged packet | Z = i) ×

Pr(Z = i) (7)

The arrival probabilities are obtained by an independence
assumption. Let us denote by u the utilization of an arbi-
trary link. We have n− 1 links. Each of them is used by a
packet with probability u. When a packet enters a switch,
it requires each output link with probability 1/n.

Pr(Z = i) = C(n− 1, i)(u/n)i(1− u/n)n−1−i (8)

The probabilities of deflection are quite simple. The out-
put capacity is one. We have i+1 packets in a fair competi-
tion. Thus the tagged packet wins with probability 1/(i+1)
and is deflected with probability i/(i + 1).

Pr(deflection of the tagged packet | Z = i) =
i

i + 1
(9)

Combining the two former equations we have:

p =

n−1X
i=0

(n− 1)!

i!(n− i− 1)!

“ u

n

”i “
1− u

n

”n−i−1 i

i + 1
.

After some algebraic manipulations, we finally get:

p = 1− 1

u

“
1−

“
1− u

n

”n”
. (10)

This relation has a simple physical interpretation. Note
that it can be written as: (1 − p) n u = n

`
1−

`
1− u

n

´n´
.

The left part is the average number of packets which are
successfully sent by the router during one slot. On the right
side

`
1− u

n

´n
is the probability that an output link is not re-

quired by any packet. Thus n
`
1−

`
1− u

n

´n´
is the expected

number of links required by the packets. The relation states
that the expected number of packets going in a good direc-
tion is the expected number of links required by the packets.
Indeed, each packet requires only one link and there is al-
ways one packet accepted when several are competing for
the output.

To prove the algorithm we need to check assumption 2.

Lemma 5. p is an increasing function of u.

Proof. Consider relation (10) and develop
`
1−

`
1− u

n

´n´
.

The first two terms are canceled due to the other terms in
the relation. Finally:

p =

nX
i=2

n!

i!(n− i)!

„
−1

n

«i

ui−1. (11)

We group two consecutive terms of the summation. Typi-
cally we get:

(
1

n
)2ku2k−1 n!

(2k)!(n− 2k)!
− (

1

n
)2k+1 n! u2k

(2k + 1)!(n− 2k − 1)!

After factorization:

(
1

n
)2k n!

(2k)!(n− 2k − 1)!
u2k−1

„
1

n− 2k
− u

n(2k + 1)

«
As u < 1 we can easily check that

“
1

n−2k
− u

n(2k+1)

”
> 0.

Thus p is increasing with u.

Lemma 6. Clearly p = g(u) is positive and its maximal
value is (1−1/n)n. Obviously ∆ = (1−1/n)n < 1 as n > 1.

Thus we have derived the algorithm and its proof for the
hypercube with unitary links.



Table 1: Number of iterations for the hypercube
topology with unitary links: n = 7, λ = 2n/n

ε 10−5 10−10 10−15 10−20

iterations 6 12 18 24

Table 2: Fixed point for the hypercube topology
with unitary links: n = 7, λ = 2n/n

p u E[T ]

3.18× 10−2 7.56× 10−2 3.70

In table 1 we report the number of iterations needed for
fixed point computation for the hypercube topology with
unitary links when we change the accuracy of the algorithm.
The dimension of hypercube is fixed to n = 7 (128 switches)
and the input rate to λ = 2n/n = 18.29. In table 2 we give
deflection probability p, utilization u, and the expectation of
the end to end delay E[T ] for n = 7 and λ = 2n/n = 18.29.

Note that the algorithm is very fast and that the core
topology is small. We can also solve the problem for a larger
network (see table 3), even if the physical problem does not
really make sense for a core network. For the size n = 30 (230

nodes) and λ = 2n/n we obtain: p = 8.11×10−3, u = 1.69×
10−2 and E[T ] = 15.18. As we are only concerned here with
the proof of the approximate analysis we had not checked
the accuracy of the results versus a simulation, which is a
clear extension of this paper.

7. CONCLUDING REMARKS
We have proved the algorithm for the topology of a hyper-

cube with an arbitrary link capacity f . This algorithm may
be generalized to any topology which satisfies the assump-
tions made in section 4. The proof of the algorithm is based
on theorem 4 whose assumptions are more general than the
ones we use for the end to end delay in an hypercube. For
these topologies which satisfy the assumption of the theo-
rem we just have to change the matrix and the number of
links in the graph in equation (6) to correctly define the link
utilization.

But the approach is even more general. In many problems
in performance or reliability evaluation, we have to bound
absorption times and we also have to prove algorithms which
compute approximate solutions. To the best of our knowl-
edge this is the first application of the comparison of Markov
chains to prove the convergence of a numerical algorithm.
We hope that such a result can foster new research activi-
ties on the proofs of algorithms based on Markov chains.
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