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ABSTRACT
We consider Stochastic Automata Networks (SAN) in con-
tinuous time and we prove a sufficient condition for the
steady-state distribution to have product form. We con-
sider SAN without synchronizations where the transitions
of one automaton may depend of the states of the other au-
tomata. Even with this restriction, this sufficient condition
is quite simple and this theorem generalizes former results
on SAN but also on modulated Markovian queues, such as
the Boucherie’s theory on competing Markov chain, or on re-
versible queues considered by Kelly. The sufficient condition
and the proof are purely algebraic.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; Per-
formance attributes; G.3 [Probability and Statistics]:
Markov processes

Keywords
Continuous Time Markov Chain, Product form steady-state
distribution, Stochastic Automata Networks

1. INTRODUCTION
Since they have been introduced by B. Plateau [15] to eval-

uate the performance of distributed algorithms, Stochastic
Automata Networks (SAN for short) have been associated to
new research on numerical resolution of finite Markov chains.
The key idea is to take into account the tensor decomposition
of the transition matrix of a SAN to improve the storage of
the model and the complexity of the vector-matrix product
[5]. The first algorithm proposed was a numerical resolution
of the steady-state distribution of the Markov chain asso-
ciated to a SAN [17] using the power method. Since then,
several numerical methods have been investigated.

As a SAN is a modular decomposition into automata which
are connected by synchronized transitions and functions,
SAN are closely related to Stochastic Process Algebra, (see
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for instance PEPA [10]). Therefore, new results on SAN
may be easily translated into other models based on compo-
sition. The tensor decomposition of the generator has been
generalized for Stochastic Petri Nets (see for instance [4]),
Stochastic Process Algebra [11] and other modular specifi-
cation methods as well.

After a decade of numerical analysis, some analytical re-
sults for SAN have been proved. First, B. Plateau et al.
[18] have investigated SAN without synchronization. They
proved that a product form steady-state distribution exists
as soon as some local balance conditions are satisfied. Even
without synchronization, the transitions of the automata are
still dependent because of functional rates. Plateau’s result
is closely related to Boucherie’s result on Markov chains in
competition [2] and Robertazzi’s theorems on Petri nets [13].
Similarly, using the same type of argument (i.e. group local
balance), Sereno has proved a sufficient condition to obtain a
product form solution for a PEPA model [20] without func-
tional rates.

In [3], the authors have considered SAN without function
but with a special case of synchronization denoted as limited
synchronization. The usual assumption on synchronization
used to define the SAN methodology was the ”Rendez-Vous”
between an arbitrary number of automata with arbitrary
transitions. In a limited synchronization, only two automata
are really active. The effects of such a synchronization on
other automata in the network are simple loops. The au-
thors had proved a sufficient condition to have a product
form steady-state distribution: existence of a solution for
a fixed-point system between the instantaneous arrival rate
and the steady-state distributions of the automata in iso-
lation. Some typical queueing networks such as Jackson’s
networks or Gelenbe’s networks of positive and negative cus-
tomers [9] are examples of this type of SAN. For both net-
works, the fixed-point system is equivalent to the well-known
flow equation.

In [7], one of us had considered a completely different kind
of synchronization: the Domino synchronization. Briefly, a
Domino synchronization is an ordered list of tuples (automa-
ton number, list of transitions inside this automaton). The
synchronization takes place according to the order in the list.
The synchronization may completely succeed or be only par-
tial if some conditions are not satisfied. Again it is proved
that the existence of a solution to some fixed point system
is a sufficient condition to obtain a product form solution.

Here we consider again SAN without synchronizations and
we generalize the results obtained in [18]. We consider SANs
without synchronization. This does not imply that the au-



tomata are independent because the transition rate in one
automaton may depend on the states of others automata.
This model is general enough to represent all multidimen-
sional Markov chains where the rates are dependent of the
states of one or several components. This is typically the
case of Competing Markov chains considered by Boucherie
[2], some Petri nets modeled by Robertazzi [13], and modu-
lated Markov chains. We obtain a very simple algebraic con-
dition using an elementary algebraic proof. This assumption
does not require that the local behaviors will always be ir-
reducible for any value of the modulating states. The only
requirement is the global irreducibility of the Markov chain
and the existence of commons eigenvectors in the kernels of
sets of matrices. We also show that this property is some-
how related to some important concepts already known in
queueing networks theory like reversibility and local balance
property.

The rest of the paper is organized as follows: in section
II we present a brief introduction to SAN and we show the
universality of this description to represent multidimensional
modulated Markov chains. Section III is devoted to the
proof of the sufficient condition of product form while in
section IV we show the links to known results and we present
new product theorems based on our necessary condition.

2. INTRODUCING SAN
A Stochastic Automata Network (SAN) consists of a num-

ber of individual stochastic automata that operate more or
less independently of each other. Each individual automa-
ton, A, is represented by a number of states and rules that
govern the manner in which it moves from one state to the
next. The state of an automaton at any time t is just the
state it occupies at time t and the state of the SAN at time
t is given by the state of each of its constituent automata.

We first consider a set of non-interacting automata. Then
we add the synchronizations and functions to represent the
dependence between automata. As our approach here is lim-
ited to SAN without synchronizations we put more emphasis
on functions.

2.1 Non-Interacting Stochastic Automata
We present an example rather than the general theory

which can be found now in many publications [6, 5, 1, 16,
17].

Example 1. Consider the case of a system that may be
modelled by two completely independent stochastic automata,
each of which may be represented by a continuous-time Markov
chain. Let us assume that the first automaton, denoted A(1),
has n1 states and transition rate matrix given by Q(1) ∈
Rn1×n1 . Similarly, let A(2) denote the second automaton;
n2, the number of states in its representation and Q(2) ∈
Rn2×n2 , its transition rate matrix. The state of the over-
all (two-dimensional) system may be represented by the pair
(i, j) where i ∈ {1, 2, . . . , n1} and j ∈ {1, 2, . . . , n2}, and
the infinitesimal generator of the two-dimensional system is
given by Q(1) ⊕Q(2) where ⊕ is the tensor sum. Remember
that with

A =

„
a11 a12

a21 a22

«
and B =

0@ b11 b12 b13

b21 b22 b23

b31 b32 b33

1A ,

the tensor sum C = A⊕B is given by0B@
a11 + b11 b12 b13 a12 0 0

b21 a11 + b22 b23 0 a12 0
b31 b32 a11 + b33 0 0 a12
a21 0 0 a22 + b11 b12 b13
0 a21 0 b21 a22 + b22 b23
0 0 a21 b31 b32 a22 + b33

1CA .

Now given N independent stochastic automata, A(1), A(2),
. . ., A(N), with associated infinitesimal generators, Q(1), Q(2),
. . . , Q(N), and probability distributions π(1)(t), π(2)(t), . . .,

π(N)(t) at time t, the infinitesimal generator of the N–
dimensional system, which we shall refer to as the global
generator, is given by

Q = ⊕N
k=1Q

(k) =

NX
k=1

In1⊗· · ·⊗Ink−1⊗Q(k)⊗Ink+1⊗· · ·⊗InN

(1)
where ⊗ is the tensor product. The probability that the
system is in state (i1, i2, . . . , iN ) at time t, where ik is
the state of the kth automaton at time t with 1 ≤ ik ≤ nk

and nk is the number of states in the kth automaton, is

given by
QN

k=1 π
(k)
ik

(t) where π
(k)
ik

(t) is the probability that

the kth automaton is in state ik at time t. Furthermore, the
probability distribution of the N -dimensional system, π(t),
is given by the tensor product of the probability vectors of
the individual automaton at time t, i.e.,

π(t) = ⊗N
k=1π

(k)(t). (2)

To solve N -dimensional systems that are formed from in-
dependent stochastic automata is therefore very simple. It
suffices to solve for the probability distributions of the indi-
vidual stochastic automata and to form the tensor product
of these distributions. This resolves the case of indepen-
dent stochastic automata, and we now turn our attention to
automata that interact with each other

2.2 Interacting Stochastic Automata
There are two ways in which stochastic automata interact:

1. The rate at which a transition occurs may be a function
of the state of a set of automata. Such transitions are
called functional transitions. Transitions that are not
functional are said to be constant.

2. A transition in one automaton may force a transition
to occur in one or more other automata. We allow for
both the possibility of a master/slave relationship, in
which an action in one automaton (the master) actu-
ally occasions a transition in one or more other au-
tomata (the slaves), and for the case of a rendez-vous
in which the presence (or absence) of two or more au-
tomata in designated states causes (or prevents) tran-
sitions to occur. We refer to such transitions col-
lectively under the name of synchronized transitions.
Synchronized transitions are triggered by a synchroniz-
ing event; indeed, a single synchronizing event will gen-
erally cause multiple synchronized transitions. Transi-
tions that are not synchronized are said to be local.

The elements in the matrix representation of any single
stochastic automaton are either constants, i.e., nonnegative
real numbers, or functions from the global state space to the
nonnegative reals. Transition rates that depend only on the
state of the automaton itself, and not on the state of any



other automaton, are to all intents and purposes, constant
transition rates. A synchronized transition may be either
functional or constant. The same is true for local transi-
tions.

Consider as an example, a simple queueing network con-
sisting of two service centers in tandem and an arrival pro-
cess that is Poisson at rate λ. Each service center consists
of an infinite queue and a single server. The service time
distribution of the first server is assumed to be exponential
at fixed rate µ, while the service time distribution at the sec-
ond is taken to be exponential with a rate ν that varies with
the number and distribution of customers in the network.
Since a state of the network is completely described by the
pair (n1, n2) where n1 denotes the number of customers at
station 1 and n2 the number at station 2, the service rate at
station 2 is more properly written as ν(n1, n2).

We may define two stochastic automata A(1) and A(2) cor-
responding to the two different service centers. The state
space of each is given by the set of nonnegative integers
{0, 1, 2, . . . , } since any nonnegative number of customers

may be in either station. Transitions in A(2) depend on
the first automaton in two ways. Firstly the rate at which
customers are served in the second station depends on the
number of customers in the network and hence, in particu-
lar, on the number at the first station. Thus A(2) contains
functional transition rates, (ν(n1, n2)). Secondly, when a
departure occurs from the first station, a customer enters
the second and therefore instantaneously forces a transition
to occur within the second automaton. The state of the sec-
ond automaton is instantaneously changed from n2 to n2+1.
This entails transitions of the second type, namely synchro-
nized transitions. The event, “departure from station 1”, is
a synchronizing event.

2.3 Building Generators using Functional Tran-
sitions

We return to the two original automata given in example 1
and consider what happens when one of the transition rates
of the second automaton becomes a functional transition
rate. Suppose, for example, that the rate of transition from
state 2 to state 3 in the second automaton is µ̂2 when the
first automaton is in state 1 and µ̃2 when the first automaton
is in state 2. The global infinitesimal generator is now (∗ is
the normalization):

0BBBBB@
∗ µ1 0 λ1 0 0
0 ∗ µ̂2 0 λ1 0
µ3 0 ∗ 0 0 λ1

λ2 0 0 ∗ µ1 0
0 λ2 0 0 ∗ µ̃2

0 0 λ2 µ3 0 ∗

1CCCCCA .

If, in addition, the rate at which the first automaton pro-
duces transitions from state 1 to state 2 is λ̄1, λ̂1 and λ̃1

depending on whether the second automaton is in state 1, 2
or 3, the two-dimensional infinitesimal generator is given by

0BBBBBB@

∗ µ1 0 λ̄1 0 0

0 ∗ µ̂2 0 λ̂1 0

µ3 0 ∗ 0 0 λ̃1

λ2 0 0 ∗ µ1 0
0 λ2 0 0 ∗ µ̃2

0 0 λ2 µ3 0 ∗

1CCCCCCA .

It is known for a long time that the introduction of func-
tional transition rates has no effect on the structure of the
global transition rate matrix other than when functions eval-
uate to zero in which case a degenerate form of the original
structure is obtained. However, even if the structure is pre-
served, the actual values of the nonzero elements prevents us
from writing the solution in the simple form of equation (2).
Nevertheless it is still possible to profit from this unaltered
nonzero structure. This is the concept behind the extended
(generalized) tensor algebraic approach, [16]. The descrip-
tor is still written as in equation (1), but now the elements

of Q
(i)
j may be functions. This means that it is necessary

to track elements that are functions and to substitute (or
recompute) the appropriate numerical value each time the
functional rate is needed.

2.4 notation
The following notations will be used in the paper.

• The number of automata is N .

• i, and j will be state indices

• l will be an automaton index

• m will be a matrix index.

• Q(l) is the transition rate matrix which describes the
local transition of automaton l.

• ~k is a state of the Markov chain. kl is the state of
automata l when the global state is ~k. ~k is a N com-
ponent vector.

• ~k|l is the N−1 component vector obtained from ~k after
deletion of component l.

• ~k + (l, i) is the N component vector obtained from ~k
after replacing the value of component l by i.

We assume that the SAN contains functions. So all the
matrices are functional and we note Ql[i, j](~k,~k′) the entry
of matrix Ql for a transition from i to j in automaton l

when the global state is ~k and it changes to ~k′ due to the
transition.

3. PRODUCT FORM OF SAN WITHOUT
SYNCHRONIZATION

Assume that the steady-state distribution has a product
form ( Pr(x0, .., xn) = Cπ1(x1)...πn(xn)). We investigate
some sufficient condition for such a condition to exist but
we do not provide algorithm to compute the normalization
constraint C.

In this paper we introduce a simple property which, to
the best of our knowledge, has not been considered before,
at least in the context of steady-state distribution of CTMC:
a positive vector which belongs to the kernels of all the tran-
sition rate matrices. Note that in the following we use the
word kernel for left kernel or left nullspace.

Definition 1. Let α be a probability distribution. We
note by S(α) the set of transition rate matrices M such that
αM = 0 (i.e. α is in the the kernel of all matrices in S(α)).

Property 1. S(α) has a several interesting properties:



1. 0 (the matrix whose elements are all zero) is in S(α)

2. aM1 is in S(α). for all matrices M1 in S(α) and a in
R+.

3. aM1 + bM2 is in S(α) for all matrices M1 and M2
in S(α) and a, b in R+ such that a + b = 1.

We will see that Boucherie’s theory of competing chains is
somehow linked to property 1, that the key idea of our pre-
vious work on SAN is property 2 while the algebraic inter-
pretations of local balance and reversibility are connected to
property 3.

To introduce the assumptions and the proofs, we first con-
sider the Chapman-Kolmogorov equation for steady-state:

Pr(~k)

24 nX
l=1

X
i6=kl

Q(l)[kl, i](~k,~k + (l, i))

35 =

nX
l=1

X
i6=kl

Q(l)[i, kl](~k + (l, i),~k)Pr(~k + (l, i)).

(3)

For the right rand side, we simply consider all the transitions

into ~k resulting from any movement of automaton l which
moves to state kl. For the left hand side we write all the
transitions leaving state ~k due to a movement of automaton
l which jumps out of state kl. Note that we do not have
dummy transitions because the summation on state i which
differs from kl.

To improve the previous results already published on this
subject it is necessary to change the way we represent func-
tions. Remember that we consider discrete state spaces, thus
the functions argument are denumerable. For any function
we have in the model, we only have a denumerable set of
values reached by this function. Instead of using a function
terminology, we evaluate the functions and the matrices and
put the matrices in a set and use an index. Let us now in-
troduce this idea more formally.

Definition 2. Let l be an automaton index, we consider
all the functions in matrix Q(l) and we evaluate them for all

state ~k when the transition from ~k to ~k + (l, i) takes place.

Such a matrix will be denoted by L(l,m(~k)) where m(~k) is an

index. The set of matrices L(l,m(~k)) will be denoted by F(l).

Let us first present a small model which may have product
form solution for some particular functions.

Example 2. We consider a network with two automata
A1 and A2. Both have a very simple state space: {0, 1}
(see figure 1). The transitions in A1 have a fixed rate l1
for the transition from 0 to 1 and l2 for the transition from
1 to 0. Automaton A2 has two functional transitions: the
rate from 0 to 1 has a functional rate f1 and the reverse
transitions has functional rate f2. Both functions use the
state of automaton A1 as an argument.

We assume that the functions are f1(x1) = mb + m(1 −
b)1x1=0 and f2(x1) = m1+m21x1=0 where x1 is the current
state of automaton A1, 1x is an indicator function and b is
a positive values smaller than 1. Thus:

• if automaton A1 is in state 0, the rates are respectively
m and m1 + m2 for the transition from 0 to 1 and for
the reverse transition.

0

0 1

1
Automaton A1

Automaton A2

l1

l2

f0

f1

Figure 1: A SAN with functions f0 and f1 and con-
stant rates l0 and l1.

• if automaton A1 is in state 0, the rates are mb and
m1.

We depict in figure 2 the Markov chain of this SAN and we
now compute the two matrices associated to automaton A2.

M0 =

„
−m m

m1 + m2 −m1−m2

«
and M1 =

„
−m b m b
m1 −m1

«

���
�

���
�

���
�

���
�

(0,0)

(1,1)

l1

l2

l1

l2

mm1+m2 m1m b

(0,1)

(1,0)

Figure 2: The Markov chain of the SAN.

The kernel of M0 (resp. M1) contains all the vectors
multiple of (m1 + m2, m) (resp. (m1, m b)).

We now state and prove the main results about product
form for a SAN without synchronization. We assume that
the Markov chain is irreducible and positive recurrent. Thus
a steady state distribution exists. Note that as the assump-
tions we made on the matrices are very weak, they do not
prove irreducibility of the Markov chain. For some partic-
ular cases however the assumptions on the local matrices
implies the irreducibility of the chain.

Theorem 1. Consider a SAN with functions but without
synchronizations. Assume that the steady state exists. If for
each automaton l there exists a probability distribution πl

such that all the matrices in F(l) are in S(πl), then the SAN
has a product form steady state distribution such that:

Pr(x0, .., xn) = Cπ1(x1) . . . πlxlπn(xn).

Proof: First we write a new version of the global balance
equation after substitution of the new index for functions:



Pr(~k)

24 nX
l=1

X
i6=kl

L(l,m(~k))[kl, i]

35 =

nX
l=1

X
i6=kl

L(l,m(~k))[i, kl]Pr(~k + (l, i)) .

(4)

We divide both sides of the equation by Pr(~k) and we
take into account the usual simplification rule:

Pr(~k + (l, i))

Pr(~k)
=

πl(i)

πl(kl)
.

Thus we get:

nX
l=1

24X
i6=kl

L(l,m(~k))[kl, i]

35

=

nX
l=1

24X
i6=kl

L(l,m(~k))[i, kl]
πl(i)

πl(kl)

35 .

But L(l,m(~k)) is a transition rate matrix and for every kl

we have: X
i6=kl

L(l,m(~k))[kl, i] = −L(l,m(~k))[kl, kl].

After substitution we get:

nX
l=1

h
−L(l,m(~k))[kl, kl]

i

=

nX
l=1

24X
i6=kl

L(l,m(~k))[i, kl]
πl(i)

πl(kl)

35 .

(5)

Now remember that for all index m(~k), matrix L(l,m(~k))

satisfies:

πiL
(l,m(~k)) = 0.

Therefore equation (5) is satisfied and we have proved that
the SAN has a steady state distribution probability.

Corollary 1. Consider again the SAN of example 2 ma-
trices M0 and M1 have the same kernel if b = m1

m1+m2
. If

this condition is satisfied, the steady-state distribution of the
SAN has product form:

π(x1, x2) = C

„
l1

l2

«x1 „
m

m1 + m2

«x2

.

We now present some examples and links to other the-
orems already published to show that we generalize many
concepts and results on Markovian Petri nets, competing
Markov chains, modulated set of queues and Stochastic Au-
tomata Networks. But before proceeding with this exam-
ples, let us make some remarks concerning our main theo-
rem.

• First, it is not necessary for all the matrices to be irre-
ducible. But the matrix resulting of SAN description
must be irreducible.

Example 3. Consider again the SAN in Fig. 1.
We now change the functions f0 to be m1x1=0 and f1
to be m11x1=1. The global Markov chain is irreducible
(see Fig. 3) but the matrices associated to automaton
A2 are not irreducible. Indeed:

M0 =

„
−m m
0 0

«
and M1 =

„
0 0

m1 −m1

«
.

���
�

���
�

���
�

���
�

(0,0)

(1,1)

l1

l2

l1

l2

m

(0,1)

(1,0)

m1

Figure 3: An irreducible Markov chain associated to
a SAN whose matrices are reducible

However note that we do not claim that this SAN has
a product form.

• It is possible that some matrices in the model have
some rows equal to the null vector. To provide an
example of such a system with product form we must
consider a model based on larger state space.

Example 4. We consider a network with two au-
tomata A1 and A2. A2 has a very simple state space:
{0, 1} while A1 has four states (see Fig 4). The transi-
tions in A2 have a fixed rate l2 for the transition from
0 to 1 and m2 for the transition from 1 to 0. Automa-
ton A1 contains four functional transitions governed
by four functions f1, f2, f3 and f4. More precisely:

Q1 =

0BB@
−l1 l1 0 0
m1 −m1− f1 f1 0
0 f2 −f2− f3 f3
0 0 f4 −f4

1CCA .

0

0 1 Automaton A2

l2

m2

1 2 3l1

Automaton A1

f1

f2

f3

f4

Figure 4: A more complex SAN with product form.



Let us now describe the functions:8>><>>:
f1 = l1 1x2=1

f2 = m1 1x2=1

f3 = l1 1x2=0

f4 = m1 1x2=0

Thus the matrices associated to automaton A1 are:

M0 =

0BB@
−l1 l1 0 0
m1 −m1 0 0
0 0 −l1 l1
0 0 m1 m1

1CCA
and

M1 =

0BB@
−l1 l1 0 0
m1 −m1− l1 l1 0
0 m1 −m1 0
0 0 0 0

1CCA .

Let us now find the kernel of both matrices. For M0
we obtain the set of vectors

{u (m1, l1, 0, 0) + v (0, 0, m1, l1),∀ u, v ∈ R}

while the kernel of M1 is

{u (1, l1/m1, l12/m12, 0) + v (0, 0, 0, 1),∀ u, v ∈ R}.

Clearly the vector (1, l1/m1, l12/m12, l13/m13) is in
both sets and Theorem 1 proves that we have a product
form solution.

4. LINKS TO RELATED WORKS
We first show that previous results on product form SAN

satisfy the condition of theorem 1.

4.1 Previous Results on SAN
In [18] some of us have considered Stochastic Automata

Networks without synchronizations and they have proved
three sufficient conditions to obtain product form. As the
second and third one are related to reversibility which will
be presented in the next pages we only present here the first
case.

Theorem 2 (Case 1 in [18]). Assume that the Stochas-
tic Automata Network contains functional rates but no syn-
chronization. The local transitions are described by func-

tional matrices L(l,m(~k)). Assume that for every automaton

index l L(l,m(~k)) is the product of a constant matrix L(l) by

a function f l(~k|l) which does not use automaton l as an ar-

gument. Assume that matrix L(l) is an ergodic stochastic
matrix the steady-state distribution of which is πl. Then the
steady-state distribution of the chain has product form.

π(~k) = C
Y

l

πl

where C is a normalization constant.

The proof in [18] of this theorem is based on algebraic
manipulations of the global balance equation. Note that in
this case, the local matrices must be irreducible. We know
show that this theorem is a simple corollary of theorem 1.

Property 2. Assume that matrices L(l,m(~k)) are the prod-

uct of a constant matrix L(l) by a function f l(~k|l) which does
not use the state of automaton l as an argument, then all

matrices L(l,m(~k)) associated to automaton l have the same
kernel.

Proof: For all l we have L(l,m(~k)) = f l(~k|l)L(l). And

πlL
(l) = 0. Thus πlf

l(~k|l)L(l) = 0 for all ~k|l. And after

substitution πlL
(l,m(~k)) = 0. Therefore matrices L(l,m(~k))

are all in set S(πl).
Due to this property, we clearly state that Theorem 1 gen-

eralizes this first result in our previous paper. But Theorem
2 (i.e. the first case in [18] was already a generalization of
a long list of results on the product form of chains which
model agents competing overs resources. The typical model
of such as system is the dining philosophers problem which
have been shown to have product form for a long time [23,
21, 13, 22] using many modeling techniques and theoretical
frameworks. The most relevant results were presented by
Boucherie in [2].

4.2 Competing Markov Chain
Boucherie had introduced in [2] a new framework to gener-

alize Petri nets with product form. This theory was denoted
as competing Markov chains. He proved two theorems on
product form: the first one with a more restrictive defini-
tion of resource and blocking (Th 2.6 in Boucherie’s paper),
and a second one where the chains in isolation must have
some local balance but where the blocking over resource is
weaker (Theorem 2.8 in [2]). We now present Boucherie’s
first theorem. The second result is mentioned in the section
on partial reversibility. We need first to introduce some con-
cepts and notations coming from Boucherie’s presentation.
He considered a collection of Markov chains and he intro-
duced a product process which has a tensor representation
and some restrictions on the reachable state space due to
the competition over resources. For the sake of compatibil-
ity with SAN we use a tensor representation of the process
which is not the original presentation by Boucherie. Let Sk

be the state space of chain k. The reachable state space of
the chains in competition is a subset of the Cartesian prod-
uct. The transition rate matrix of the product process is
the tensor sum of the transition rate matrix of the chains
where some transitions have been removed. The competi-
tion over resources is modelled as an exclusion of a part of
the state space S (say A) and the cancellation of some tran-
sitions. A contains the states where the resources are used
by several chains. For instance, assume that automaton 1
and automaton 2 compete over resource r, if automaton 1
has resource r, all the transitions of chain 2 are cancelled.
Thus the process cannot enter states in A.

For instance, Fig. 5 presents two chains X1 and X2 both
with states {0, 1, 2, 3} competing over one resource. The
resource is owned by a chain when it is in state 2 or 3. It is
released when the chain jumps from state 3 to 1. Thus states
in {2, 3}×{2, 3} are forbidden and the reachable state space
of the product process is {0, 1, 2, 3} × {0, 1, 2, 3} {2, 3} ×
{2, 3}. When process X1 is in state 2 or 3 process X2 is
stopped. If process X1 is in state 0 or 1, process X2 can
move. Of course we also have the symmetrical rules when
X2 owns the resource. In Fig. 5, we have depicted first the
chains X1 and X2 and the product process when the chains
are competing over a resource.
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Figure 5: Two Markov chains in competition

The general definition of competing Markov chains uses a
set of resources in competition I and for each resource r in
I the set of chains which compete over this resource C(r).

Theorem 3. [Th 2.6 [2]] Markov chains in competition
have product form (this is only a simplified presentation of
Boucherie’s theorem to avoid a lot of notations).

Property 3 (SAN and Competing Markov chains).
Consider a SAN modeling a set of competing Markov chains

described by Boucherie’s first theorem. Let L(l,m(~k)) be the
matrix of automaton l. Then for all automaton index l,

L(l,m(~k)) is the product of a constant matrix L(l) by a func-

tion f l(~k|l) which does not use the state of automaton l as
an argument and which takes values in {0, 1}.

Proof: following Boucherie, the transition rate of a com-
peting Markov chain is given by the following rules:

• if states ~k and ~k′ differ by more than 1 components,
the transition rate is 0.

• from state ~k to state ~k + (l, i) the transition is the
transition rate from kl to i in chain l multiplied by an
indicator function.

• This function is equal to zero when there exists a re-
source r owned by another chain which competes with
l.

The first rule states that the transition matrix is a tensor
sum of some matrices. The second rule says that these
matrices are the original stochastic matrices of the chains
multiplied by a function of the states and taking value in
{0, 1}. Indeed as the function is the same for all the states
of competing Markov chain l (or automaton l in a SAN for-

mulation) we can write that transition matrix L(l,m(~k)) is

the product of a constant matrix L(l) by a function f l(~k|l).
Finally the third rule defines the functions and we can check

that function f l(~k|l) do not use automaton l. As we only
use indicator functions, they clearly take values in {0, 1}.

Corollary 2. Therefore Theorem 3 is a simple corollary
of Theorem 2 which is itself generalized by Theorem 1.

So we have at least obtained an algebraic formulation of
BoucheriŐ’s first theorem and a generalization for arbitrary
functions but our model allows to consider other results as
well.

4.3 Reversibility and Partial Reversibility
We first introduce the definition of partial reversibility and

show the links with the usual definition of reversibility.

Definition 3. An ergodic Markov chain X with stochas-
tic matrix F is partially reversible if and only if there exists
a non empty subset X of the states such that for all states i
and j in X we have local balance equations between i and j.
More precisely let π be the steady state of F , we must have
for all i, j in X,

π(i)F (i, j) = π(j)F (j, i).

The link between partial reversibility and reversibility is
clear:

Property 4. if X is the global set of states of the Markov
chain then the matrix is reversible in the usual sense (i.e.
as characterized by Kelly [12], theorem 1.3 p. 6).

As shown by Kelly, many amendments can be made to
the transition rates of a reversible Markov chain such as the
reversibility still holds after the modification. We will see
now that we have similar properties for partially reversible
chains.

Property 5 (truncation). We now assume that the
set S(α) contains an irreducible matrix F which is partially
reversible, then all matrices obtained from F after

1. choosing any subset of X (let call it Y )

2. deleting all the transitions between states of Y

are also in S(α).
Note that we delete the transitions but we do not delete

the states. Clearly the chain is not irreducible any more.

Proof: Let FY the matrix obtained after deletion of tran-
sitions between states of Y . We have FY + MY = F where
MY contains the transitions between states of Y in matrix
F and the normalization to be a transition rate matrix. We
will prove that αFY = 0. Clearly, from the construction we
have:

αFY = αF − αMY = −αMY .

Now remember that the chain is partially reversible as-
sociated to set X. For any state i and j in X we have
α(i)F (i, j) = α(j)F (j, i). As Y is a subset of X, we have:

α(i)F (i, j) = α(i)MY (i, j) = α(j)F (j, i) = α(j)MY (j, i).

Therefore α(i)MY (i, j) − α(j)MY (j, i) = 0. Let Y j be the
set Y except state j. We sum other all i in Y j to get:X

i∈Y j

α(i)MY (i, j)− α(j)
X
i∈Y j

MY (j, i) = 0.



We remark that X
i∈Y j

MY (j, i) = −MY (j, j)

as MY is a transition rate matrix. Finally, for all j in Y we
have: X

i∈Y j

α(i)MY (i, j) + α(j)MY (j, j) = 0.

As MY (i, j) is equal to 0 if i or j is not in Y , this last relation
implies that αMY = 0. Thus αFY = 0.

Property 6. Property 5 is a generalization of Kelly’s
corollary 1.10 on truncation ([12], p. 26). Indeed Kelly as-
sumes that the chain is reversible, and that the truncated
chain is irreducible, he proved that the truncated process
is still reversible and that the probability distribution is the
original one up to a normalization factor. When the chain
in only partially reversible, the truncation described in prop-
erty 5 gives the same result on the steady state distribution.

Property 5 also generalizes the second case considered in
[18] where the truncation procedure is not completely speci-
fied.

Property 7. Let F be an irreducible transition rate ma-
trix associated to an ergodic Markov chain. Let α be its
steady-state distribution. Assume that the chain is partially
reversible with set of states X, then for every subset Y of X
we have for all i:

X
j 6∈Y

(αjF (j, i)− αiF (i, j)) = 0.

Property 8 (multiplication). We assume that the
set S(α) contains an irreducible matrix F which is partially
reversible, then all matrices obtained from F after

1. choosing any subset of X (let call it Y )

2. multiplying all the transitions between states of Y by
an arbitrary positive constant c.

are also in S(α).
The chain is still irreducible after the modification of the

rate as c > 0.

Proof: again we write F + (c − 1)MY = FY where FY is
the matrix obtained after modification of the rates between
states of Y and MY is the initial transition rate matrix of
the states in Y . We prove that αFY = 0. As the proof is
quite similar to the proof of property 5 it is omitted here.

Theorem 4. Consider a SAN with two automata A1 and
A2. Assume that:

1. A1 does not contain any functions (all the rates are
constant),

2. for a particular state of A1, the matrix of A2 is par-
tially reversible, let X be the set of states of A2 with
local balance, and let Y be an arbitrary subset of X,

3. let R be the matrix on the states of automaton A2 con-
taining the transitions between the states of Y

4. A2 contains functions whose argument is the state of
A1, and the functions are only carried by the transition
between the states of Y .

5. R is the product of a function f by a constant matrix
R0

6. the CTMC is ergodic (one must check the irreducibility
for finite chains)

then the SAN has a product form solution.

Proof: This is a simple consequence of properties 5 and 8.
Note that this is not the most general result based on these
properties. We still have product form if both automata are
partially reversible and the functions are designed accord-
ingly. Note that we may prove local balance between some
nodes due to structural conditions on the automata.

Definition 4 (peninsula). Consider an ergodic CTMC
associated to transition rate matrix F , a peninsula is a set
of two nodes a, b such that:

• Removing a and b disconnects the chain and creates
two connected components A and B.

• a ∈ A and b ∈ B.

• b is the only one successor of a.

• a is the only one successor of b.

A peninsula implies that we have a local balance between
a and b (see equation (6)). The only transitions between A
and B are the transition from a to b and the transition from
b to a. The cut theorem for Markov chain states that:

π(a)F (a, c) = π(b)F (b, d). (6)

The assumption on the constant c in property 8 is not
necessary. We can have the same property if c is not constant
for all the states in Y .

Property 9 (multiplication again). We assume that
the set S(α) contains an irreducible matrix F which is par-
tially reversible. We chose any subset Y of X. We build the
non diagonal elements of matrix FY as follows:


FY (i, j) = c(i, j)F (i, j) If i ∈ Y and j ∈ Y
FY (i, j) = F (i, j) otherwise

where we only assume that c(i, j) = c(j, i) ≥ 0. And we add
the normalization to obtain a transition rate matrix. Then
FY is also in S(α).

Proof: we develop αFY for an arbitrary state i.

• If i is not in Y then FY (i, j) = F (i, j). Therefore
component i of αFY is zero.

• If i is in Y , we decompose the summation:X
j

αjFY (j, i) =
X
j∈Y
j 6=i

αjFY (j, i)

+ αiFY (i, i)

+
X
j 6∈Y

αjFY (j, i).



Due to the normalization, we have:

FY (i, i) = −
X
j∈Y
j 6=i

FY (i, j)−
X
j 6∈Y

FY (i, j).

Remember that i is in Y . Then if j ∈ Y FY (i, j) =
c(i, j)F (i, j). Otherwise FY (i, j) = F (i, j). After sub-
stitution we get:X

j

αjFY (j, i) =
X
j∈Y
j 6=i

(αjF (j, i)c(j, i)− αiF (i, j)c(i, j))

+
X
j 6∈Y

(αjF (j, i)− αiF (i, j)) .

The last term is zero due to property 7. And we assume
that c(i, j) = c(j, i). Therefore we can factorize c(i, j):

X
j

αjFY (j, i) =
X
j∈Y
j 6=i

c(i, j) (αjF (j, i)− αiF (i, j)) .

As i and j are members of Y , all the terms in the
summation are 0. Therefore component i of αFY is 0.

Thus we can use several functions in the SAN instead of
only one but they must satisfy the constraints of property
9. This is detailed in the next corollary.

Corollary 3. If the SAN is built with the assumptions
of theorem 4 but it uses several functions. If these functions
verify one of the following two assumptions

1. the functions carried by automaton l do not use state
of automaton l as an argument

2. if the former assumption is not true for a function fl

carried by automaton l used for the transition from i
to j in automaton l, then the function must also be
used from the transition from j to i and we must have:

fl(~k + (l, i)) = fl(~k + (l, j)) (i.e. the function has the
same value for the transition from i to j and the tran-
sition from j to i).

then the SAN has product form.

Note that we can combine theorem 2 and 4 and corollary
3 to obtain more general assumptions on SAN with product
form.

Boucherie’s second theorem is a typical result one can ob-
tain when one combine theorem 2 and 4. The key idea be-
hind the second theorem in [2] is to assume group balance for
the chain. Then the competition over a resource only takes
place in some groups and is again associated to blocking of
the transitions in this group when the resource is already
owned. For the sake of readability we do not develop this
theorem here and just give an example.

Consider the Petri net depicted in Fig. 6. This is an
example of the second Boucherie’s theorem. Note that this
is not a model of a real problem but the result of Robertazzi’s
method to transform an arbitrary Petri net into a product
form one.

The Markov chain associated to this Petri net is in fact
depicted in Fig. 2, the SAN model is also given at the begin-
ning of this paper and the proof of product form is already
stated.

l1
l2

m2 m1a m b m

Figure 6: Example from Boucherie

4.4 Queue and set of queues in a Random en-
vironment

Single Queues in a random environment have been con-
sidered for a long time. One typically study the influence
of a stochastic process (usually denoted as a phase) on the
evolution of a queue or a set of queues. Following Neuts’s
[14] most of the results are based on the matrix geometric
approach.

Only few results have been presented on open networks of
n queues modulated by a phase. As the state space is usu-
ally infinite in several dimension it is not possible to apply
the matrix geometric approach. In [24] Zhu had studied the
steady state distribution of a modulated Markovian open
network of infinite queues. He proved a sufficient condi-
tion to have a product form steady-state distribution. The
steady-state distribution of the number of customers in a
queue is geometrically distributed with ratio ρi,j for queue
i when the phase is in state j. The proof is based on the
reversed process of the network of queues. The necessary
condition is simple: the ratio ρi,j must be constant when
the phase changes. Remember that the ratios of the geo-
metric in an open queueing network are given by the flow
equations.

In [8], Verchère generalized Zhu’s result as follows: he con-
sidered a multidimensional continuous-time Markov chains:
the phase to model the environment and the description of
the networks of queues. The transition rates of the network
of queues may depend of the state of the phase but the
transition rates of the phase do not change when the state
of the network evolves. The chain modeling the phases is
irreducible and finite. Therefore it has a steady-state dis-
tribution. Verchère first proved a general theorem on this
model and he also derived corollaries when the network of
queues is a G-network with positive and negative customers
(see the seminal papers on positive and negative customers
by Gelenbe [9]). Unlike Zhu’s method, the proof in [8] is not
based on reversibility.

Property 10 (Verchère’s Theorem). Fix the chain
of the phase to an arbitrary state (say i). Let M(i) be the
transition rate matrix for this state of the phase. It is not
necessary for M(i) to be irreducible. Consider the left eigen-
vector problem with eigenvalue 1:

πiM(i) = 0,

if πi does not change (up to a normalization) when the
phase changes (i.e. πi = π for all phase i), the steady-state
distribution of the whole system has product form Cπ

N
α

where C is a normalizing constant and α is the steady-state



distribution of the chain modelling the phase.

Our approach clearly generalizes Verchère’s result. Indeed
a SAN with functions and without synchronization may rep-
resent very easily a set of queues modulated by a phase. But
the SAN is even more general because we allow that the
transition rates of the phase to be dependent of the state of
the queues. We do not require any constraint on the func-
tions. They may use any states of any automata to change
the rate of any transition. Thus we have a much more gen-
eral assumption on the model and we still have the same
product-form result.

5. CONCLUDING REMARKS
We have presented a sufficient condition for a SAN with-

out synchronization to have product form steady-state solu-
tion. This simple algebraic result generalizes many papers
already published on set of queues or set of Markov chains in
interaction. It remains to adapt this theory to known results
on set of synchronized chains or networks of queues or gen-
eral SAN. The Domino synchronization [7] have shown that
we still may have product form for a complex synchronized
set of automata. We also think that our approach can gener-
alize the building blocks theory developed by Robertazzi [19]
through an algebraic interpretation of product form based
on local balance.

6. ACKNOWLEDGEMENTS
This work is partially supported a cooperation grant CNRS-

NSF and by French ANR project (ANR-05-BLAN-009-0,
Simulation and Stochastic Monotonicity).

7. REFERENCES
[1] Anne Benoit, Paulo Fernandes, Brigitte Plateau, and

William J. Stewart. On the benefits of using
functional transitions and kronecker algebra. Perform.
Eval., 58(4):367–390, 2004.

[2] Richard J. Boucherie. A characterization of
independence for competing markov chains with
applications to stochastic petri nets. IEEE Trans.
Software Eng., 20(7):536–544, also available as INRIA
Report 1880., 1994.

[3] F. Boujdaine, J.M. Fourneau, and N. Mikou. Product
form solution for stochastic automata networks with
synchronizations, 1997. In E. Brinksma and A.
Nymeyer, editors, Proc. of 5th Process Algebra and
Performance Modelling Workshop.

[4] Susanna Donatelli. Superposed stochastic automata:
A class of stochastic petri nets with parallel solution
and distributed state space. Perform. Eval.,
18(1):21–36, 1993.

[5] Paolo Fernandes, Brigitte Plateau, and William J.
Stewart. Optimizing tensor product computations in
san. RAIRO, 32(3):325–351, 1998.

[6] Paulo Fernandes, Brigitte Plateau, and William J.
Stewart. Efficient descriptor-vector multiplications in
stochastic automata networks. J. ACM,
45(3):381–414, 1998.

[7] Jean-Michel Fourneau. Domino synchronization:
product form solution for stochastic automata
networks. Studia Informatica, 23(4):173–190, 2002.

[8] Jean Michel Fourneau and Dominique Vercheère.
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