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ABSTRACT
In this paper, we study the performance of Slotted Aloha
under power differentiation schemes. We consider the up-
link of a cellular system where m mobiles transmit over a
common channel to a base station. In particular we analyze
random sets possible transmission powers and further study
the role of priorities given either to new arriving packet or
to backlogged packets. We consider a general capture model
where a mobile transmit successfully a packet if its instanta-
neous SINR is larger than the threshold. Under this capture
model, we study both the cooperative team in which a com-
mon goal is jointly optimized as well as the noncooperative
game problem in which mobiles try to optimize their own
objectives. The performance metrics that we study are the
throughput and the expected delay. Further we provide a
stability analysis and show that schemes with power differ-
entiation and power control can improve significantly the
performance and could eliminate in some cases the bi-stable
nature of Slotted Aloha.

1. INTRODUCTION
Aloha [2] and Slotted Aloha [14] have long been used as

random distributed medium access protocols for radio chan-
nels. They are used in satellite networks and cellular tele-
phone networks for the sporadic transfer of data packets. In
these protocols, packets are transmitted sporadically by var-
ious users. If packets are sent simultaneously by more than
one user then they collide. After a packet is transmitted, the
transmitter receives the information on whether there has
been a collision (and retransmission is needed) or whether it
has been well received. All colliding packets are assumed to
be corrupted which get backlogged and are retransmitted af-
ter some random time. We focus on the Slotted Aloha [7], in
which time is divided into units. At each time unit a packet
may be transmitted, and at the end of the time interval,
the sources get the feedback on whether there was zero, one
or more transmissions (collisions) during the time slot. A
packet that arrives at a source is immediately transmitted.
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Packets that are involved in a collision are backlogged and
are scheduled for retransmission after a random time. As in
[5] we introduce new different schemes with multiple power
levels. When several packets are sent simultaneously, one
of them can often be successfully received due to the power
capture effect. In this paper, we consider a general capture
model where a mobile transmit successfully a packet if its
instantaneous SINR is larger than the threshold. In the pa-
per [5], the authors consider a particular capture model, in
which if two or more packets are transmitted simultaneously
with the same power, they assume that neither one can be
captured. A similar capture model are already proposed in
[9, 13, 15].

We study in this paper different schemes. In particular, we
introduce the differentiation between new packets and back-
logged packets allowing prioritization of one or the other
in terms of transmitted power. We study and compare (1)
a scheme with power diversity and without prioritization
in transmission or retransmission; (2) a scheme in which a
new packet is transmitted with the lowest power, and back-
logged packets are transmitted at a random power selected
among N − 1 larger distinct levels; (3) a scheme in which a
new packet is transmitted with the highest power, and back-
logged packets are transmitted at a random power selected
among N − 1 lower distinct levels; (4) a scheme in which
backlogged packets are retransmitted with the lowest power
level and a new packet is transmitted at a random power se-
lected among N − 1 larger distinct levels; and (5) standard
Slotted Aloha.

Interest has been growing in recent years in studying com-
petition of networking in general, access to a common medium
in particular, within the frame of non-cooperative game the-
ory, see e.g. the survey paper [6]. Various game formulations
of the standard Slotted Aloha (with a single power) have
been derived and studied in [4, 3, 11, 12, 8] for the non-
cooperative choice of transmission probabilities. Several pa-
pers study Slotted Aloha with power diversities but without
differentiating between transmitted and backlogged packets,
and without the game formulation: In [13] it is shown that
the system capacity could be increased from 0.37 to 0.53
if one class of terminals always used high power and the
other always used low power level. In [9], power diversity is
studied with the capture model that we use as well as with
another capture model based on signal to noise ratio. [15]
studies power diversity under three types of power distri-
bution between the power levels and provides also stability
analysis. [10] proposes a model and evaluates the through-
put that can be achieved in a system of N nodes using gen-



eralized Aloha like protocols where nodes transmit data us-
ing a two-state decision system. For cooperative systems, it
gives the throughput bounds and explores the trade-off be-
tween throughput and short-term fairness. In our proposal,
we compute the effects of randomization in power levels in
both cooperative and non-cooperative setup.

The capture model used in [4] is not always true. The
authors in [4] assume that if only one user chooses the high-
est power, its transmission is succeeded independently of the
other terminals and their choices. In fact, this assumption
could not be always true. It’s possible that the other mobiles
jam the signal of the mobile whose power level is the highest,
therefore no successful transmission exists. In this paper, a
terminal succeeds its transmission if it chooses the most el-
evated power level comparing to the others mobiles and its
SINR (signal to interferences and noise ratio) is greater than
a given threshold (SINRth).

Under more general capture model, we study the team
problem in which we optimize transmission probabilities for
the various schemes so as to achieve the maximum through-
put or to minimize expected delay. We discover that in
heavy load, the optimality is obtained at the expense of
huge expected delay of backlogged packets (EDBP). We
therefore consider the alternative objective of minimizing
the EDBP. We study both the throughput as well as the de-
lay performance of the global optimal policy. We also solve
the multi-criteria problem in which the objective is a con-
vex combination of the throughput and the EDBP. This al-
lows in particular, to compute the transmission probabilities
that maximize the throughput under a constraint on EDBP,
which could be quite useful for delay-sensitive applications.
We show that schemes with priority not only improve the
average performances considerably but they are also able in
some cases to eliminate the bi-stable nature of the Slotted
Aloha.

We also studied the game problem in which each mobile
chooses its transmission probability selfishly in order to op-
timize its own objective. This rise to a game theoretic model
of which we study the equilibrium properties (Nash equilib-
rium). We show that the power diversity and the prioritiza-
tion profit to mobiles also in this competitive scenario even if
the advantage is less notorious than in the team’s behavior.

The rest of this paper is organized as follows. In Section
II, we describe the problem and model. In Section III, we
discuss the team formulation of the problem. In Section IV,
we formulate the game setting. And finally we discuss the
performance of different schemes numerically in section V.

2. MODEL AND PROBLEM FORMULATION

We consider one central receiver and m mobiles without
buffer. A mobile can transmit a packet using a power from N
different levels. We consider a general capture model where
a packet transmitted by a mobile is received successfully only
if its SINR ratio is larger than a given threshold SINRth.
Let Pi be the power level chosen by mobile i, σ2 is the
spectral density of the background noise. Let us denote the
attenuation of the signal of mobile i by gi. The expression
of the SINR of mobile i is given by :

SINRi =
gi · Pi

k∑
j=1

gj · Pj + σ2

(1)

Hence, a packet of mobile i is transmitted successfully if its
SINRi defined in (1) is greater than SINRth.

We use a Markovian model such the one used in [4, 3, 5].
The arrival probability of the packets to the source i follows
a Bernoulli process with parameter qa (i.e. at each time slot,
there is a probability qa of a new arrival at a source, and
all arrivals are independent). As long as there is a packet at
a source (i.e. as long as it is not successfully transmitted)
new packets to that source are blocked and lost (because we
consider sources without buffer). The arrival processes to
different sources are independent. A backlogged packet at
source i is retransmitted with probability qi

r and we should
restrict in our control and game problems to simple policies
in which qi

r does not change in time. Since sources are sym-
metric, we should further restrict to find a symmetric opti-
mal solution, that is, retransmission probabilities qi

r that do
not depend on i.

The state of the system is the number of backlogged pack-
ets in the beginning of a slot and we denote it by n. For any
choice of values qi

r ∈ (0, 1] , the state process is a Markov
chain that contains a single ergodic chain (and possibly tran-
sient states as well). Define qr to be the vector of retrans-
mission probabilities for all users (whose jth entry is qj

r ).
Let π(qr) be the corresponding vector of steady state proba-
bilities where its nth entry, πn(qr) denotes the probability of
n backlogged nodes. When all entries of qr are the same, say
q, we shall write (with some abuse of notation) π(q) instead
of π(qr).

We introduce further notation. Assume that there are n
backlogged packets, and all use the same value qr as retrans-
mission probability. Let Qr(i, n) be the probability that i
out of the n backlogged packets retransmit at the slot. Then

Qr(i, n) = (n
i )(1− qr)

n−i(qr)
i (2)

Let Qa(i, n) be the probability that i unbacklogged nodes
transmit packets in a given slot (i.e. that i arrivals occurred
at nodes without backlogged packets). Then

Qa(i, n) = (m−n
i )(1− qa)m−n−i(qa)i (3)

Let Qr(i, 0) = 0 and Qa(i, m) = 0.

3. THE TEAM PROBLEM

In this section we study Slotted Aloha as a team problem.
All mobiles maximize the system throughput (or minimize
delay). In the sequel, we assume that gi = g ∀i = 1, 2, .., m.
Therefore we analyze four different schemes.

3.1 Scheme 1 : Random power levels without
priority scheme

In this approach, there is no preference between new pack-
ets or backlogged packets. A mobile can choose to transmit
using a power level among N different levels in set N =
{1, 2, .., N}. In case all nodes use the same value q the tran-



sition probability of the system is given by P̄n,n+i =



Qa(m− n, n)
∑n

j=0 Qr(j, n)(1−Aj+m−n), i = m− n, i ≥ 2
Qa(i, n)

∑n
j=0 Qr(j, n)(1−Aj+i)

+Qa(i + 1, n)
∑n

j=0 Qr(j, n)Aj+i+1, 2 ≤ i < m− n
Qa(1, n)

∑n
j=1 Qr(j, n)(1−Aj+1)

+Qa(2, n)
∑n

j=0 Qr(j, n)Aj+2, i = 1
Qa(0, n)[Qr(0, n) +

∑n
j=2 Qr(j, n)(1−Aj)]

+Qa(1, n)
∑n

j=0 Qr(j, n)Aj+1, i = 0
Qa(0, n)

∑n
j=1 Qr(j, n)Aj , i = −1

where the probability of a successful transmission among
k ≥ 2 is given by:

Ak = k

N−2∑
l=0

k−1∑
k1=0

k−1∑
k2=0

· · ·
k−1∑

kN−l−1=0

[Xk1
1 ·Xk2

2

· · ·XkN−l−1
N−l−1 ·X1

N−l · δ(k − 1−
N−l−1∑

s=1

ks) ·

u(
PN−l∑N−l−1

s=1 Psks + σ2/g
− SINRth)] (4)

with A0 = 0 and A1 = 1. In the equation (4), Xs is
the probability that a packet (new arrival or backlogged)
will choose power level Ps for transmission/retransmission.
PN−l is the power level chosen by the terminal whose trans-
mission maybe potentially succeed (it’s the highest power
selected in this scenario). We denote by ks the number of
terminals that choose the power level Ps. δ(t) (Dirac distri-
bution) and u(t) (unite echelon) are as following :

δ(t) =

{
1 if t = 0
0 else

u(t) =

{
1 if t ≥ 0
0 else

(5)

3.2 Scheme 2 : Retransmission with more power
In this scheme, backlogged packets have more priority; a

backlogged packet retransmits using a random power level
among the N available (we use a uniform distribution when
choosing a power level), while a new arrived use always the
lowest level (P1). Successful capture is occurred when one of
the backlogged packets transmits with a power level which
is larger than the one chosen by all others transmitters and
its corresponding SINR is greater than the SINRth when
arriving at the AP or a single new arrival occurs and there
is no retransmission attempt of any backlogged packet. The
transition matrix is given by P̄n,n+i =



Qa(m− n, n)
∑n

j=1 Qr(j, n)(1−Bj,m−n), i = m− n, i ≥ 2
Qa(i, n)

∑n
j=0 Qr(j, n)(1−Bj,i)

+Qa(i + 1, n)
∑n

j=1 Qr(j, n)Bj,i+1, 2 ≤ i < m− n
Qa(1, n)

∑n
j=1 Qr(j, n)(1−Bj,1)

+Qa(2, n)
∑n

j=1 Qr(j, n)Bj,2, i = 1
Qa(0, n)[Qr(0, n) +

∑n
j=2 Qr(j, n)(1−Bj,0)]

+Qa(1, n)
∑n

j=0 Qr(j, n)Bj,1, i = 0
Qa(0, n)

∑n
j=1 Qr(j, n)Bj,0, i = −1

where the probability of a successful transmission among
k retransmissions and k′ new arrival packets when k+k′ ≥ 2
is given by:

Bk,k′ =

N−2∑
l=0

k−1∑
k1=0

· · ·
k−1∑

kN−l−1=0

[Xk1
1 · · ·XkN−l−1

N−l−1 ·X1
N−l]·

δ(k − 1−
N−l−1∑

s=1

ks) · u(
PN−l∑N−l−1

s=1 Psks + k′P1 + σ2/g
− SINRth)

with B0,0 = 0,B0,1 = 1 and B1,0 = 1

3.3 Scheme 3 : Retransmission with less power
In this scheme, a new transmitted packet has the highest

power. Backlogged packets attempt retransmissions with
a random power choice among N − 1 distinct lower power
levels. The transition matrix is given by: P̄n,n+i =


Qa(i, n), 2 ≤ i
Qa(1, n)

∑n
j=1 Qr(j, n)(1− Cj,1), i = 1

Qa(0, n)[Qr(0, n) +
∑n

j=2 Qr(j, n)(1− Cj,0)]
+Qa(1, n)

∑n
j=0 Qr(j, n)Cj,1, i = 0

Qa(0, n)
∑n

j=1 Qr(j, n)Cj,0, i = −1

where the probability of a successful transmission when
k ≥ 2 mobiles attempt retransmissions is given by:

Ck,1 = k

k−1∑
k1=0

k−1∑
k2=0

· · ·
k−1∑

kN−1=0

[Xk1
1 · · ·XkN−1

N−1 ·X1
N−l

·δ(k −
N−1∑
s=1

ks) · u(
PN∑N−1

s=1 Psks + σ2/g
− SINRth)]

the probability of a successful retransmission among k ≥ 2
is given by:

Ck,0 = k

N−2∑
l=1

k−1∑
k1=0

k−1∑
k2=0

· · ·
k−1∑

kN−l−1=0

[Xk1
1 · · ·XkN−l−1

N−l−1 ·X1
N−l

·δ(k − 1−
N−l−1∑

s=1

ks) · u(
PN−l∑N−l−1

s=1 Psks + σ2/g
− SINRth)]

Ck,k′ = 0 if K′ ≥ 2, C0,1 = 1 and C1,0 = 1

3.4 Scheme 4 : Retransmission with the low-
est power

In this proposal, a new transmitted packet uses a power
among N−1 higher available power level. Backlogged pack-
ets retransmit with the lowest power level (P1). The transi-
tion matrix of the Markov chain is given by P̄n,n+i =

Qa(m− n, n)
∑n

j=0 Qr(j, n)(1−Dj,m−n), i = m− n, i ≥ 2
Qa(i, n)

∑n
j=0 Qr(j, n)(1−Dj,i)

+Qa(i + 1, n)
∑n

j=0 Qr(j, n)Dj,i+1, 2 ≤ i < m− n
Qa(1, n)

∑n
j=1 Qr(j, n)(1−Dj,1)

+Qa(2, n)
∑n

j=0 Qr(j, n)Dj,2, i = 1
Qa(0, n)[Qr(0, n) +

∑n
j=2 Qr(j, n)(1−Dj,0)]

+Qa(1, n)
∑n

j=0 Qr(j, n)Dj,1, i = 0
Qa(0, n)Qr(1, n), i = −1

where Dk,k′ is the probability of a successful transmission
among k backlogged packets and k′ new packets such that
k′ + k ≥ 2. The value Dk,k′ is given by



k′
N−2∑
l=0

k−1∑
k′1=0

· · ·
k′−1∑

k′
N−l−1=0

[X
k′1
1 ·Xk′2

2 · · ·X
k′N−l−1
N−l−1 ·X1

N−l]

·δ(k′ − 1−
N−l−1∑

pl=1

k′pl) · u(
PN−l∑N−l−1

pl=1 Plk
′
pl + kP1 + σ2/g

− SINRth)]

where D0,0 = 0, D0,1 = 1 and D1,0 = 1

3.5 Performance metrics

To optimize in terms of either throughput or expected
delay, we need to calculate the steady state of the system.
Let’s denote by πn(qr) the equilibrium probability that the
network is in state n (number of backlogged packets at the
beginning of a slot). Hence the equilibrium state equations
are:


π(q) = π(q) · P (q)
m∑

n=0

πn(q) = 1

πn(q) ≥ 0, n = 0, 1, ..., m

(6)

When the steady state is achieved the average number of
backlogged packets is given by equation :

S(q) =

m∑
n=0

πn(q) · n (7)

The system throughput (defined as the sample average of
the number of packets that are successfully transmitted) is
given almost surely by the constant thp(q) =



m∑
n=0

m−n∑
i=0

n∑
j=0

πn(q)Qa(i, n)Qr(j, n)Aj+i Scheme 1

m∑
n=0

πn(q)[

m−n∑
i=0

n∑
j=1

Qa(i, n)Qr(j, n)Bj,i + Qa(1, n)Qr(0, n)]

Scheme 2
m∑

n=0

πn(q)[Qa(0, n)
n∑

j=1

Qr(j, n)Cj,0 + Qa(1, n)
n∑

j=0

Qr(j, n)Cj,1]

Scheme 3
m∑

n=0

πn(q)[

m−n∑
i=1

n∑
j=0

Qa(i, n)Qr(j, n)Dj,i + Qa(0, n)Qr(1, n)]Scheme 4

m∑
n=0

πn(q)[Qa(0, n)Qr(1, n) + Qa(1, n)Qr(0, n)] Same power

(8)

The throughput satisfies (and thus can be computed more
easily through)

thp(q) = qa

m∑
n=0

πn(q)(m− n) = qa(m− S(q)) (9)

Indeed, the throughput is the expected number of arrivals
at a time slot (which actually enter the system), and this is
expressed in the equation for thp(q) by conditioning on n.
The throughput should be equal to the expected number of
departures (and thus the throughput) at stationary regime,
which is expressed in (9). The expected delay of transmit-
ted packets D, is defined as the average time, in slots, that

a packet takes from its source to the receiver. Applying
Little’s result, this is given by:

D(q) = 1 +
S(q)

thp(q)
= 1 +

S(q)

qa(m− S(q))
(10)

Combining the equation (9) with 10) it follows that max-
imizing the global throughput is equivalent to minimizing
the average delay of transmitted packets. We shall there-
fore restrict in our numerical investigation to maximization
of the throughput. However, we shall consider the delay of
backlogged packets as yet another objective to minimize.

Let ∆ be the throughput of new arrivals, the through-
put of the backlogged packets for each scheme is given by:
thpc(q) = thp(q)−∆ where ∆ is calculated by:



m∑
n=0

m−n∑
i=1

n∑
j=0

i

i + j
πn(q)Qa(i, n)Qr(j, n)Ai+j Scheme 1

m∑
n=0

πn(q)Qa(1, n)Qr(0, n) Scheme 2

m∑
n=0

πn(q)Qa(1, n)
n∑

j=0

Qr(j, n)Cj,1 Scheme 3

m∑
n=0

m−n∑
i=1

n∑
j=0

πn(q)Qa(i, n)Qr(j, n)Dj,i Scheme 4

m∑
n=0

πn(q)Qa(1, n)Qr(0, n) Same power

(11)

The expected delay of backlogged packets Dc, which is de-
fined as the average time, in slots, that a backlogged packet
takes to go from the source to the receiver, can also be cal-
culated by applying Little’s result. Hence,

Dc(q) = 1 +
S(q)

thpc(q)
(12)

Team problem resolution. The solution of the team
problem is therefore given as the solution of the following
optimization problem:

max
q

objective(q) s.t.


π(q) = π(q) · P (q)
m∑

n=0

πn(q) = 1

πn(q) ≥ 0, n = 0, 1, ..., m

(13)

Stability. Another qualitative way to compare schemes
is in the stability characteristics of the protocol. Slotted
Aloha is known to have a bi-stable behavior, and we shall
check whether this is also the case in our new schemes if
answer is positive, under which conditions it happens?

Let us denote Psucc the expected number of successful
transmissions in the slot, which is just the probability of a
successful transmission and it is given by Psucc(q) =





m−n∑
i=0

n∑
j=0

Qa(i, n)Qr(j, n)Aj+i Scheme 1

m−n∑
i=0

n∑
j=1

Qa(i, n)Qr(j, n)Bj,i + Qa(1, n)Qr(0, n) Scheme 2

Qa(0, n)
n∑

j=1

Qr(j, n)Cj,0 + Qa(1, n)
n∑

j=0

Qr(j, n)Cj,1 Scheme 3

m−n∑
i=1

n∑
j=0

Qa(i, n)Qr(j, n)Dj,i + Qa(0, n)Qr(1, n) Scheme 4

Qa(0, n)Qr(1, n) + Qa(1, n)Qr(0, n) Same power
(14)

Define now the drift in state n, Dn, as the expected change
in backlog from one slot to the next slot, which is the ex-
pected number of arrivals, qa(m−n) i.e. , less the expected
number of successful departures Psucc, that is:

Dn = qa(m− n)− psucc (15)

It has been observed for standard Slotted Aloha (see [5
sect.4]) that there are three equilibria. System equilibrium
points occur where the curve, i.e.( Psucc) and the straight
line, i.e.(qa(m− n)) intersect. When the drift, which is the
difference between the straight line and the curve, is posi-
tive, the system state tends to increase, while it decreases
when the drift is negative. This explains immediately why
the middle equilibrium point is unstable and the two other
are stable. A bi-stable situation as in the standard Aloha is
hence undesirable since it means in practice that the system
spends long time in each of the stable equilibria including
in the one with large n corresponding to a congestion sit-
uation (low throughput and large delays). We shall study
numerically the stability behavior of all schemes.

4. THE GAME PROBLEM
In fact Slotted Aloha system is usually a decentralized en-

tity, therefore the team model does not hold anymore, so we
shall formulate a game model. The decentralized model is
more powerful and appropriate to Slotted Aloha. The equi-
librium concept then replaces the optimality concept from
the team problem. It possesses a robustness property: at
equilibrium, no mobile has incentive to deviate.

Next, we formulate the game problem. For a given policy
vector ~qr of retransmission probabilities for all users (whose
jth entry is qj

r), define ([~qr]
−i, q̂i

r) to be a retransmission
policy where user j retransmits at a slot with probability qj

r

for all j 6= i and where user i retransmits with probability
q̂i

r. Each user i seeks to maximize his own throughput thpi.
The problem we are interested in is to find a symmetric
equilibrium policy ~q∗r = (qr, qr, .., qr) such that for any user
i and any retransmission probability qi

r for that user,

thpi(~q
∗
r ) ≥ thpi([~q

∗
r ]−i, qi

r). (16)

Since we restrict to symmetric ~q∗r , we shall also identify it
(with some abused of notation) with the actual transmission
probability (which is the same for all users). Next we show
how to obtain an equilibrium policy. We first note that due
to symmetry, to see whether ~q∗r is an equilibrium it suffices
to check (16) for a single player. We shall thus assume that
there are m+1 users all together, and that the first m users

retransmit with a given probability ~q
−(m+1)
r = (qo, .., qo) and

user m + 1 retransmits with probability q
(m+1)
r . Define the

set

Qm+1(~qo
r) = argmax

q
(m+1)
r ∈[ε,1]

(
thpm+1([~q

o
r ]−(m+1), q(m+1)

r )
)
,

where ~qo
r denotes (with some abuse of notation) the policy

where all users retransmit with probability qo
r , and where

the maximization is taken with respect to q
(m+1)
r . Then q∗r

is a symmetric equilibrium if

q∗r ∈ Qm+1
r (q∗r ).

To compute the performance measures of interest, we in-
troduce again a Markov chain with a two dimensional state.
The first state component corresponds to the number of
backlogged packets among the users 1, ..., m, and the second
component is the number of backlogged packets (either 1 or
0) of user m + 1. Due to lack of space, transition matrices
of all schemes are given in Appendix of full paper [1].

Hence the average number of backlogged packets of source
(m + 1) is given by:

Sm+1([~qo
r ]−(m+1), qm+1

r ) =
m∑

n=0

πn,1([~qo
r ]−(m+1), qm+1

r ) (17)

And the average throughput of user (m + 1) is given by:

thpm+1([~qo
r ]−(m+1), qm+1

r ) = qa

m∑
n=0

πn,0([~qo
r ]−(m+1), qm+1

r )

(18)

Hence the expected delay of transmitted packets of user
(m + 1) for all schemes is given by:

Dm+1([~qo
r ]−(m+1), qm+1

r ) = 1 +
Sm+1([~qo

r ]−(m+1), qm+1
r )

thpm+1([~qo
r ]−(m+1), qm+1

r )
(19)

Let us denote the throughput of backlogged packets (i.e.
of the packets that arrive and become backlogged) at source
(m + 1) by:

thpc
m+1(qm+1

r ) =

m∑
n=0

m∑
n′=0

P(n,0),(n′,1)(q
m+1
r )πn,0(qm+1

r ) (20)

Thus, the expected delay of backlogged packets at source
(m + 1), is given by:

Dm+1(qm+1
r ) = 1 +

Sm+1(qm+1
r )

thpc
m+1(qm+1

r )
(21)

5. NUMERICAL INVESTIGATION
We describe next numerical investigation of the team and

the game problems for the four schemes as well as standard
slotted Aloha

5.1 Team problem: Maximizing the system through-
put

In this subsection we maximize the global throughput. In
Fig 1(a) and Fig 1(b) we plot the throughput and expected
delay of backlogged packets (EDBP) for all schemes for m =



4, SINRth = 3, N = 5 and P = [1.6 8 40 200 1000]mW
as a power policy for all schemes. Slotted Aloha is then
equivalent to scheme 1 with same power policy.

We observe that when load is very low (0.1 < qa) all
schemes have nearly the same performance which is a linear
function of qa. In the average load, scheme 2 performs better
than other schemes in terms of throughput. This is due
to the fact that scheme 2 prioritizes the retransmission of
backlogged packets operating the fact that there are few
new comers. But at high load the throughput of scheme
4 is the highest because it prioritize the new arrivals. In
fact new arrivals have an extended choice of power levels
so its benefits from prioritization and power diversity. We
remark that scheme 3 which is the same as the one used
in [5] presents the lower performance comparing to other
schemes with priority and power diversity, this is due to the
negative effect of power randomization and power control
given to backlogged packets, which directly influences the
value of the instantaneous SINR. We note also that all
schemes with random power selection outperform standard
Aloha.
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Figure 1: Performances for the team case vs. arrival
probability qa for all schemes when max. the system
throughput for m = 4.

In term of expected delay of backlogged packets, we observe
that maximizing throughput leads to the following results

(see Fig 1(b)): at low load, scheme 4 performs better than
other schemes. In the average and high load (0.2 < qa < 0.8)
scheme 2 and 4 perform both well and are equivalent. But
for 0.8 < qa, scheme 4 is the most interesting whereas scheme
1-3 and Slotted Aloha perform very bad.
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Figure 2: Performances for the team case vs. arrival
probability qa for all schemes when max. the system
throughput for m = 10.

Next we plot the optimal retransmission probability ver-
sus arrival probability. We remark that for m = 4 (Fig 1(c))
all schemes optimal retransmission probability qr decreases
with qa until to be semi-annulled (qr ' 10−4 because of
δ-optimality) for schemes 1-3 and Slotted Aloha, when it
keeps a constant value (about 0.3) for scheme 4 (for qa over
0.5) because it prioritizes new packets and then it doesn’t
penalize too much from huge amount of backlogged packets
and retransmission rate.

In figure 2, we consider 10 mobiles and 5 power levels. We
observe similar trends in term of throughput and delay for
all schemes. In fact even if the number of mobiles is wide, the
performance is handled by decreasing retransmission prob-
ability so as to avoid extra collisions. We remark that at
heavy load the system ask mobiles to decrease their retrans-
mission probabilities to avoid collisions, therefore the system
keeps a very good amount of successful departure, then an
optimal value of throughput which is better compared to
Slotted Aloha.

5.2 Team problem: Minimizing the delay



When maximizing the global throughput (figure 1 and
2) we observed a huge EDBP under all schemes chiefly at
heavy load except scheme 4 which handle a constant delay.
This may be very harmful for many applications which are
very sensitive to delay (real time applications). In figures
Fig 3(a) and Fig 3(b), We shall investigate the problem of
minimizing EDBP and study the impact of this optimiza-
tion on the throughput performance. We shall note in par-
ticular that throughput performance in the four schemes im-
proves considerably with respect to Slotted Aloha. Scheme
1 is slightly better in terms of throughput only at light
load, scheme 2 is almost better in medium load whereas
scheme 4 outperforms remarkably the other schemes at high
(0.55 < qa) and very high load. The case of 10 mobiles
provides similar trends.
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Figure 3: Optimal throughput, Expected delay of
backlogged and retransmission probability for the
team case as a function of arrival probability qa for
all schemes when minimizing the expected delay of
backlogged packets for m = 4.

When EDBP is minimized, for m = 4 and N = 5,
retransmission probability decreases with qa, so standard
Aloha and scheme 4 have optimal retransmission probabil-
ity of around 0.3 in heavy load whereas proposals 1-3 have
much higher retransmission probabilities (Fig 3(c)). But
when m = 10 and N = 5 (Fig 4(c)) we observe that op-
timal retransmission probability falls exponentially for all
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Figure 4: Optimal throughput, Expected delay of
backlogged and retransmission probability for the
team case as a function of arrival probability qa for
all schemes when minimizing the expected delay of
backlogged packets for m = 10.

schemes. Therefore in high load, the retansmission proba-
bility for Slotted Aloha is around 0.13, for scheme 4 is around
0.1 and for scheme 1-3, is around 0.19.

Table 1 summarizes the performance of the team problem
in terms of throughput and EDBP under throughput max-
imization. We can easily check the impact of m, qa and N
on system’s performance as shown in previous subsection.
This table is given in Appendix of full paper [1].

5.3 Team problem: Multi-criteria
In previous simulations we consider the extreme cases of

maximizing independently the throughput or minimizing the
EDBP . In practice it may be more interesting to have a
multi-criteria optimization in which a convex combination
of both the throughput and EDBP are optimized. The ob-
jective is given by αthp(q)+ (1−α)/Dc(q), 0 ≤ α ≤ 1. This
allows in particular handling QoS constraints: By varying α
one can find appropriate trade-off between the throughput
and delays.

At low load (qa = 0.3), for all schemes 1-4 (Fig 5(a and b)),
the optimal throughput and EDBP are slightly constants.
In fact, its optimal retransmission probability under both
objectives (maximizing throughput and minimizing delay)



are so close. At high load (Fig 6(a and b)), we observe that
the throughput (resp. EDBP ) increases when α increases.
Hence, there is a trade-off beteween throughput and EDBP
by changing α.
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Figure 5: Throughput and delay as a function of α
for all the schemes under light load (qa = 0.3).
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Figure 6: Throughput and delay as a function of α
for all the schemes under high load (qa = 0.9).

5.4 Team problem: Stability
In Fig 7, we illustrate the stability behavior for 40 mo-

biles , SINRth = 3, qa = 0.01 and qr = 0.15. The drift is

the difference between the curves (representing the depar-
ture rate) and the straight line representing the arrival rate
qa(m − n). We note that slotted Aloha is the only scheme
that suffers from the bi-stability problem under qr = 0.15.
Except scheme 3 (more figures are provided in full paper [1]),
all schemes suffer from the bi-stability problem at qr = 0.19.
Over this value of qr all schemes suffer from bi-stability. We
see that for standard slotted Aloha, the departure is at most
1/e ≈ 0.37 whereas for different power schemes it is inter-
estingly higher.

The average number of backlogged packets (ABP ) for dif-
ferent schemes which correspond to their equilibrium points
are given in Table II (provided in full paper) with m = 30,
qa = 0.01 and N=5. This is compared to the expected num-
ber of backlogged packets. In the case of a single equilibrium
and when qr < 0.5, a good match is seen for schemes 1, 2
and 3, which means that the simple computation of the sta-
ble equilibrium can be used to approximate the expected
number of backlogged packets. In standard Aloha we see
that the congested stable equilibrium provides a very good
approximation for the expected number of backlogged pack-
ets, which suggests that the system spends most of the time
at that equilibrium. At high rate of retransmission there
is the same behavior in all schemes when the retransmis-
sion probability increases (around 0.3). Then all schemes
acquire a bi-stable behavior with qr = 0.3, but contrary to
standard aloha, we see from Table II that the expected num-
ber of backlogged packets for scheme 1, 2, 3 and 4 can be
approximated by the desired stable equilibrium which is a
very interesting feature. That means that in the bi-stability
case for scheme 1, 2, 3 and 4, the system spends most of
the time at the desired equilibrium. When mobiles tend to
retransmit or become more aggressive (qr around 0.5), we
see that the congested (non desired) stable equilibrium pro-
vides a very good approximation for the expected number
of backlogged packets in all schemes, which shows that the
system spends most of the time at that equilibrium.
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Figure 7: Probability of success transmission versus
number of backlogged packets n for all the schemes

5.5 Game problem: Maximizing individual through-
put

Next, we evaluate the performance in game problem. For
m=3, i.e 4 mobiles altogether, analyzing Fig 8, we can al-
ready say that scheme 1-3 and slotted Aloha present nearly
similar profile with some differences in terms of numerical
values. In fact global equilibrium throughput is a concave
function of arrival probability qa, at low load it presents an
increasing behavior until achieving a maximum throughput
of thpmax ' 0.34 at qa ' 0.13, thpmax ' 0.56 at qa ' 0.22,
thpmax ' 0.68 at qa ' 0.31 and thpmax ' 0.41 at qa ' 0.16



for respectively Slotted Aloha, scheme 1 (and 4), 2 and 3.
This is due to the fact that mobiles are not very aggres-
sive at low load; A possible explanation for this behavior is
the following: If an individual tagged mobile was very ag-
gressive (retransmission probabilities close to 1) in standard
Aloha, algorithms 3 and 4 then eventually all other mobiles
would become backlogged which could increase the collision
rate and thus decrease the throughput of the tagged mobile.
Hence for some values of arrival probabilities the equilib-
rium behavior of standard Aloha is not very aggressive. In
contrast, schemes 1 and 2 suffer less from other mobiles be-
coming backlogged since they can reduce collisions due to
the randomization and priorities. Hence increasing backlog
of other mobiles does not penalize the tagged station any-
more, so it has incentive to become more aggressive. The
equilibrium transmission probabilities for schemes 1 and 2
are semi-constants as function of qa given by 0.997 (for 4
mobiles).
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Figure 8: Aggregate throughput, EDBP and opti-
mal retransmission probability versus arrival prob-
ability qa for all schemes when maximizing the indi-
vidual throughput and game setting with 4 mobiles.

A remarkable feature of the schemes 1-4 is that the equi-
librium throughput is increasing in the arrival probabilities
at low load, which is a similar behavior as the one we had in
the team problem. In contrast, for high load the throughput
decreases for Schemes 1-3 and it also contains a decreasing
behavior in standard Aloha where it is going up for scheme 4.
Thus the competition in the game formulation does not al-
low to benefit from increased input rates for standard Aloha

and Scheme 1-3 (except for low values of qa) whereas the
new scheme 4 do benefit from that fact.

In term of EDBP, schemes 1-3 are insensitive to the value
of qa whereas scheme 4 and Slotted Aloha suffer from huge
of EDBP because of high rate of collisions and retransmis-
sions prioritization. For m = 3 scheme 2 provides the best
performance whatever qa.

For case with 10 mobiles Fig 9, we note that the equilib-
rium throughput vanishes for schemes 1-3 and Slotted Aloha
at qa > 0.12, whereas scheme 4 keeps an increasing behavior
with qa with a throughput collapse when qa tends to 1.
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Figure 9: Aggregate throughput, EDBP and opti-
mal retransmission probability versus arrival proba-
bility qa, under individual throughput maximization
for the game setting with 10 mobiles.

5.6 Game problem: Minimizing individual EDBP
Under delay minimization, we obtain nearly the same pro-

file as the one obtained when maximizing individual through-
put, which means that optimal retransmission probability
that maximize the throughput is very close to the delay min-
imizer. A slight difference is seen in terms of retransmission
probability at low load under schemes 2 and 4.

An interesting feature to note is that the throughput ob-
tained when minimizing the EDBP is quite higher than the
one obtained when maximizing the individual throughput;
This is due to the fact that we are in a non-cooperative game
setting, for which the equilibria are known not to be efficient
(as is the case in the famous prisoners dilemma paradox).
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Figure 10: Aggregate throughput, EDBP and opti-
mal retransmission probability versus arrival prob-
ability qa for all schemes when minimizing the delay
under game setting with 4 mobiles.

6. CONCLUSION

We have studied in this paper Slotted Aloha as a stochas-
tic game with priority, power diversity and general power
control. We also analyzed the system as a centralized sys-
tem (team problem framework) and a decentralized form
using a non-cooperative game formulation.

In the team case, we saw that scheme 2 (retransmission
with more power) is the best in medium load and our new
scheme 4 (retransmission with the least power) is the best
in high and very high load, both when maximizing through-
put or minimizing delay, whatever the number of mobiles.
In contrast with the game formulation, scheme 2 offers the
best performance either in term of throughput and delay on
all loads when the number of mobiles is small, but with a
greater number of users, either schemes 1, 2 and 3 suffer
from the throughput collapse such Slotted Aloha, chiefly at
heavy and very heavy load; whereas scheme 4 outperforms
and tends to increase with arriving probability. At very
high load (when qa is close to 1) performances of scheme 4
decrease exponentially because mobiles become very aggres-
sive, therefore more collisions occurs. Finally we confirm
that algorithms presented in this paper provide better per-
formance comparing to the implemented Slotted Aloha, and
are more realistic comparing to previous works because they
take into consideration the interferences problem and signal

quality needed to decode correctly the captured signal.
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