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ABSTRACT
Bouallouche [3] has applied the strong stability method to
study the proximity of the G/M/1 and M/M/1 systems
when the general distribution of arrivals G is assumed to
be hyper-exponantial.
In this paper, we show the applicability of the strong stabil-
ity method to evaluate an approximation error of the G/M/1
and M/M/1 systems when the general distribution of ar-
rivals G is unknown and must be estimated by the means of
the kernel density estimation method. The boundary effects
are taken in consideration. A simulation study is effectu-
ated.

Keywords
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1. INTRODUCTION
When modelling practical problems, one may often re-

place a real system by another one which is close to it in some
sense but simpler in structure and/or components. This ap-
proximation is necessary because real systems are generally
very complicated, so their analysis can not lead to analytical
results or it leads to complicated results which are not useful
in practice.

The strong stability method elaborated in the beginning
of the 1980s is applicable to all operation research models
which can be represented by a Markov chain [1, 7]. It has
been applied to queueing systems (see for example [2]). Ac-
cording to this approach, we suppose that the perturbation
is small with respect to a certain norm. Such a strict condi-
tion allow us to obtain better estimations on the character-
istics of the perturbed chain.

When the distribution of arrivals is general but close to
Poisson distribution, it is possible to approximate the char-
acteristics of the G/M/1 system by those of the M/M/1
system, if we prove the fact of stability (see [2]). In this
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case, is it possible to precise the error of the proximity?
Results are known when the general distribution G is well
fixed and close to the exponential one. For example when the
distribution G is hyper-exponential, it’s possible to obtain
numerically the proximity of the stationary distribution of
an Hyp/M/1 system by one of an M/M/1 system (see [3]).
In this work, we are interested by the case where the dis-
tribution G is unknown so must be estimated by the means
of estimating its density function. The most popular and
attractive nonparametric method of estimating an unknown
density is the kernel density method (see [9]). If X1, X2, ..., Xn

is a sample coming from a distribution F with an unknown
density function f , the Rosenblatt kernel estimator (see [9])
is given by:

fn(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
, ∀x ∈ R. (1)

Where K is a symmetric density function called kernel and
hn is the smoothing parameter (or bandwidth).
Several results are known in the literature when the density
function is defined on the real line R [5, 6, 8, 9]. In the
case of a density function defined on a bounded support,
the boundary effects are present. To resolve this problem,
many recent methods have been elaborated. We can cite:
the ”mirror image” of Schuster [10] and the asymmetric ker-
nel estimators [4].

The aim of this paper is to show the applicability of the
strong stability method to evaluate an approximation error
on the stationary distributions of the G/M/1 and M/M/1
systems when the general law of arrivals G is unknown so
its density function must be estimated by the means of the
kernel density estimation method. The boundary effects are
taken in consideration.

The paper is organized as follows: First, the basics of
the G/M/1 and M/M/1 models and the strong stability ap-
proach are briefly reviewed in section 2. In section 3, we give
some results and discussions concerning the kernel density
method and the correction of boundary effects. In the last
section, we apply the kernel density method in the study of
the strong stability of the M/M/1 system. We are inter-
ested by the approximation of the stationary distribution of
the G/M/1 system by one of the M/M/1 system, when the
distribution G is general and unknown.



2. STRONG STABILITY OF THE M/M/1 SYS-
TEM AFTER PERTURBATION OF THE
ARRIVAL FLOW

2.1 Description ofM/M/1 and G/M/1 models
Let us consider G/M/1(FIFO,∞) system where inter-

arrival times are independently distributed with general dis-
tribution H(t) and service times are distributed with Eγ(t)
(exponential with parameter γ).

Let X∗
n be the number of customers left behind in the

system by the nth departure. It’s easy to prove that X∗
n

forms a Markov chain (see [7]) with a transition operator
P ∗ = ‖P ∗ij‖i,j≥0 where:

P
∗
ij =


d∗i+1−j =

∫ +∞
0

1
(i+1−j)! e−γt(γt)i+1−jdH(t), if 1 ≤ j ≤ i + 1

1 −
i∑

k=0
d∗k, if j = 0

0, otherwise
(2)

Consider also an M/M/1(FIFO,∞) system, which has
Poisson arrivals with parameter λ and the same distribution
of the service time as the precedent system. It’s known that
Xn (the number of customers left behind in the system by
the nth departure), forms a Markov chain with a transition
operator P = ‖Pij‖i,j≥0 where:

Pij =


di+1−j = λγi+1−j

(λ+γ)i+2−j , if 1 ≤ j ≤ i + 1

1−
i∑

k=0

dk =
(

γ
γ+λ

)i

, if j = 0

0, otherwise

(3)

Suppose that the arrival flow of the G/M/1 system is close
to the Poisson one. This proximity is then characterized by
the metric:

w = w(H, Eλ) =

∫ ∞

0

|H − Eλ|(dt) (4)

where |a| is the variation of the measure a.
Designate by π∗k and πk the stationary distributions of the

states of X∗
n and Xn. We have then:{
π∗k = lim

n→∞
Pr(X∗

n = k), k = 0, 1, 2, ...,

πk = lim
n→∞

Pr(X=
n k), k = 0, 1, 2, ...,

(5)

2.2 The strong stability criteria
Let M = {µj} be the space of finite measures on N, and

N = {f(j)} the space of bounded measurable functions on
N. We associate with each transition kernel P the linear
mapping:

(µP )k =
∑
j≥0

µjPjk. (6)

(Pf)(k) =
∑
i≥0

f(i)Pki. (7)

Introduce on M the class of norms of the form:

‖µ‖υ =
∑
j≥0

υ(j)|µj |. (8)

Where υ is an arbitrary measurable function (not necessary
finite) bounded below away from a positive constant. This
norm induce in the space N the norm:

‖f‖υ = sup
k≥0

|f(k)|
υ(k)

. (9)

Let us consider B, the space of linear operators, with norm:

‖Q‖υ = sup
k≥0

1

υ(k)

∑
j≥0

υ(j)Qkj (10)

Definition 2.1. The Markov chain X with a transition
kernel P and an invariant measure π is said to be strongly υ-
stable with respect to the norm ‖.‖υ, if ‖P‖υ < ∞ and each
stochastic kernel Q on the space (N,B(N)) in some neigh-
borhood {Q : ‖Q−P‖υ < ε} has a unique invariant measure
µ = µ(Q) and ‖π − µ‖υ → 0 as ‖Q−P‖υ → 0.

Theorem 2.1. (see [7]) A Markov chain X, with transi-
tion kernel P , is strongly υ-stable, if and only if there exists
a measure α and a non-negative measurable function h on
N such that:

1. ‖P‖υ < ∞;

2. T = P− h ◦ α > 0 ;

3. ∃ m ≥ 1 and ρ < 1 such that T mυ(x) ≤ ρ υ(x),∀x ∈
N.

Theorem 2.2. (see [7]) Let X be a strongly υ-stable Markov
chain, with an invariant measure π and holding the theorem
1’s conditions. If µ is the invariant measure of a kernel Q,
then for the norm ‖Q− P‖υ sufficiently small, we have:

µ = π[I −∆R0(I −Π)]−1 = π +
∑
t≥1

π[∆R0(I −Π)]t

Where ∆ = Q − P , R0 = (I − T )−1 and Π = 1I ◦ π is
the stationary projector of the kernel P , 1I is the identity
function, and I the identity kernel on M.

Consequence 1. Under the Theorem 1’s conditions,

µ = π + π∆R0(I −Π) + ◦(‖∆‖2υ)

for ‖∆‖υ.

Consequence 2. Under the Theorem 1’s conditions, for

‖∆‖υ <
(1− ρ)

c

we have the estimation:

‖µ− π‖υ ≤ ‖∆‖υ c ‖π‖υ (1− ρ− c ‖∆‖υ)−1

where

c = m ‖P‖m−1
υ (1 + ‖ 1I ‖υ ‖π‖υ)

and

‖π‖υ ≤ (αυ)(1− ρ)−1(πh) m ‖P‖m−1
υ .

2.3 Approximation of the G/M/1 system by the
M/M/1 system

The proofs of the theorems given in this subsection can
be found in [3].

2.3.1 Strong stability conditions
The first step consists on the determination of the strong

υ-stability conditions of the M/M/1 system after a small
perturbation of the arrival flow.

Theorem 2.3. Suppose that the charge (λ
γ
) of the M/M/1

system is smaller than 1. Therefore, for all β such that
1 < β < λ

γ
, the imbedded Markov chain Xn is υ-strongly

stable, after a small perturbation of the inter-arrival time,
for υ(k) = βk.



2.3.2 Estimation of the transition kernel deviation
To be able to estimate numerically the margin between

the stationary distributions of the Markov chains X∗
n and

Xn, we estimate the norm of the deviation of the transition
kernel P ∗.

Theorem 2.4. Let P (resp. P ∗) be the transition opera-
tor of the imbedded chain in M/M/1 (resp. G/M/1) system.
Then, for all β such that 1 < β < γ

λ
, we have:

‖P ∗ − P‖υ ≤ (1 + β)w

where w is defined in (4).

2.3.3 Stability inequalities
This subsection consists on the determination of the devi-

ation of the stationary distribution with respect to the norm
‖‖υ.

Theorem 2.5. Suppose that in an M/M/1 system, the
Markov chain Xn is strongly υ-stable, and

w <
(1− ρ)(γ − λβ)

(1 + β)(2γ − λ(1 + β))
(11)

Therefore:

Err = ‖π∗ − π‖υ (12)

≤ (1 + β)(2γ − λ(1 + β))(γ − λ)w
(β−1)(γ−λβ)3

(β−1)γ+λβ
− (2γ − λ(1 + β))(1 + β)(γ − λβ)w

for all β such that 1 < β < γ
λ

where π∗ and π are defined in

(5) and ρ = β λ
γ− γ

β
+λ

.

3. KERNEL DENSITY ESTIMATION
METHOD

Let X1, ..., Xn be a sample coming from a random variable
X of density function f and distribution F . The Rosenblatt
kernel estimator (see [9]) of the density f(x) for each point
x ∈ R is given by:

fn(x) =
1

nhn

n∑
j=1

K(
x−Xj

hn
) (13)

Where K is a symmetric density function called kernel and
hn is the smoothing parameter (or bandwidth).

In the practice, when we use the kernel density method to
estimate a probability density function of iid observations,
it’s necessary to choose the kernel function K and the band-
width hn. The optimal choice of (K, hn) is generally made
following the criteria of minimization of the mean square
error (MSE) given by:

MSE(fn(x)) = E(fn(x)− f(x))2, (14)

or of the mean integrated square error (MISE) given by:

MISE(fn(x)) = E
∫ +∞

−∞
(fn(x)− f(x))2dx. (15)

Several studies have been elaborated to discuss the good
choice of the two parameters of this method (K, hn). Many
among them, for example [6], show that the choice of the ker-
nel function K is not very important and that it’s completely
satisfactory to choose the kernel function for the suitability
of the computer calculation such the gaussian kernel.

3.1 Bandwidth choice
In the practice, the critical step in the kernel density es-

timation is the choice of the smoothing parameter (band-
width) hn which controls the smoothness of the kernel esti-
mator (1). This problem has been widely studied and many
methods have been proposed. Most of them suppose that
f is a smooth function over the real line R. The methods
proposed in the literature can be divided into two classes
[8]:

3.1.1 First generation methods (or classical meth-
ods)

Most of them have been developed before 1990. The
most popular are: ”rules of thumb”, ”least squares cross-
validation” and ”biased cross-validation”.

3.1.2 Second generation methods (or plug-in meth-
ods)

The most of them have been elaborated after 1990. The
bias of the kernel estimator (1) is written in function of the
unknown density f and is usually approximated by the de-
velopments in Taylor series. A pilot estimate of f is then
injected in order to derive an estimator of the bias and
after that an estimator of MISE given in (15). The opti-
mal bandwidth minimizes this last estimated measure. The
most known are: ”Solve-the-Equation Plug-In Approach”
and ”Smoothed Bootstrap”.

3.2 Boundary effects
Several results are known in the literature when the den-

sity function is defined on the real line R [5, 6, 8, 9]. In the
case of a density function defined on a bounded support, the
boundary effects are present. To resolve this problem, many
recent methods have been elaborated [10, 4].

3.2.1 Schuster estimator "mirror image"
Schuster [10] suggests to create the mirror image of the

data in the other side of the boundary and then apply the
estimator (1) for the set of the initial data and their reflec-
tion. f(x) is then estimated, for x ≥ 0, as follows:

f̂n(x) =
1

nhn

n∑
j=1

[K(
x−Xj

hn
) + K(

x + Xj

hn
)] (16)

3.2.2 Asymmetric Gamma kernel estimator
A simple idea to avoid the problem of boundary effects,

is the use of a flexible kernel, which never assign a weight
out of the support of the density function and which correct
automatically and implicitly the boundary effects. We can
cite the asymmetric kernels [4] given by the following form:

f̂b(x) =
1

n

n∑
i=1

K(x, b)(Xi), (17)

where b is the bandwidth and the asymmetric kernel K can
be taken as a Gamma density KG with the parameters (x/b+
1, b) given by:

KG(
x

b
+ 1, b)(t) =

tx/be−t/b

bx/b+1Γ(x/b + 1)
, (18)

In this paper, we choose the Epanechnikov kernel [6], given



by:

K(y) =

{
0.75(1− x2), if |y| < 1;
0, otherwise,

(19)

and the bandwidths hn and b are chosen to minimize the
criteria of the ”lest squares cross-validation” [5] given by:

LSCV (hn) =

∫
fn(x)2dx− 2

n

n∑
i=1

fhn,−i(Xi), (20)

where fhn,−i(xi) is given as follows:

fhn,−i(xi) =
1

(n− 1)hn

n∑
j = 1
j 6= i

K

(
xi −Xj

hn

)
. (21)

4. KERNEL DENSITY METHOD FOR THE
APPROXIMATION OF THE G/M/1 SYS-
TEM BY THE M/M/1 SYSTEM USING THE
STRONG STABILITY METHOD

We want to apply the kernel density method to estimate
numerically the proximity of the G/M/1 and M/M/1 sys-
tems, by evaluating the variation distance w defined in (4)
and the error Err defined in (12) between the stationary
distributions of the tow according systems when applying
the strong stability method.

To realize this work, we follow the general following steps:

1) Generation of a sample of size n of general probability
distribution G with theoretical density g(x).

2) Use of the kernel density method to estimate the the-
oretical density function g(x) by a function noted in
general g∗n(x).

3) Verification, in this case, of the strong stability condi-
tions given in the subsection (2.3).

4) Analysis of the results and determination of the varia-
tion distance w and the error Err (defined respectively
in the formulas (4) and (12)) in the sense of stability.

Consider the two systems to approximate, G/M/1 (FIFO,∞)
and M/M/1 (FIFO,∞). The variation distance w which
characterizes the proximity of these systems is given by:

w = w(G, Eλ) =

∫
|G− Eλ|(dt) =

∫
|g∗n − eλ|(t)dt (22)

The arrival rate is given by:

λ = 1/E(T ) = 1/

∫
tdG(t) = 1/

∫
tg(t)dt = 1/

∫
tg∗n(t)dt.

(23)
The stationary distribution πi of the M/M/1 system is given
by:

πi = (1− ρ)ρi i = 0, 1, ... (24)

With ρ = λ
γ

is the charge of the M/M/1 system, λ is the
mean rate of the inter-arrival duration and γ is the service
mean time; and the stationary distribution αi of the G/M/1
system is given by:

αi = (1− x)xi ∀i ≥ 0 (25)

Table 1: w and Err measures for different samples
Exp(1) Weibull(2,0.5,0) Gamma(1,3)
γ = 10 γ = 10 γ = 2

Inter-arrival 0.9190 1.8244 0.2750
mean time λ

Charge ρ 0.0919 < 1 0.1824 < 1 0.1375 < 1
of the system
Domain of 1 < β < 10.8811 1 < β < 5.4814 1 < β < 7.2740
stability
Variation 0.2444 0.3502 0.1615
distance w
Error Err

on stationary
distributions

With x the solution (found numerically by the fixed-point
method) of the system:

x =

∫
e−γt(1−x)g(t)dt (26)

where g is the density function of the general law G.

4.1 Simulation study 1
For the general law G, we generate samples of size n = 50

of different laws. We take the number of simulations R =
100. For each case of law, we replace the function g∗n(t) de-
fined in step 2) above by the density function gn(t) found
by applying the Rosenblatt estimator given in the formula
(13) to estimate the theoretical density g(t) of each sample.
The programming with Matlab 7.0 gives us the results in
the table 1.

4.1.1 Discussion
According to the Table 1, the application of the kernel

density estimation method with the use of the Rosenblatt
estimator (13) for the approximation of the G/M/1 sys-
tem by the M/M/1 system when using the strong stability
method don’t allow us to determine the error on the sta-
tionary distributions between the two systems. This is due
to the importance of the value of the variation distance w
(for example w = 0.2444 for Exp(1) and w = 0.3502 for
Weibull(2,0.5,0)). affirm and reinforce the order of the im-
portance of the smallness of the perturbation done in the
study of the strong stability of the systems.

4.2 Simulation study 2
In a first case, we consider a G/M/1 system such that the

density function of the general law G is given by:

g(x) =

{
1
2
e−x + e−2x, if x ≥ 0

0, otherwise
(27)

In a second case, we use the density function gn(x) found
by applying the Rosenblatt estimator given in the formula
(13) to estimate the theoretical density function g(x).
In a third case, we use the density function g̃n(x) found by
applying the Schuster estimator given in the formula (16) to
estimate the theoretical density function g(x).
In a fourth case, we use the density function ĝn(x) found
by applying the asymmetric kernel estimator given in the
formula (17) with the use of the Gamma kernel given in



Table 2: Parameters of the ideal system M/M/1
Inter-arrival
mean time 3/4

Mean rate of the
inter-arrival time λ 4/3

Charge ρ of the system 2/15

Figure 1: Curves of the theoretical and estimated
densities

the formula (18) to estimate the theoretical density function
g(x).
For the last three cases, we take:

• The sample size n = 200.

• The number of simulations R = 100.

In all the cases, we introduce the service mean time: γ = 10.
We first determine the mean rate inter-arrival time:

λ =
1∫

xg(x)dx
(28)

We obtain the parameters of the ideal system M/M/1 in the
table 2.

The curves of the theoretical and estimated densities are
given in the figure 1. The programming with Matlab 7.0
gives us the results in Table 3.

4.2.1 Discussion
Figure (1) shows that the use of Gamma kernel or Schuster

estimators improves the quality of the estimation.

Table 3: w and Err measures for different estimators
g(x) gn(x) g̃n(x) ĝn(x)

Variation 0.0711 0.2104 0.0895 0.0792
distance w

Error Err on the 0.21 0.35 0.26
stationary distributions

We note in the Table 3 that the approximation error on
the stationary distributions of the G/M/1 and M/M/1 sys-
tems is given when applying the kernel density method by
considering the correction of the boundary effects such in
the case of using the Schuster estimator (Err = 0.35) or
in the case of using the asymmetric Gamma kernel estima-
tor (Err = 0.26). But, when applying the kernel density
method without taking in consideration the correction of the
boundary effects such in the case of using the Rosenblatt es-
timator, the approximation error (Err) on the stationary
distributions of the quoted systems could not be given.

5. CONCLUSION
In this paper, we show the applicability of the strong sta-

bility method to evaluate an approximation error on the
stationary distributions of the G/M/1 and M/M/1 systems
when the general law of arrivals G is unknown so its density
function must be estimated by the means of the kernel den-
sity estimation method. The strong stability method states
that the perturbation done must be small, in the sense that
the general law G must be close but not equal to the Poisson
one. Consequently, the density function of the law G must
be close to the density function of the exponential law which
is defined on a bounded support [0,∞[. Thus, the boundary
effects must be taken in consideration when using the kernel
density method.
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