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ABSTRACT
In this paper, a Wireless Sensor Network (WSN) deploy-
ment problem is posed: in a two-level heterogeneous WSN,
we need to optimally determine the location of cluster-heads
in order to minimize communication power. We require
that each sensor node connects to at least p cluster-heads
for reliability, and each cluster-head can accept at most q
connections. The optimization problem in formulated as a
Mixed Integer Nonlinear Programming (MINLP) problem.
To overcome the fact that a MINLP solver fails to solve
large-scale cases or obtain a global optimum, we propose
an iterative decomposition algorithm and use a randomized
multi-start technique for global optimization. We also pro-
pose an incremental deployment approach and use it to solve
the original problem as if the WSN is built incrementally.
Numerical results show that the decomposition algorithm is
very efficient. While the incremental deployment method is
slower in each run, it produces a better solution distribution
compared to the pure multi-start approach. Both, however,
are capable of solving large-scale problems.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Nonlinear pro-
gramming, Integer programming ; C.2.1 [Computer Com-
munication Networks]: Network Architecture and De-
sign—Wireless communication, Network topology

General Terms
Algorithms
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1. INTRODUCTION
A Wireless Sensor Network (WSN) consists of low-cost

nodes which are mainly battery powered and have sensing
and wireless communication capabilities [13]. Usually, the
nodes in such a network share a common objective, such as
environmental monitoring or event detection. In designing
and deploying a WSN, there are two considerations. First,
due to limited on-board power, power saving is crucial in
WSNs, since it directly impacts their lifetime in the likely
absence of human intervention for most applications of in-
terest. Energy in WSN nodes is consumed by the CPU, by
sensors, and by radio, with the latter consuming the most
[19]. Second, reliability is another key issue. Due to the
volatile nature of wireless channels and the multi-hop nature
of transmissions in WSNs, packet delivery has no guarantee.

Various approaches have been proposed to increase the
network life time. While some focus on wireless transmis-
sion and use specialized MAC/sleeping control mechanisms
such as [15], some other approaches use the concept of clus-
tering or hierarchical deployment. Unlike a flat topology
WSN, e.g., [7], in a hierarchical deployment, some nodes pro-
cess different tasks according to their hierarchy level. The
reason for clustering in WSNs is that data are usually re-
gionally correlated. By processing data locally instead of
transmitting them all the way back to the base, energy can
be saved. There are two cases in hierarchical deployment.
The first case is that all nodes are homogeneous in hardware
but some nodes serve as “cluster-heads” or “fusion centers”.
These nodes collect information from other sensors, process
them and relay the data back to the base station, e. g. [17].
The other case is that the WSN consists of heterogeneous
devices, such as [9]. Both cases raise optimization problems
regarding how to elect or deploy the cluster-heads to mini-
mize power consumption.

On the other hand, WSN reliability is less addressed com-
paring to life time maximization. Some approaches are pro-
posed, such as [18] and [6]. The main idea in both ap-
proaches are to introduce redundancy. For example, [6] pro-
poses a braided-path routing method, where data is routed
simultaneous via multiple paths to increase reliability. In
this paper, we consider a static two-layer WSN, as shown in
Figure 1, which is typical in the state of the art practice [14].
We pose a cluster-head deployment problem where reliabil-



ity and power consumption are jointly taken into account.
As shown in Figure 1, a two-layer network consists of a

lower layer of sensor nodes and an upper layer of cluster-
heads. Sensor nodes are fixed, operate at low power, have
low computation capability, perform sensing tasks and trans-
mit data to cluster-heads. In this type of network, it is
typical that the sensor nodes do not possess routing capa-
bility, i.e., data must be routed by a cluster-head. Cluster-
heads have greater capability in terms of computation and
transmission. In this type of WSN, generally, cluster-heads
are powered back-bone nodes which accept data transmit-
ted from sensor nodes. They may process the data on the
spot or further upload the data to a base station. In this
design problem, we do not consider any possible schedul-
ing scheme among transmissions, as well as possible wireless
interference. Instead, we carry out a “worst case” analysis
where once a connection is made between a sensor node and
a cluster-head, the sensor node transmits at a low constant
data rate. For redundancy purposes, we require that each
sensor node must connect to at least p cluster-heads. As
a capacity constraint, each cluster-head cannot connect to
more than q sensor nodes. Our goal is to find: (i) the op-
timal cluster-head locations and (ii) the optimal network
connectivity such that communication power consumption
is minimized.

Sensor

Node

Cluster-head

Figure 1: An example of a two-layer sensor network
with redundant links.

The cluster-head deployment problem belongs to the cate-
gory of location-allocation (LA) problems [2][4], which is dif-
ficult because it is neither convex nor concave and possesses
multiple local minima. Although many approaches are pro-
posed [5], they cannot be applied directly since our problem
has its own complicating factors: (i) the allocation for each
sensor node is binary while the location of cluster-heads is
continuous; (ii) unlike p-center or p-median problems, each
sensor node connects to more than one cluster-head; (iii)
cluster-heads have capacity constraints due to wireless in-
terference, computing power limits, etc., so the maximum
number of sensor nodes under one cluster-head’s coverage is
limited.

In this paper, we first formulate this deployment prob-
lem as a Mixed Integer Nonlinear Programming (MINLP)
problem. Although the MINLP problem can be solved using

general solvers, only local minima can be obtained and scala-
bility is a serious issue due to the huge memory consumption
in the branch-and-bound process. Therefore, we exploit the
problem structure and propose a decomposition algorithm
based on the sequential location-allocation (SLA) decompo-
sition scheme [3]. The decomposition algorithm is not only
much more efficient and scalable, but also compared to the
solution obtained by a MINLP solver, the quality is mini-
mally degraded, although it still finds local minima only. To
find the global optimal solution, we incorporate a random-
ized “multi-start” scheme. Since in practice it is common
to encounter cases where the existing deployment needs to
expand, we propose an incremental deployment approach.
This approach utilizes the “incremental-friendliness”, i. e., a
previous solution can be used to accelerate solving the new
expanded problem. Finally, we propose to use the incre-
mental deployment approach to solve the original deploy-
ment problem, as if the deployment is grown from a very
simple topology till the specification is reached. This new
approach, although more computationally expensive, pro-
duces a better solution distribution than a pure multi-start
approach.

The paper is organized as follows: the MINLP problem
is formulated in Section 2. In Section 3, the decomposition
algorithm is proposed. In Section 4, we introduce the incre-
mental deployment, including the approach of using such a
scheme to solve the original problem. Section 5 shows some
numerical results and the conclusions are in Section 6.

2. PROBLEM FORMULATION
We first introduce our notation:

Si Known fixed location of sensor node i. i ∈ I where I is
an index set. The total number of sensor nodes is |I |.
We assume that all sensor nodes and cluster-heads are
in a plane, so Si ∈ R

2.

Rj Controllable location of cluster-head j. j ∈ J where J
is an index set as well. The total number of cluster-
heads is |J |, and |J | ≥ p. We assume that J is given
and fixed. We also assume that all cluster-heads are
in the same plane as the sensor nodes, so Rj ∈ R

2.

cij Controllable 0-1 binary variable indicating whether sen-
sor node i is connected to cluster-head j.

Tij Transmission power of sensor node i to cluster-head j.

In typical WSN devices, transmission power level is ad-
justable [10]. When a sensor node i transmits data to cluster-
head j, energy is consumed at rate Tij at the sensor node. To
determine Tij , we incorporate a general wireless transmis-
sion model. Define P (Tij , Si, Rj) to be the signal strength
received at cluster-head Rj when Si is transmitting at power
level Tij . Function P (Tij , Si, Rj) is always non-negative,
monotonically increasing with respect to Tij and monotoni-
cally decreasing with respect to ‖Si − Rj‖ which is the Eu-
clidean distance between points Si and Rj . In this paper,
we assume the model in [12]:

P (Tij , Si, Rj) =
αTij

‖Si − Rj‖
d

where α is a constant scaling factor for all i, j and d is the ex-
ponent characterizing the signal attenuation with respect to



transmission distance. Usually 2 ≤ d ≤ 3.5. During trans-
mission, channel and electronic noise are added. In order to
recover the data from a noisy wireless signal, the signal to
noise ratio (SNR) P (Tij , Si, Rj) /N0 must be greater than
γ, a threshold determined by the electronic characteristics
of the receiver. We assume N0 and γ are both known con-
stants.

The relationship between cij and Tij is:

cij = 1

{

αTij

N0 ‖Si − Rj‖
d
≥ γ

}

where 1 {·} is the indicator function. If cij = 0, we have

αTij/N0 ‖Si − Rj‖
d < γ, and since we want to minimize

Tij , we can set Tij to zero. On the other hand, if cij = 1,

then αTij/N0 ‖Si − Rj‖
d ≥ γ. Since there is no incentive

for Tij to be larger than needed, we can conclude that:

Tij =
N0γ ‖Si − Rj‖

d

α

Therefore, combining both cases, we can see that Tij is a
function of cij and Rj :

Tij (cij , Rj) = cij
N0γ ‖Si − Rj‖

d

α
, i ∈ I, j ∈ J (1)

2.1 Optimization problem formulation
As stated, our goal is to minimize total end-point power:

min
Rj ,cij

∑

i∈I

∑

j∈J

Tij

Using the observation in (1), the main optimization problem
is formulated as Problem 1:

Problem 1 (Main problem).

min
Rj,cij

∑

i∈I

∑

j∈J

cij
N0γ ‖Si − Rj‖

d

α
(2)

s.t.
∑

j∈J

cij ≥p, ∀i (3)

∑

i∈I

cij ≤q, ∀j (4)

cij ∈{0, 1}

In this problem formulation, control variables are the con-
nections cij , i ∈ I, j ∈ J and cluster-head locations Rj , j ∈ J
where cij are binary. The constraint (3) specifies the require-
ment for at least p connections for each sensor node. The
constraint (4) specifies the capacity of q connections for each
cluster-head. We assume no explicit limit on Tij ; however,
the cost for a sensor node to reach a faraway cluster-head will
be prohibitive and Tij → ∞ as ‖Si − Rj‖ → ∞. Problem 1
is a mixed integer non-linear programming (MINLP) prob-
lem which can be solved directly using a MINLP solver, such
as MINLPBB [11] which uses branch-and-bound methods.
To utilize a solver, we need to provide an initial solution.
In Problem 1, as there is no constraint on cluster-head lo-
cations and end-point transmission range, we can pick the
initial locations of the cluster-heads {R0

j : j ∈ J} arbitrar-

ily, and find {c0
ij ∈ {0, 1} : i ∈ I, j ∈ J} such that the

constraints (3) and (4) are satisfied. One way is to choose
R0

j ’s by uniformly sampling in the bounding box of all Si’s,

i ∈ I . Let Si = (xi, yi)
T . The bounding box is a rectan-

gle defined by (minI xi, minI yi) and (maxI xi, maxI yi). We
exclude the trivial case where the bounding box is a point.
One can also limit the sampling to the convex hull of Si’s,
but the bounding box has a simple topology making it easier
to sample uniformly within it. To find feasible c0

ij ’s we can
solve a simple auxiliary optimization problem:

Problem 2 (Auxilliary).

min
cij

∑

i∈I

∑

j∈J

cij

s.t.
∑

j∈J

cij ≥p, ∀i

∑

i∈I

cij ≤q, ∀j

cij = {0, 1}

As a matter of fact, this 0-1 integer programming problem
can be cast into a min-cost transportation problem, which
is easily solved using network simplex methods. Then, with
R0

j and c0
ij ’s, we can invoke the MINLP solver to solve the

problem and obtain R∗
j , j ∈ J and c∗ij , i ∈ I, j ∈ J which is

the optimal solution to Problem 1. The transmission power
of each node can then be obtained using (1). Figures 2(a)
and 2(b) show a very small scale example of the problem.
In this example, we have 5 sensor nodes and 3 cluster-heads
whose locations are to be determined. We require that each
sensor connects to p = 2 cluster-heads, while each cluster-
head can only accept q = 5 sensor nodes. We first randomly
place the cluster-heads, solve Problem 2 and obtain a feasi-
ble solution, shown in Figure 2(a). Then, we solve Problem
1 and the result is shown in Figure 2(b).
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Figure 2: Figure 2(a) visualizes the solution of Prob-
lem 2, where circles represent sensor nodes and stars
with numbers represent randomly placed cluster-
heads. The solution, namely cij ’s, are represented
by lines connecting cluster-heads and sensor nodes.
Figure 2(b) shows the optimal solution obtained
from a MINLP solver (TOMLAB/MINLPBB), with
initial feasible solution given in 2(a). The total
transmission power is shown at the top.

Although we are able to obtain an optimal solution us-
ing a MINLP branch and bound solver, we encounter some
problems. The first one is the scalability issue. Due to the
massive number (|I |·|J |) of integer variables cij in large-scale
cases, branch and bound will introduce a large number of
sub-problems which the solver has to keep track of, and this
process requires an excessive amount of memory. Second,



the optimal solution depends on the initial feasible solution.
Figure 3(a) shows a different initial solution, which results
in the optimal solution shown in Figure 3(b).
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Figure 3: With a different initial feasible solu-
tion, shown in Figure 3(a), the solution obtained by
MINLP solver, 3(b), differs from the previous op-
timal solution, shown in Figure 2(b). This implies
that the optimal solution is local.

As we can see, Figure 3(b) has a smaller cost than Figure
2(b), which is a convincing fact that the optimal solution ob-
tained from the MINLP solver is local. To find the global op-
timal solution, randomization in the optimization algorithm
is needed. In the following sections, we first provide an algo-
rithm which decomposes the problem into two sub-problems
and solve them respectively and iteratively. By decomposi-
tion, we reduce the computational complexity, which enables
solving larger instances. Then, we introduce randomization
for global optimization.

3. SLA-BASED DECOMPOSITION ALGO-
RITHM

Problem 1 is difficult partly because it contains both inte-
ger variables cij and continuous variables Rj . In [3], a gen-
eral decomposition scheme of the location-allocation prob-
lem is suggested, which decomposes the problem into two
sub-problem and alternates between finding the optimal lo-
cation given the allocation, and finding the optimal alloca-
tion given the location. This approach is also known as a
“sequential location and allocation” (SLA) method. Origi-
nally SLA is applied to LA problems, such as p-center or p-
median, where the allocation of a demand node is assigned
to the nearest supply center, and the capacity of supply
centers is unlimited. However, in Problem 1, we have con-
straints (3) and (4) so the allocation problem is no longer
trivial. Notice that the constraints apply on cij only, while
Rj are unconstrained. Therefore, the feasible regions of cij

and Rj are decoupled, in the sense that at one feasible so-
lution, if we fix all cij and change Rj , the feasibility will be
maintained. This implies that we can still apply the SLA
idea. The iterative decomposition algorithm is outlined as
follows:

Initialization: Assign initial locations to the cluster-heads,
namely R1

j .

At the kth iteration:

Step 1: Solve Problem 1 with Rj being substituted by fixed
Rk

j . In effect, Problem 1 reduces to a combinatorial

optimization problem determining which sensor node
connects to which cluster-head, namely cij . This is a
linear programming problem, and can be further trans-
formed into a transportation problem [16]. By solving
the LP, we obtain:

ck
ij = arg min

cij∈{0,1}
cij

N0γ
∥

∥Si − Rk
j

∥

∥

d

α

s.t.
∑

j∈J

cij ≥ p, ∀i

∑

i∈I

cij ≤ q, ∀j

Step 2: Solve Problem 1 with cij being substituted by fixed
ck
ij obtained from Step 1. Problem 1 reduces to an

unconstrained optimization of cluster-head locations
Rj . This problem is a convex non-linear programming
problem, which is easily solvable, e.g., using Newton’s
method. By solving the problem, we obtain:

Rk+1

j = arg min
Rj ,j∈J

∑

i∈I

∑

j∈J

ck
ij

N0γ ‖Si − Rj‖
d

α
; j ∈ J

Stopping Criterion: If step 2 does not move Rj ’s substan-
tially, e.g., for all j,

∥

∥

∥
Rk+1

j − Rk
j

∥

∥

∥
≤ ε

for a given small ε > 0, we conclude that the algorithm
has converged and quit. Otherwise, go to step 1 and
repeat the iteration.

In what follows we will describe each step of the iterative
decomposition algorithm in detail.

3.1 Step 1: optimizing connections cij

While the cluster-head locations Rj are fixed, we define:

Qij =
N0γ ‖Si − Rj‖

d

α
(5)

so we are treating Qij as the “cost” for establishing a con-
nection from i to j. We formulate the following 0-1 integer
programming (IP) problem:

Problem 3.

min
cij∈{0,1}

∑

i∈I

∑

j∈J

Qijcij

s.t.
∑

j∈J

cij ≥ p, ∀i

∑

i∈I

cij ≤ q, ∀j

This IP problem can be reformulated as a min-cost flow
problem over a bipartite digraph. To see that Problem 3 has
an exact LP relaxation, let the digraph be G = (V, A). Let
M be the node-arc incidence matrix where:

mst =







1 node s is the tail of arc t
−1 node s is the head of arc t
0 otherwise
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Figure 4: Connection graph between endpoints and
cluster-heads. Each link between endpoint i and
cluster-head j has capacity 1 and cost Qij. Each end-
point generates a flow of p, each cluster-head has a
sink with capacity q.

and s ∈ V, t ∈ A. Then, Problem 3 can be reformulated as:

min
xa∈{0,1}

∑

a∈A

Qaxa

subject to Mx ≥

[

p
−q

]

where

x=
[

xa1
, xa2,..., xa|A|

]′

p= [p, p, ...., p]′ ,p ∈ R|I|

q= [p, p, ...., p]′ ,q ∈ R|J|

By the total unimodularity property of matrix M , the
integer constraints can be relaxed [16]:

0 ≤ xa ≤ 1

so that it can be efficiently solved by a typical min-cost flow
algorithm in polynomial time. After we solve Problem 3,
we either encounter an infeasible result, which implies the
infeasibility of Problem 1, or we obtain an optimal cij .

3.2 Step 2: optimizing locations Rj

After fixing the connections cij in Problem 3, Problem 1
is transformed into a convex optimization problem:

Problem 4.

min
Rj

∑

j∈J

∑

i∈I

cij
N0γ ‖Si − Rj‖

d

α

Since Problem 4 is convex and continuously differentiable,
it can be solved easily. In fact, in Problem 4, due to the
additivity in the objective function, all Rj are decoupled,
making the problem equivalent to a family of sub-problems
that can be solved independently and parallely:

R∗
j = arg min

Rj

∑

i∈I

cij
N0γ ‖Si − Rj‖

d

α
, j ∈ J (6)

where
{

R∗
j , j ∈ J

}

is an optimal solution to Problem 4 if
and only if R∗

j is the optimal solution to (6) for all j.
If d = 2, then we can immediately differentiate the objec-

tive function in (6) and obtain the solution:

R∗
j =

∑

i∈I
cijSi

∑

i∈I
cij

,∀j

which is obviously the center of mass of all sensor nodes
connecting to j. For other d 6= 2, numerical methods such
as Newton’s method can be used.

A special case arises when for some j0 ∈ J, cij0 = 0, ∀i so
the objective function in (6) equals 0. This indicates that
cluster-head j0 is not used, possibly because it is assigned to
an unpopulated area in the initialization step. In this case,
we perform a simple heuristic to relocate Rj0 :

j∗ = arg max
j

∑

i∈I

cij
N0γ ‖Si − Rj‖

d

α

Rj0 =

∑

i∈I
cij∗Si

∑

i∈I cij∗

where essentially we drop Rj0 into the most heavily loaded
cluster.

Since step 1 is a linear program, there is no need to use a
separate way to find an initial feasible solution, as opposed
to the case where a MINLP solver is used. Since both steps
1 and 2 are feasible convex programming problems where
the global optimal solution can be found, and we have al-
ways maintained feasibility, in each iteration, the objective
function value of Problem 1 is always decreasing. The al-
gorithm stops when no further improvements can be made.
However, the obtained solution will depend on the initial
locations of the cluster-heads, which is similar to the case
when an MINLP solver is used.

3.3 Global Optimization
As stated before, Problem 1 is extremely difficult because

it is neither convex nor concave and possesses multiple lo-
cal minima. In solving general LA problems, one can restart
SLA algorithm with randomly assigned initial locations, also
known as “multi-start”, and select the best result from the
obtained result set. In [20], it is mentioned that good results
can be obtained and for small cases, usually the global opti-
mal point can be obtained. In [1], a probabilistic analysis of
the solution distribution is performed where the multi-start
results are fitted with a Weibull distribution to estimate the
global optimum. Although estimation is fairly accurate for
large-scale problems, the estimation is for objective values
only and can only serve as a guide. Metaheuristics such
as simulated annealing and tabu search have also been pro-
posed [5]. In this paper, however, we use the multi-start
approach where initial R1

j is randomly assigned each time,
because it is easy to implement and the decomposition al-
gorithm is computationally inexpensive.

4. INCREMENTAL DEPLOYMENT
In practice, it is common to encounter the following sit-

uation: we need to add new sensor nodes or cluster-heads
to an existing network. In the decomposition algorithm, be-
cause step 1 is essentially an LP, after adding a new sensor or
cluster-head or both, we can start from the previous solution
and continue the algorithm. Therefore, the decomposition



algorithm is “incremental-friendly”. We will first discuss the
case in which a new cluster-head is added.

4.1 Add a cluster-head
Denote by Rs the location of the new cluster-head s.

There are two cases when a cluster-head is added: (i) mov-
ing existing cluster-heads is not allowed; (ii) moving existing
cluster-heads is allowed. We first consider case (i). In this
case, we can formulate an optimization problem to deter-
mine optimal R∗

s :

Problem 5.

R∗
s = arg min

Rs

∑

j∈J

∑

i∈I

cijQij +
∑

i∈I

cis
N0γ ‖Si − Rs‖

d

α

s.t.
∑

j∈J∪{s}

cij ≥ p, ∀i

∑

i∈I

cij ≤ q, ∀j ∈ J ∪ {s}

cij ∈ {0, 1} ,∀i,∀j ∈ J ∪ {s}

where Qij is from (5) and is fixed.

Problem 5 is also a LA problem which can be solved by
the aforementioned decomposition algorithm, where step 2
involves Rs only. However, it can be also expected that the
initial location of Rs will affect the final result R∗

s . In this
paper, we assume that the initial Rs is randomly chosen
within the bounding box of sensor nodes. In case (ii) where
existing cluster-heads can also be moved again, the situation
is much more complicated. In this case, after we have chosen
the initial Rs and set cis = 0 for all i ∈ I , we continue with
the decomposition algorithm. Same as the previous case,
the initial location of Rs will affect the final result R∗

s .

4.2 Add a sensor node
Adding a sensor node is relatively simple because the sen-

sor node is given and fixed in Problem 1. However, adding
a sensor node may cause Problem 1 to be infeasible, be-
cause the new sensor node’s connection demand exceeds the
cluster-heads’ capacity. To check the feasibility, we can com-
pute step 1. If Problem 3 is infeasible, we need to add a
cluster-head and retry step 1, otherwise we can proceed with
the decomposition algorithm.

4.3 Solving Problem 1 with incremental de-
ployment

We can actually use incremental deployment to solve Prob-
lem 1, and the idea is straightforward. Assume we are to de-
ploy |I0| sensor nodes, and |J0| cluster-heads, where I0, J0

are the index sets of sensor nodes and cluster-heads to be
added, respectively, and |I0| ≥ 2, |I0| ≥ p. We begin with 2
sensor nodes and p cluster-heads, in which case the optimal
deployment of cluster-heads is right at the middle point of
the 2 sensor nodes. We apply the decomposition algorithm
iteratively with one additional sensor node each time during
which a cluster-head is added on a need-basis. Eventually,
we will have |I | = |I0| sensor nodes and

|J | =

⌈

I0p

q

⌉

cluster-heads. Then, we will add the remaining |J0| − |J |
cluster-heads.

When sequentially adding sensor nodes, we can choose
the adding order arbitrarily. Here we suggest three ways
but these are by no means the only possible ways. The first
way is to add the sensor node which is closest to the nodes
already added:

i∗ = arg min
i∈I0\I

{

min
i′∈I

‖Si − Si′‖

}

while the second way is to add the sensor node which is
farthest away from the nodes already added:

i∗ = arg max
i∈I0\I

{

min
i′∈I

‖Si − Si′‖

}

and the third way is to randomly pick a sensor node from
I0\I and add it. It is expected that the final result will
depend on the adding-order of sensor nodes so the incre-
mental deployment method is by no means ensuring global
optimality. However, in practice, the incremental strategy
actually produces good results, as seen in the next section.
The reason is that when |I | , |J | are small, we can guaran-
tee global optimality, e. g. |I | = 2 case. When new sensor
nodes are added one-by-one, in each iteration, the existing
cluster-heads are already located at “good” places.

Although we cannot ensure the global optimality of Prob-
lem 1, we can still find good solutions with much less com-
putational effort. Because the scale of Problem 1 in terms of
number of variables is O (|I | |J |), if we solve it using a multi-
start technique, the total effort will be at least O (n |I | |J |)
where n is the number of multi-start trials and is typically
large. However, if we solve it incrementally, the total com-
putational effort will be much lower because each time we
solve an instance smaller than O (|I | |J |) (much smaller at
the beginning), and no more than |I | + |J | times. In large-
scale problems the advantage will be obvious. Meanwhile,
we can also accelerate the incremental process by not solv-
ing Problem 1 at every sensor node increment, but every
k increments, and hence the computation effort is reduced.
In the following section, we will show numerical examples
of both the decomposition algorithm and the incremental
deployment method to solve Problem 1.

5. NUMERICAL EXAMPLES

5.1 Optimization Result of Decomposition Al-
gorithm

In the implementation of the iterative decomposition al-
gorithm, we used CPLEX[8] for step 1, and KNITRO[21]
for step 2. Both solvers are from the TOMLAB suite. The
computing platform is a Dell Precision 650, Dual 3.06GHz
Xeon CPU, 3.0GBytes RAM, Windows XP SP2, MATLAB
2006b. As stated before, both algorithms find a local min-
imum of Problem 1. Therefore, we resort to a multi-start
technique: in each run, we choose initial Rj ’s by uniformly
sampling in the bounding box of all Si’s, i ∈ I . The results
are given in Tables 1 and 2.

Table 1 shows the comparison of computation efforts be-
tween the MINLP solver (MINLPBB) and the decomposi-
tion algorithm (DECOMP) under various scenarios. The
results are obtained by running the algorithm 100 times
with random initial cluster-head deployments. Both algo-
rithms use the same initial deployments. We can see that
although DECOMP is iterative, its total effort is lower than



Case |I | |J | # variables 100 runs time (secs)
MINLPBB DECOMP

1 25 4 108 40 35
2 50 8 416 158 102
3 75 12 924 522 212
4 100 16 1632 N/A 381
5 400 64 25728 N/A 8131

Table 1: Comparison of Computation Effort.

Case |I | |J | Best Solution in 100 runs
MINLPBB DECOMP

1 25 4 12673 12673
2 50 8 70888 70888
3 75 12 243416 245120
4 100 16 N/A 441135
5 400 64 N/A 21348391

Table 2: Comparison of Solution Quality.

MINLPBB because both steps in DECOMP are easy con-
vex problems. MINLPBB fails at large scale cases 4 and
5, outputting “out of memory” error. In case 3 where we
have 924 variables, the memory consumption by MINLPBB
is around 500MBytes, while a smaller case of 416 consumes
about 300MBytes of memory. On the other hand, DECOMP
can handle a much larger case, such as case 5, on the same
computational platform.

Table 2 and Figures 5 to 7 compare the quality of so-
lutions obtained by MINLPBB and DECOMP. Figures 5
to 7 show the quality distribution of solutions. The hori-
zontal axis is the relative cost with respect to the best so-
lution in the 100 runs. For example, in case 1, the best
solution out of both cases has value 12673. In Figure 5, cat-
egory “106%” includes solution values within the interval of
[12673, 12673 × 106%), and category “113%” includes solu-
tion values within [12673× 106%, 12673× 113%). When the
best solutions differ between MINLPBB and DECOMP, we
choose the lower one as the basis. The vertical axis is the
percentage of solutions that fall into a particular relative cost
interval. While in the smaller cases 1 and 2, both algorithms
found the same best solution, in the larger case 3, MINLPBB
outperforms DECOMP by a small margin. This is to be ex-
pected since both step 1 and 2 are convex problems in DE-
COMP so the solving process is always descending, while
MINLPBB uses a branch-and-bound method, which allows
“restart” at branching. Distributionally, DECOMP has a
larger tail, so MINLPBB tends to produce better quality so-
lutions. However, the best solutions of both algorithms are
very close in value.

5.2 Incremental Deployment
Table 3, Figures 8 and 9 show a comparison among the

MINLP solver, the decomposition algorithm and the incre-
mental deployment approach (nearest increment). We ad-
justed the number of runs in “MINLP”, “DECOMP” and
“INC-1” so that they consume roughly the same amount of
time. Among“INC-1”, “INC-5”and“INC-10”, the incremen-
tal deployment approach is performed in 3 ways where the
decomposition algorithm is invoked upon each, every 5, or
every 10 sensor node insertions. Notice that in the latter two
cases in Table 3, the elapsed time is not reduced by a factor
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Figure 6: Case 2

of 5 or 10. This is partially due to setup time in each run, as
well as the fact that in INC-1 case, since each invocation of
the decomposition algorithm involves small increments only,
the previous solution can be effectively utilized as a starting
point, while in large increment cases (INC-5/10) this is less
efficient.

Figure 9 shows that in terms of solution quality, the MINLP
solver still leads, although it fails to solve largeriscale cases.
The incremental approach produces better quality solutions
compared to a pure mulit-start scheme. On the other hand,
we can also see that the incremental deployment approach
takes much more time than the pure multi-start in each run,

Runs Time (secs) Best Solution
MINLP 150 802 243416
DECOMP 400 825 243472
INC-1 30 857 243576
INC-5 30 349 244226
INC-10 30 246 243472

Table 3: Using MINLP, decomposition algorithm
and incremental deployment to solve Case 3.
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but, overall, if given the same amount of CPU time, we can
conclude that the incremental deployment approach is more
likely to find a better solution than the pure multi-start.
Finally, since incremental deployment invokes the decompo-
sition algorithm, we can handle problems of very large scale.

6. CONCLUSIONS
In this paper, we considered a practical problem in WSNs:

deploying cluster-heads in order to save energy and provide
reliability. We formulated the problem as a MINLP location-
allocation problem, which is extremely difficult and contains
multiple local minima. In order to combat the scalability is-
sue that arises in a MINLP solver, we exploited structural
properties of the problem and developed an SLA-based it-
erative decomposition algorithm. Since the decomposition
algorithm is “incremental-friendly”, we proposed an incre-
mental deployment scheme for the scenario where new sensor
nodes or cluster-heads are added to an existing deployment.
We further proposed to solve the original “whole” deploy-
ment problem by way of the incremental scheme. Numer-
ical results show that the incremental deployment scheme
produces better solutions in terms of distribution.

The fact that the MINLP branch-and-bound solver can-
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Figure 9: Cumulative distribution of solutions

not handle a large-scale problem is not surprising. There
are simply too many branches in each node of the branch-
and-bound tree. Since each branching needs to store the
current problem plus many new constraints introduced dur-
ing the branching process, the whole tree will consume a
huge amount of memory. One interesting fact is the failure
of the MINLP solver to find the global optimal solution even
in very simple cases. This is not surprising either. Because
even if we relax the integral constraints in Problem 1, it is
still non-convex so an initial feasible solution will affect the
final result.

For the incremental deployment approach, although it
takes more time to compute in our numerical example, we
believe it is promising because it has more potential: differ-
ent ways of incremental deployment and new heuristics may
evolve within the framework, leading to efficient solving of
the original problem.

Future research directions include: (i) incorporating a
more detailed model of wireless interference and considering
the effect of different medium access control schemes; (ii)
a probabilistic model regarding the connection, where the
new reliability criterion will be probabilistic as well; (iii)
scenarios where the search space for cluster-head locations
is discrete and subject to routing constraints.
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