Perfect Simulation and Mon

J.M. Fourneau
INRIA project MESCAL
Laboratoire Informatique de
Grenoble
CNRS UMR 5217
Montobonnot, France
jmf@prism.uvsq.fr

J. Vienne
INRIA project MESCAL
Laboratoire Informatique de
Grenoble
CNRS UMR 5217
_ Montobonnot, France
jerome.vienne@imag.fr

45 Av. des Etats

ABSTRACT

We combine monotone bounds of Markov chains and the coupling
from the past to obtain an exact sampling of a strong stochastic
bound of the steady-state distribution for a Markov chain. Stochas-
tic bounds are sufficient to bound any positive increasing rewards
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of the initial state on the stochastic behavior of the system and the
accuracy for the estimation of small events probabilities. Thus it
is typically difficult to perform a rare event simulation with a high

dependence on the initial state. Usually the initial state of the sim-
ulator is an empty network when we model a network of queues

on the steady-state such as the loss rates and the average size or d&f @ fully operational states when we deal with reliability problem

lay. We show the equivalence between st-monotonicity and even
monotonicity when the state space is endowed with a total order-
ing and we provide several algorithms to transform a system into

tand these states clearly add a bias to the likelihood. Building an

arbitrary state of the model raises new questions:

e is the state really reachable ?

a set of monotone events. As we deal with monotone systems, the

coupling technique requires less computational efforts for each iter-
ation. Numerical examples show that we can obtain very important
speedups.
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1. INTRODUCTION

Simulation is the most versatile tool to model large and complex
systems such as high speed networks or highly dependable com

puter systems. Unfortunately even if we can represent large sys-

tems with simulators, usual techniques require a long time to run

when we consider a system with a large number of resources and

e what is the bias induced by this state ?

And the warm-up period problems remains to be solved for any
initial state. Even if we consider Poisson arrival of events, regener-
ation does not really help as the regenerative points that we can eas-
ily identify appear very unlikely (consider for instance the empty
state in a network of queue when the load is not light).

In this paper we advocate to uperfect simulatiorand to com-
bine this technique with stochastic monotonicity to speed up the
computation. Perfect simulation [16] directly builds steady state
samples avoiding the warm-up period and the initial state bias. This
method is based on the more general theory of coupling for Markov
‘chains. Let us first review some ideas about coupling. Assume that
we compute with the same random sequence of random numbers a
sample path beginning at any initial state. If at titrtevo sample-
paths are in the same state (we say that they couple), they will con-

when we need very accurate results. Drawbacks of simulation arein e forever during all the simulation. When all the sample-paths

the control of the warm-up period before sampling, the influence
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have coupled, we obtain a sample state. We may use the state to
initialize the simulation or consider it as a sample of distribution. it

is not necessary anymore to continue the simulation. For instance
in Fig. 1 all the sample-paths have coupled in statd time4. In

this drawing, each column is associated to a time instant and the
rows contain the state#/; is the i-th value of the random sequence
used to generate the transitions of the chain at im€his draw-
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future.

It is known for a long time that coupling in the future does not
provide a sample distributed according to the steady-state. But
Propp and Wilson have proved that coupling from the past (CFTP),
also called backward-coupling, gives an exact sample of the steady-



of the monotone bounds may be much faster than in the backward
perfect simulation.

2. PERFECT SIMULATION

In this paper we assume finite state space, ergodic Continuous-
Time Markov Chains (CTMC). The first step of the event model
is a uniformization of the CTMC. Thus the monotone algorithm
is based on Discrete-Time Markov Chain (DTMC), and the strong
ordering of these chains.

2.1 Global stateiteration

Formally, when all the knowledge of the process dynamics is
included in the state description, the system may be described by
transition function® :

Figure 1: Forward Coupling

state distribution [16]. Coupling from the past is similiar to cou- Xnt1 = ®(Xn,Unt1); (1)

pling in the future but the initial time of the simulation will be where X,, is n'" observed state of the system affd,}, _, the
chosen randomly whereas the final time is deterministic. In other sequence of inputs of the system, typically a sequencgeof calls to a
words the Markov chain is not started at time 0 but sufficiently far rndomfunction. This type of stochastic recursive sequence has
away in the past such that at time 0 all the paths are coupled. been widely studied in a general framework [2] or [7] and some

This method is extremely efficient when the state space is large yegjts related with perfect simulation may be found in [18, 19].
and has monotone dynamic. It has also be shown recently that we 1 js clear that, if the{U,, } are independent and identically dis-
can use antithetic variable technique to speed up the computationgipted, the proceséX, }, ., defined by an initial valueX, and

of the confidence interval [21]. But many practical and theoretical hq recursive equations (1) is a Markov chain. Conversely, given a
problems remain to be solved for discrete Markovian systems 10 yansition matrixP, it is possible to find many transition functions

obtain a fully versatile technique. @ such that a Markov chain defined by (1) has transition marix
One of the problem we must consider is the number of operations [20]. Clearly, all these functions do not require the same average

we need to obtain a sample. The general backward algorithm tries,mper of operations. This is illustrated in the example below.
to couple sample-paths beginning in every state in the state space.

Thus modelling very large state space systems requires some modeP.2 Finite Markov Chains
transformation. Furthermore the number of operations is at least pacad on a stochastic recurrent sequence formulation, the fol-

linear in the size of the state space. The monotonicity property |oing algorithm provides directly a sample of the steady state dis-
of the event structure of the model (which is formally defined in iy tion. Notice thatS denotes the finite state space set.

the next section) allows to use a more efficient algorithm which
sandwiches all sample-paths to couple into extreme ones.
Many routing techniques for networks of queues are monotone

Algorithm 1 Backward-coupling simulation (general version)

[11], but a large number of models of synchronized systems are not 10" l z € Sdo L
monotone. So we prove a model transformation technique which y(z) — w{choice of the initial value of the vectay, n = 0}
derives monotone models. The fundamental theory we need here ©nd for
is the stochastic comparison of Discrete-Time Markov Chains (see  "€P€at ,
[14] for a recent presentation of this theory). These models are built ;Jo;_all Ragd)(()rgé){generatlon 0f—n}
X

to provide bounds on several stochastic estimates we usually want
to obtain. Strong stochastic bounds are associated to increasing
rewards we compute on transient distributions and on the steady-

y(z) «— y(®(z,u)); {computation of the state at time
of the trajectory issued from at time —n}

state when it exists. Thus if we can compare two distributions we end for
can also compare increasing rewards on these distributions. This is until All y(x) are equal
usually sufficient for Quality of Service modeling as we just want  "etumy(z)

to prove that some quantities (average delay, loss rates) are smaller
than some performance thresholds (see for instance [15] for an ap-
plication on Fair Queueing disciplines and [12] for algorithms to
bound sub-stochastic matrices for point availability models).

The following of the paper is as follows. The next section is de-
voted to a brief presentation of Perfect Simulation and its complex-
ity. In section Il we present the theory of construction of Mono-
tone Markov chains and we prove the relationships between the
monotonicity associated to the strong stochastic ordering to com-
pare Markov Chains and the monotonicity of events considered in
the sandwiching of sample paths when the state space is assumed ‘
to be totally ordered. We also give an algorithm to obtain aset =5 . =4 =3 2 o1 Ylomozs °
of monotone events from a monotone matrix. In section IV we
consider the general problem of model transformation to obtain a Figure 2: Convergence of Coupling from the Past Algorithm
monotone representation using matrices and events. Finally numerfor a non monotone M arkov Chain
ical results are shown in section V to illustrate that the computation




Provided that the coupling time is almost surely finite (it requires
some technical conditions), itis shown that Algorithm (1) generates
a state from the steady-state distribution [16, 20]. Eet be the
expectation of the coupling time, be the size of the state space
and op(®) be the average number of operations to compute the
transition function®. Clearly the average number of operations
before coupling is:(Er1)op(®).

Function® has a lot of influence on the number of operations.

transitions in the chain, their probabilities and the order in which
we consider the transitions in the algorithm. It is known for a long
time that ordering the transitions in a decreasing order of their prob-
ability provides the most efficient implementation for inverse dis-
tribution implementation. It is worthy to remark here that trying to
optimize the number of operations # will eventually lead to a
function ® which does not have a small coupling time.

On the practical point on view, a better implementation based

First the way it is implemented has a linear influence because of on the alias method has been used in PSI the software we have

termop(®). But the problem is much more complex. The coupling
time depends on functio® used to describe the chain. Let us
illustrate both points with a toy example.

Consider a simple DTMC with three statesb andc, an arbi-
trary initial state and transition probability matrix:

0.5 025 0.25
0.25 0.5 0.25
0.25 025 0.5

P=

Using transform inverse function to represent the transition func-
tion, we can writed(a) as:

if U <0.5 ®(a) =a
elsifU < 0.75 ®(a) =b
otherwise P(a)=c

In this paper we represent this abstract code by the following
entry in the transition table to have a more abstract representation:

1/4
b

The usual utilization of this table is to perform a linear search
from the beginning of the table with comparison on the boundaries.
The number of operations we give in the following takes into ac-
count this linear search in the entries of the table. Using this table
representation, this chain may be associated to the following func-
tions® 4 and® .

1/4
c

U4 14
a

a

Dy | 1/4 | 1/4 | 1/4 ] 1/4
a a b c
b b c a
c c a b

dp | 1/4 | 1/4( 1/4] 1/4

a a b c

b a b [&

c [a |b ] ¢

Function® 4 implies that the chain never couples becaugé i
0.5 the state does not change,0is < U < 0.75 the state in
increased by one in a circular list andif > 0.75 the state is
decreased by one. Clearly the sample-paths never couple.

But at each step, the probability that the coupling occurs using
function® is larger thar).5. Thus the expectation of the coupling
time is smaller thar.

Designing algorithms to find the most efficient functiénto
reduce the expectation of coupling time is still an open problem.
Some heuristics have been considered in [17].

Let us now consider the number of operations necessary to com-

pute® 4 and®p. If we use an inverse distribution approach the
average number of operations fbr, is 1.5 while the computation
cost of @ depends on the state: it1s5 ona and1.75 on b and

c. Note that this complexity is related to the number of non zero

developed [20].

This toy model illustrates that the optimization of functidrto
minimize the number of operations before coupling is a complex
approach. Hopefully it is also possible to reduce the number of
sample-paths if the model is event-monotone.

2.3 Monotone perfect sampling

We suppose that the underlying system is governed by a finite set
of events. Thus the system is described by a transition function with
events. Following the Poisson calculus methodology [3], events are
driven by homogeneous independent Poisson processes and the dy-
namic of the system is defined by a Poisson process (uniformiza-
tion of all the Poisson processes) and a transition function, e)
defined for each state and each event occurring on a Poisson
process. Itis convenient to include the fact that some events could
not be applied to a state (not allowed transitions) inside the tran-
sition function. For example, the eveand of servicecould be
executed only if the number of customers in a queue is greater than
one. In a queueing network, a customer arrival, the end of a service
and the following routing, a customer departure, are typical events
in networks. Firings in Petri nets or Cooperation is Stochastic Al-
gebra processes may be handled as well and this allows a versatile
description of models.

Let us now give formal definitions.

DEFINITION1 (EVENT). Aneventis an application defined
on S, that associates to each statec S a new state denoted by
®(z,e). D is called theransition function by events of the system.

DEFINITION2 (EXECUTION). An execution of the system is
defined by an initial state, € S and a sequence of events=
{en}nen. The sequence of statés, }ncn defined by the recur-
rencexn+1 = @(zn,ent1) forn > 0is called atrajectory.

DEFINITION3 (MONOTONE EVENTS. An event is said to
be monotone, if it preserves the partial orderiggon S :

V(z,y) €S <y — P(z,e) < P(y€)

If all events are monotone, the global system is said to be event-
monotone.

When the operatod is event-monotone, the algorithm could be
simplified by making iteration only on maximum and minimum
values of the state space. For instance, in an open queuing net-
work, there is an unique minimum (all queues are empty) and an
unigue maximum (all queues are full). Then we only iterate simul-
taneously 2 trajectories and the time reduction is in the order of the
size of the state space. This concept of event-monotone models will
clearly help to reduce the computation cost to obtain a sample.

We give in the following backward-coupling for event-monotone
models. We consider a set pfevents with rates\i, s, -, Ap.
LetAbe} " | A

Let us turn now to the expectation of the coupling time for event-
monotone systems. It has been shown [16] that the mean coupling
time is optimal when steps in the past are multiplied2owhen



Algorithm 2 Backward-coupling simulation (event-monotone ver- a brief overview on stochastic ordering for Markov chains and we

sion) obtain a set of inequalities to imply bounds. Then we present a
n=1; basic algorithm proposed by Abu Amsha and Vincent [1]. In the
E[1]=Generate-event() following, P;, . will refer to row s of P.
repeat . .

e?,ZZn; 3.1 A brief overview
for all z € M Um do Following [14], we define the strong stochastic ordering by the
y(z) <« =z {choice of the initial value of the vectoy, set of non-decreasing functions or by matfi;.
n = 0}
end for 100 ... 0
for i=n downto n/2+1do 110 0
E.[i]=QeneArate-eveAnt() {generate event according to dis- Ko — 1 11 ... 0
tribution (5L, - -+, 52} ° Lo .
for all x € M Um do Do -
y(x) «— ®(y(z), E[i]) {apply the transition given by 111 ... 1
eventE[i] } . .
end for DEFINITION 4. Let X andY be random variables taking val-
end for ues on a totally ordered space. Théhis said to be less than

Y in the strong stochastic sense, that 1§, <:: Y if and only if
E[f(X)] < E[f(Y)] for all non decreasing functiong whenever
the expectations exist.

for i=n/2 downto 1do
{event —i has already been generated in a previous step}
for all x € M Um do

y(z) «— 2(y(=), E[1]) If X andY take values on the finite state spate- {1,2,...,n}

end for with p andg as probability distribution vectors, theX is said to

end for be less thart” in the strong stochastic sense, thatis,<,; Y if

until All y(z) are equal and only if S0, p; < S0, q; fork = 1,2,...,n, or briefly:
returny(z) Kot <st qKst.

Important performance indices such as average population, loss
rates or tail probabilities are non decreasing functions. Therefore,
trajectories issued from maximum and minimum states have not bounds on the distribution imply bounds on these performance in-
coupled at time. In the algorithmA/ (resp.m) denotes the set of  dices as well. Moreover stochastic bounds are also valid for tran-
maximal (resp. minimal) elements in the state space. We give in sient distributions. We do not use this property as we are mainly
the following interested in performance measures on the the steady-state. It is

This algorithm has the same convergence properties as Algo- known for a long time that monotonicity [14] and comparability of
rithm (1). The doubling period of each scheme ensures that the the one step transition probability matrices of time-homogeneous
coupling time for an event-monotone system is less than the cou- MCs Yyield sufficient conditions for their stochastic comparison.
pling time for Algorithm (1) multiplied by2. Thus the expected  This is the fundamental result we use in our algorithms. First let
number of operations BE7 op(® 4). us define the st-comparability of matrices and the st-monotonicity

The algorithms and the drawings of the sample paths clearly of a matrix.
show that an iteration of Algorithm (2) is much simpler than an
iteration of Algorithm (1) as it builds less sample-paths. Soifone  DEFINITIONS (MATRIX STOCHASTICCOMPARISON). LetP
can transform a model to imply event-monotonicity, one can use @1dQ be two stochastic matrices” <. @ ifand only if PKs¢ <
Algorithm (2) instead of Algorithm (1) and obtain an exact sample @ st This can be also characterized & . <s: Qi for all i.

of the new model much more efficiently. We propose to transform
Y brop DEFINITION6 (MONOTONEMATRIX). Let P be a stochas-

the model to obtain an upper bound of the Markov Chain using .. . . . . .
the stochastic comparison approach. Note however that we do nottic Matrix, Pis stmonotone if and only if for all andv, if u < v

have any information on the expectation of the coupling time in the thenul’ <se vP.
initial model compared to the expectation of the coupling time in
the upper bounding model. We just know that on the same model
the algorithms have roughly the same average number of iterations.
Numerical results show very important speedups and the theoret-  properTY 1. Let P be a stochastic matrix? is < .;-monotone
ical approach proves that both expectations are upper bounded by and only if K ;' PK; > 0 component-wise.

the same geometric delay. To the best of our knowledge, we are

only able to obtain an upper bound on the expectation or a stochas- PROPERTY 2. Let P be a stochastic matrixP is st-monotone
tic upper bound on the distribution. if and only if for alli,we haveP; .. <st Piy1,«

Hopefully, st-monotone matrices are completely characterized
(this is not the case for other orderings).

3. STOCHASTIC ORDERING ONTOTALLY THEOREM 1. Let X(¢) andY (¢) be two DTMC andP and @

i i i i . <S )
ORDERED STATE SPACE g,eifthew respective stochastic matrices. THe(t) <s: Y (¢),t >
As the first step of the analysis consists in the uniformization
of the process using the sum of the rates, we restrict ourselves to ~ ® X(0) <se Y(0),
Discrete Time Markov Chains (DTMC) with finite state spate-
{1,...,n} endowed with a total order. We consider the strong
stochastic ordering (denoted "st" in the following). First, we give e st-comparability of the matrices holds, thati3,. <.t Q:« Vi.

e st-monotonicity of at least one of the matrices holds,



Thus, assuming thaP is not monotone, we obtain a set of in-  another algorithm (IMSUB) which solves the problem [9]. IMSUB
equalities on entries @ : avoids to delete the transitions in the upper triangle and makes pos-
itive the elements of the lower subdiagonal.

Doy P <200, Qi Vi, j -

k=s” " k=g 25 e () Algorithm 4 IMSUB
{ Zk:j Qik < Zk:]‘ Qit1,k Vi, j gl,n =i

3.2 Algorithms for:=2,3,...,ndo

It is possible to derive a set of equalities, instead of inequalities. ?’%r: max(gi-1n; Pin);

These equalities provides, once they have been ordered (in increas- for | = n-1 downto 1do
ing order fori and in decreasing order fgrin system 3), a con-

structive way to design a stochastic matrix which yields a stochastic a1 = P,

fori=2,3,...,ndo

bound. Qi = maX(Z?:l qi—1,j, Z?:l Dij) — Z?:Hl qi,j,
. N if (¢ > 1) and(g;,;; = 0) then
{ Zk:j Qur = Zk:j P g =¢€(1— Z;‘L:l+1 %ij)
Dohej Qitre =maz(Q_; Qi 2j_; Piyrk) Vi j end if
?3) end for
The following algorithm [1, 9] constructs the optimal st-monotone  end for
upper bounding DTMQY for a given DTMC P. For the sake returng

of simplicity, we use a full matrix representation fét and Q.
Stochastic matrices associated to real performance evaluation prob- The first step is to prove the relations between the strong stochas-

Iem§ are usually sparse. And thg sparse matrix version of all the al-;. ordering we use for the DTMC and the event-monotonicity we
gorithms we present here is straightforward. Note that due to the or- consider for the coupling from the past algorithm

dering of the indices, the summatiops’_; ¢i—1,; andZ’;:lJrl Gi,j ] -
are already computed when we need them. And they can be store3.3  Stochastic strong monotonicity and
to avoid computations. However, we let them appear as summa- event_monotonicity

tions to show the relations with inequalities 2. We suppose a totally ordered state spd@nd give the relation-

ships between the stochastic monotonicity and event-monotonicity.

Algorithm 3 Construction of the optimal st-monotone upper  THeoREM 2. When the state space is totally ordered, if the sys-

bounding DTMCQ: tem is event-monotone (see Def.3), it is also stochastically mono-
qi,n = Pin; tone, if the underlying model is homogeneously governed by a finite
fori=2,3,...,ndo set of event® = {e1,---en}.
Gi,n = Max(qi—1,n,Pin);
end for PI’OOf .
for | = n-1 downto 1do We must show that for each two states x and y suchahsity,
Qi = pui; the row and the rowy of the underlying probability transition
fori=2,3,...,ndo maitrix are comparable in the sense<of; order:
@i =max(3_7 ) Gi-1.5, 25— Pig) — Dj_iy1 G
end for Plz,*] <st Ply, #]
end for

returng To demonstrate this, we must show that:

N N
P(z,i) < P(y,i) ,Vk=1,2,...N 4
First let us illustrate Algorithm (3) on a small matrix. We con- ; (2,9) ; (. 9) @

sider a5 x 5 matrix for P1 and we compute matrig), and both

steady-state distributions. From the event-monotone definition, we have

r05 02 01 02 007 z<y— (z,6) =2 < Wy, e) =2 ®)
01 07 01 00 01 Assuming that the same set of events occur in each state, the
P=102 01 05 02 00 transition matrix is defined by the event probabilities for e,, €
0.1 00 01 07 01 E, such thatP[z, 2] = 34, .. )= Pe.- Thus equation 4 can be
L 0.0 02 02 01 05 ] written as follows: ’
05 0.2 0.1 02 0.0 S S
. . . . . ey < ew =1,2,..,
01 06 01 01 0.1 E@(z%:ip ) ;cﬂyg):ip o= N
Q=101 02 05 01 0.1 . . .
01 00 01 07 01 It follows from Eq. 5 that for each,, if p.,, is included in
L 00 01 01 03 05 | al

>~ pe,. thenitis also included in

Unfortunately this algorithm may transform an irreducible matrix = o(z,e, )=

into a reducible one and we do not have a complete characterization ~

of matrices where this problem occurs. Indeed due to the subtrac-z Z Pe,, - Thus the former inequalities are satisfied dnd
tion operation in inner loops, some elementg)fay be zero even i=k ®(y,eq)=i

if the elements with the same indicesirare positive. We may use  is <+ monotone.



THEOREM 3. When the state space is totally ordered, if the 05| 0.0 00 0.0 00
system is stochastically monotone, then there exists a finite set of 02 03] 0.0 0.0 00
events, - - - en, for which the system is event-monotone. P=|02 03 00 00 00| — pe =03
01 00 01 0.3 0.0
We give the following algorithm which takes as input a stochastic 0.0 0.0 0.2 0.3 0.0
monotone matrixP = (p;,;j)1«n,1+~5 and gives a set of evenfs
and a transition functio®, such that®(z, e.,) is event-monotone. F102] 00 00 00 007
. . — — 02 00 0.0 00 0.0
Algorithm 5 Stochastic monotonicity-> event-monotonicity P=1| 102 00 00 0.0 0.0 | — pe=0.1
S =1{1,2,3,...,N} 01 0.0 [0.1] 0.0 0.0
E = (){the set of events is initially empty} L 0.0 0.0 0.2 0.0 0.0 ]
P:SxFE — S
V = [v1,v2, ..., un]{a vector representing the column index of - 101l 00 00 00 00 -
he rightmost positive values for each row, initialized to N } 0-1] ' ' ' '
L 1o 01] 00 00 00 00
Ceneat P=1101 00 00 00 00| — p., =01
e‘?or N d 0.1 00 00 00 00
1=1loivdo L 0.0 00 (0.1 00 0.0
J o= vi
while p; ; = 0do So we can derive an event description of the maktjusing these
j—ji—1 seven events.
end while
vg — j {update VeCtOﬂ/} Peg + Peg + Pey Pey Peg Pey + Peg 0.0
end for Peg ipe7 Pes + Pey Peg Peg N Peq
k «— k -+ 1{the next event;} s e 0 pe P2 4 e 4 pey +peg per

Pe, — Mini<i<n Pi,v;{probability for evente;} 0.0

fori =1to N do
@(i,ek) — V5
Diw; “ Piw; — De,{Update the matrix}
end for
until ZekeEpek =1

Before proceeding with the proof, let us illustrate by an example
on a simple matrix the steps of this algorithm. The components of
vector V are the index of the elements which are framed in the ma-
trices. These are indeed the column index of the rightmost positive
values for each row.

05 02 01 [02] 0.0
02 05 01 01 [01]
P=]02 03 02 02 |01 | — pe, =0.1
01 00 01 07 [01]
00 00 02 03 |05

And vectorV is [4,5,5,5,5]. The first evente; will occur with
probability p., = 0.1. In the sequel we only indicate the event
probabilities obtained in each step.

05 02 01 [01] 00
02 05 01 [01] 00
P=]02 03 02 (02 00 | — pe,=0.1
01 00 01 |07 00
00 00 02 03 |04
05 02 0.1 00 0.0
02 05 [0.1] 00 0.0
P=1]02 03 02 (01 00 | — pe =01
01 00 01 (0.6 0.0
00 00 02 03 0.3
05 [02] 00 00 00
02 |05 00 00 00
P=1]02 03 02 00 00 | — pe, =02
01 00 01 |05 00
00 00 02 03 (0.2

0.0 Peg + Pey Pes Peqp + Peg + Peg + Pey

We now give the proof that the transition functidmgiven by the

Algorithm (5) is event-monotone.
Proof:

The proof is done in two steps. First we demonstrate the exis-

tence and the monotonicity of the generated events and secondly
we prove that this set of events is finite.

e The principe of this algorithm is to construct the event-monotone
model by defining its monotone events one by one until the
probability sum is equal to one. This algorithm proposes to
choose the first positive value by beginning from the right for
each row x. Let us note this value B, and the correspond-
ing column bywv,, for all statex € S (R, = P(x,vz)). In
fact vectorV is constituted ob,,, = € S.

It follows from stochastic monotonicity that
N N
> P(x,i) < > Ply,i),Vk=1,2,.,N (6)
i=k i=k

Thus for each two states y such thate < y :

Re = P(z,vz), and Ry = P(y,vy) — vz < vy (7)

We define an evert, with probabilityp., = mini=1,...n (R:)
such that for all state P (7, e,,) = v;. It follows from Eq. 7
that for each two states y such thate < y :

O(z,e0) < P(y, eu)
Thuse,, is a monotone event.

Once this event is defined, we subtract its probability from
the transition matrix. It is done by using vectbr which
means that for each row we subtragt from the right most
positive entry. We have from equation 6:

N N
ZP(:E7Z) — Peu < Zp(yvi)_p6u7Vk:1527"'aN
1=k 1=k

®



Therefore the updated matrix satisfies the stochastic mono-
tonicity inequalities for the next iteration to determine the
next event. The other events are similarly determined by us-
ing the updated matrix and vector.

During the execution of this algorithm, the construction of
each event makes null at least one matrix entry. lebe
the number of non zero entries of the underlying matrix. In
the worst case afteV/ < N? steps all the entries of the tran-
sition matrix will be null and the sum of event probabilities
will be equal to one.

These theorems state that st-monotonicity and event monotonic-
ity are equivalent when the state space is totally ordered. And Al-
gorithm (5) allows us to obtain a monotone event description of a
monotone matrix.

3.4 Coupling Time

Consider the time complexity of the perfect simulation algo-
rithm. When the chain is not monotone, the backward iteration
of Algorithm (1) should be done for each state. Then the expected
time complexity is of the form

op(®).n.Et;

whereop(®) is the time cost of applying the transition function to
a single statep is the size of the state space anthe number of
iterations until coupling occurs.

Denote by®(z,e1,- - - ,en) the state of the system after apply-
ing to the initial stater the sequence of events, - - - | e,,. This no-
tation generalizes to the image of a set of state® (A, e1, - - - , en).

DEFINITION 7. The coupling time of the backward scheme is
given by

7 = inf {n; suchthatCard(®(S,en,- - ,e1)) = 1}.

Provided that there exist with a positive probability an intégand

a specific coupling pattern of events, - - - e; such that

Card(®(S, e, -+ ,e1)) = 1, thent is almost surely finite and,
moreover, upper bounded by a geometric distribution. In the case
when the matrix is monotone and the transition function build on
the inverse of the probability distribution function, then the se-
guencees, - - -

useful for numerical computation when one must handle vectors
and matrices of the state space size.

Here most of the influence of the size of the state space has been
cancelled when one uses monotone models and the sandwich algo-
rithm. But lumping the model still helps. We assume that in the
lumpable algorithm, the aggregation functibpreserves the order
of the initial state space. Then it is easier to simulate the backward
scheme on the lumped chain and derive the steady state of lumped
process and extend by decomposition of macro-states to the initial
state. Denote by the coupling time of the backward scheme of
the lumped chain. Then we have the theorem

THEOREM 4. Ifthe lumping functior is order preserving4 <
y impliesi(z) < I(y)), then

7t <st T.

This comes from the fact that if the initial chain have coupled then
the lumped one have already coupled.

The estimation of coupling time reduction is known to be hard
and counterexamples shows that some aggregation functions have
the same coupling time distribution as the initial chain.

Let us now return to input model and discuss how we can trans-
form it to be monotone. We present several algorithms in the next
section to deal with various types of Markovian model. In section 5
we present some numerical experiments to show the speedup when
the model is monotone.

4. MONOTONE PERFECT SAMPLING FOR
NON-MONOTONE MODELS

We need several algorithms because we must consider several
types of input models and several ways to transform these models
into a set of monotone events. In the MESCAL project we have
developed two simulators based on these concepts. PSI is an im-
plementation of the coupling from the past algorithm for general
Markov chains (i.e. non monotone). The transitions are imple-
mented with the alias method to be more efficient. The inputs of
PSI are a stochastic matrix or a transition rate matrix. PSI2 is based
on monotone events and its inputs are a description of monotone
events.

In this section we present algorithms to transform the underlying

;e1 (number of events is the size of the state space) gystem which is not event-monotone in order to be able to apply

is a coupling pattern and the backward scheme converges almos{yonotone perfect sampling using a monotone event representation.

surely.
A first significant time reduction appears when the chain is mono-

We suppose that the underlying system is given as a stochastic ma-
trix P or as a set of non monotone events. We must define a finite

tone Algorithm (2). In that case, iterations are done only on the set ¢at of monotone events to be able to do monotone perfect sampling

of extreme states, and in our situation, because the state space i§;ith pS|2. We present several algorithms based on various inputs
totally ordered just 2 trajectories are derived backward. But this al- 5n4 intermediate models: events or stochastic matrix.

gorithm needs the storage of the event sequence (amount of mem-

ory in the order ofr). The doubling scheme in the past ensures that
the total number of iterations is less than

Previous works [8] have shown that in many practical situations
such as queueing networks, the coupling tifweis linear in the
number of queues and quadratic in the capacities of the queues

4.1 Event transformation

First suppose that the input model is a set of events which is
not monotone. We propose the following algorithm to obtain an
upper bounding monotone transition function. This algorithm takes
a transition functiond and returns a transition functich®“? such

Then itis much smaller than the size of the state space which growspat

exponentially when the number of queues increases.
A second improvement could be done by the utilization of ag-
gregation function. Truffet [13] has proved that we can combine

strong stochastic bounds and aggregation. We have developed two

algorithms to build a monotone lumpable upper bounds: LIMSUB
[10] and LMSUB [4]. LMBUB is a sparse matrix implementation

of Truffet's method while LIMSUB creates an irreducible matrix.
Of course in both cases we only build the lumped matrix of the
bound to avoid a very large state space generation. This is really

o O(x,e) < P*P(x,e) Vx,e
o $°“P js event-monotone.

The algorithm is simply based on the following approach: Let
{e:} be the initial set of events, we modify the events to be mono-
tone and to build an upper bounding matrix as follows:

o the probability of an event does not change.



e the action of an event on a state is changed and we build a Proof: Let P (resp.Q) be the stochastic matrix associatedbto
new transition functiord®“? to describe this new effect: (resp. ®°“?). It follows from theorem (2) that event monotonicity
implies <s: monotonicity. Thug? is <s:-monotone. The proof of
P < Q is exactly the proof of Vincent’s algorithm (i.e. Algo-
D7 (ei,y) = mazry<y®(es, ) rithm 3). It is omitted here and it can be found in [1]. It is more
important to remark that some important properties of Algorithm
(3) such as optimality are still true for Algorithm (6).

Algorithm 6 Non monotone event representation monotone

event representation 42 M atr iX and M SUB

S =1{1,2,3,..,N ) . . )
E— %61 eo. €3 }e } Assume now that the input of the model is a stochastic matrix.
DS é . 7;9”7 ’ The algorithm we have already presented provides a first way to
(I)s'up SxE — § obtain a monotone set of events for an upper bound. We first ap-
for j _ 1topdo ply IMSUB (i.e. Algorithm 4) to construct & s;-monotone upper
sup , , bounding matrixQ. From theorem 3, it is possible to compute the
O°UP(1,e5) «— ®(1,¢5) ! !
set of monotone-events. This can be done by means of Algorithm
S (5(. The stationary distribution ap ( 1) can be estimated with
for i =2ton do . i .
for j = 1topdo monotone perfect sampling Algorithm (1) through PSI2. Since by
sup(; sup(; ) . constructionP <, @, we obtain a stochastic upper bound on the
o (7'76]) — maz(@ (7'_ 1762)7®(Z762)) . . . .
stationary distribution o (ITp < I1g).

end for

end for
end for

4.3 Matrix and transformation of events
Let us now prove that the Algorithm (6) gives an event monotone  Another solution with the same input is to find a set of events

transition function. LetS be the state spacé, = {1,2,...,N} directly from the initial matrix. These events are not monotone as
and E be the event spacé; = {ei1,...,ep}. To prove that the the matrix is not. This algorithm tries to minimize the number of
function proposed by Algorithm (6) is event-monotone, we need to events. Then we build from this set a new set of events which are
introduce the following equivalence. monotone and which describe an upper bound of the matrix.

- We first obtain the transition functio@ for the input matrixP.
LEMMA 1. For each event, € I, These two propositions are v give the following algorithm which takes as input a stochastic

equivalent: matrix P and returns a transition functioh corresponding td”.
e N)Vi,je S: ifi<jthen®d(i,en) < P(4,ewn)
e QViES: Bli,en) < B(i+1,e4) Algorithm 7 event representation for a transition matrix
S=1{1,2,3,..,N}
Proof: E = ({the set of events is initially empty}

d:S+xFE — S

e (1) = (2) : This implication is evident, because by taking V = [v1,v2, .., ON]

j =14+ 1, the proposition (2) is satisfied. E — 0
e (2) = (1) : From the proposition (2) we have : repeat
for i =1to N do
D(l,ey) < .. < P(l,en) <P+ 1,eu) < .. < DP(N,eu) v — 1
) . o for j =2toN do
Thus, we can obviously see that for allj € S, if i < j : it pi; > piv, then
D(i, eu) < (J, ) v — j;
PROPERTY 3. ®“P(3, ¢,,) is event-monotone. end if
end for
Proof: end for
To prove thatd*“?(i,e,), i € S is monotone, we must show k « k+ 1({the next event,} y
that for each two states: € S, j € S andi < j: ®*“P(i,e,) < Pe < mim<i<n pi; {the probability for evente,}
d°"?(j,¢,). Indeed we can deduce from lemma 1 that it is suffi- for i =1to N do
cient to show that : ®(i,er) — v ]
. . Diw; “ Piw; — De,{update the matrix}
VieS: @Mw(@ eu) < @éup(i +1,e4) end for
From the algorithm, we have for each event € FE, and state until ZekEE Pep = 1
1€ 5t
OT(i+ 1, 5) = maz (™ (i, ew), D(i, eu)) As the proof that the function given by of Algorithm (7) is event-
Then,®*“"(i 4 1,e,) > ®°“P(i, e,). Therefore we conclude that ~ monotone is very similar to the former proof it is omitted here.
P (4, ¢, is event-monotone. Since the underlying matri® is not<s;-monotoned is not event-

monotone but it is now quite simple to complete the transform. We

PROPERTY 4. LetII (resp. I1p) be the stationary distribution just have to use Algorithm (6) to obtain a new set which is now

estimated by doing the monotone perfect samplin@ ¥ (resp. consistent with the inputs of PSI2 and which allows to build an
of ®). We must show thalp <, II. upper bound of the original Markov chain.



5. BOUNDSAND PERFECT SIMULATION: Algorithm (2) seams to have a linear complexity with the size of the
SOME EXAMPLE state space. The complexity of Algorithm (1) is more than linear
with the state space. A linear part comes from the samples which
must begin in every state. The other part comes from the coupling
time, the length of which is dependent of the size of the state space.

We consider a slightly modified version of the M/M/1/B queue.
The service are exponential and the service raje /e consider
the superposition of two independent arrival processes. The first
process is a Poisson process of rate The second process is a
Poisson batch arrival process. The distribution of the batch is state6. CONCLUSION
dependent. At staté it has sizek > 2. For all other states, the In this paper we show how we can combine monotone bounds
batch size is almost surely. The arrival rate is . and coupling from the past to obtain efficiently an exact sample of
Clearly this system is not monotone because of the transitions 3 strong stochastic bound. One can generalize to other model trans-
out of state0. Thus we must use Algorithm (1) to obtain some  formation. For instance, we have developed some algebraic manip-
samples We have a matrix based implementation of this algorithm yjations of the chain which do not change the steady-state distribu-
in PSI a software tool developed by some of us at INRIA (see tjon and which make some chains monotone or almost monotone
http://www-id.imag.fr/Logiciels/psi/). The input model is a stochas- [6]. Recently a general algorithm has been presented in [5] which

tic matrix in sparse form. ) outputs a monotone matrix compliant to a pattern (basically a list of
We also apply Algorithm (3) to build a monotone upper bound o zero transitions in the matrix). All the patterns presented allow
which can be described as follows: to simplify the numerical computation of the steady-state computa-

tion of the chain. In the future we will try to identify patterns which
provide a fast coupling time. Note that the theory we develop is for
totally ordered Markov chains. When the state space is endowed
e the transitions due to the batch Poisson arrivals still have the with a partial order the equivalence between event monotonicity
same rate, and the size of the batch is still state dependent.and stochastic monotonicity is much more complex.
However the distribution changes. Assume that we are at  Note that it is also possible to use a lower bounding algorithm
statez, if z < k then the chain jumps to stake otherwise to obtain a monotone matrix. One can obtain two monotone sys-
the chain jumps to state + 1. Thus the size of the batch is  tems which can be efficiently simulated and gives some information
maz(k — x,1). The description with jumps come from the  about bounding accuracy as we have lower and upper bounds.
matrix representation of the chain while the description with It is also worthy to remark that we can build a stochastic mono-
a state dependent batch arrival is suitable for an event basedtone finite Markov Chain for an infinite one. Thus using a model
model. transformation we can obtain a finite Markov Chain which can be

) simulated using coupling from the past while the usual algorithms
We also have an experimental tool called PSI2 to perform the o not apply on infinite state space.

CFTP algorithm for monotone systems. The input model is based
on events description.
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