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ABSTRACT
We combine monotone bounds of Markov chains and the coupling
from the past to obtain an exact sampling of a strong stochastic
bound of the steady-state distribution for a Markov chain. Stochas-
tic bounds are sufficient to bound any positive increasing rewards
on the steady-state such as the loss rates and the average size or de-
lay. We show the equivalence between st-monotonicity and event
monotonicity when the state space is endowed with a total order-
ing and we provide several algorithms to transform a system into
a set of monotone events. As we deal with monotone systems, the
coupling technique requires less computational efforts for each iter-
ation. Numerical examples show that we can obtain very important
speedups.

Keywords
Perfect Simulation, Stochastic Bounds, Coupling from the past,
monotone Markov chains

1. INTRODUCTION
Simulation is the most versatile tool to model large and complex

systems such as high speed networks or highly dependable com-
puter systems. Unfortunately even if we can represent large sys-
tems with simulators, usual techniques require a long time to run
when we consider a system with a large number of resources and
when we need very accurate results. Drawbacks of simulation are
the control of the warm-up period before sampling, the influence
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of the initial state on the stochastic behavior of the system and the
accuracy for the estimation of small events probabilities. Thus it
is typically difficult to perform a rare event simulation with a high
dependence on the initial state. Usually the initial state of the sim-
ulator is an empty network when we model a network of queues
or a fully operational states when we deal with reliability problem
and these states clearly add a bias to the likelihood. Building an
arbitrary state of the model raises new questions:

• is the state really reachable ?

• what is the bias induced by this state ?

And the warm-up period problems remains to be solved for any
initial state. Even if we consider Poisson arrival of events, regener-
ation does not really help as the regenerative points that we can eas-
ily identify appear very unlikely (consider for instance the empty
state in a network of queue when the load is not light).

In this paper we advocate to useperfect simulationand to com-
bine this technique with stochastic monotonicity to speed up the
computation. Perfect simulation [16] directly builds steady state
samples avoiding the warm-up period and the initial state bias. This
method is based on the more general theory of coupling for Markov
chains. Let us first review some ideas about coupling. Assume that
we compute with the same random sequence of random numbers a
sample path beginning at any initial state. If at timet two sample-
paths are in the same state (we say that they couple), they will con-
tinue forever during all the simulation. When all the sample-paths
have coupled, we obtain a sample state. We may use the state to
initialize the simulation or consider it as a sample of distribution. it
is not necessary anymore to continue the simulation. For instance
in Fig. 1 all the sample-paths have coupled in state1 at time4. In
this drawing, each column is associated to a time instant and the
rows contain the states.Ui is the i-th value of the random sequence
used to generate the transitions of the chain at timei. This draw-
ing is an example of forward coupling also called coupling in the
future.

It is known for a long time that coupling in the future does not
provide a sample distributed according to the steady-state. But
Propp and Wilson have proved that coupling from the past (CFTP),
also called backward-coupling, gives an exact sample of the steady-
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Figure 1: Forward Coupling

state distribution [16]. Coupling from the past is similiar to cou-
pling in the future but the initial time of the simulation will be
chosen randomly whereas the final time is deterministic. In other
words the Markov chain is not started at time 0 but sufficiently far
away in the past such that at time 0 all the paths are coupled.

This method is extremely efficient when the state space is large
and has monotone dynamic. It has also be shown recently that we
can use antithetic variable technique to speed up the computation
of the confidence interval [21]. But many practical and theoretical
problems remain to be solved for discrete Markovian systems to
obtain a fully versatile technique.

One of the problem we must consider is the number of operations
we need to obtain a sample. The general backward algorithm tries
to couple sample-paths beginning in every state in the state space.
Thus modelling very large state space systems requires some model
transformation. Furthermore the number of operations is at least
linear in the size of the state space. The monotonicity property
of the event structure of the model (which is formally defined in
the next section) allows to use a more efficient algorithm which
sandwiches all sample-paths to couple into extreme ones.

Many routing techniques for networks of queues are monotone
[11], but a large number of models of synchronized systems are not
monotone. So we prove a model transformation technique which
derives monotone models. The fundamental theory we need here
is the stochastic comparison of Discrete-Time Markov Chains (see
[14] for a recent presentation of this theory). These models are built
to provide bounds on several stochastic estimates we usually want
to obtain. Strong stochastic bounds are associated to increasing
rewards we compute on transient distributions and on the steady-
state when it exists. Thus if we can compare two distributions we
can also compare increasing rewards on these distributions. This is
usually sufficient for Quality of Service modeling as we just want
to prove that some quantities (average delay, loss rates) are smaller
than some performance thresholds (see for instance [15] for an ap-
plication on Fair Queueing disciplines and [12] for algorithms to
bound sub-stochastic matrices for point availability models).

The following of the paper is as follows. The next section is de-
voted to a brief presentation of Perfect Simulation and its complex-
ity. In section III we present the theory of construction of Mono-
tone Markov chains and we prove the relationships between the
monotonicity associated to the strong stochastic ordering to com-
pare Markov Chains and the monotonicity of events considered in
the sandwiching of sample paths when the state space is assumed
to be totally ordered. We also give an algorithm to obtain a set
of monotone events from a monotone matrix. In section IV we
consider the general problem of model transformation to obtain a
monotone representation using matrices and events. Finally numer-
ical results are shown in section V to illustrate that the computation

of the monotone bounds may be much faster than in the backward
perfect simulation.

2. PERFECT SIMULATION
In this paper we assume finite state space, ergodic Continuous-

Time Markov Chains (CTMC). The first step of the event model
is a uniformization of the CTMC. Thus the monotone algorithm
is based on Discrete-Time Markov Chain (DTMC), and the strong
ordering of these chains.

2.1 Global state iteration
Formally, when all the knowledge of the process dynamics is

included in the state description, the system may be described by
transition functionΦ :

Xn+1 = Φ(Xn, Un+1); (1)

whereXn is nth observed state of the system, and{Un}n∈Z
the

sequence of inputs of the system, typically a sequence of calls to a
Random function. This type of stochastic recursive sequence has
been widely studied in a general framework [2] or [7] and some
results related with perfect simulation may be found in [18, 19].

It is clear that, if the{Un} are independent and identically dis-
tributed, the process{Xn}n∈Z

defined by an initial valueX0 and
the recursive equations (1) is a Markov chain. Conversely, given a
transition matrixP , it is possible to find many transition functions
Φ such that a Markov chain defined by (1) has transition matrixP
[20]. Clearly, all these functions do not require the same average
number of operations. This is illustrated in the example below.

2.2 Finite Markov Chains
Based on a stochastic recurrent sequence formulation, the fol-

lowing algorithm provides directly a sample of the steady state dis-
tribution. Notice thatS denotes the finite state space set.

Algorithm 1 Backward-coupling simulation (general version)
for all x ∈ S do

y(x) ← x {choice of the initial value of the vectory, n = 0}
end for
repeat

u ← Random; {generation ofu−n}
for all x ∈ X do

y(x) ← y(Φ(x, u)); {computation of the state at time0
of the trajectory issued fromx at time−n}

end for
until All y(x) are equal
returny(x)
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Figure 2: Convergence of Coupling from the Past Algorithm
for a non monotone Markov Chain



Provided that the coupling time is almost surely finite (it requires
some technical conditions), it is shown that Algorithm (1) generates
a state from the steady-state distribution [16, 20]. LetEτ1 be the
expectation of the coupling time,n be the size of the state space
and op(Φ) be the average number of operations to compute the
transition functionΦ. Clearly the average number of operations
before coupling isn(Eτ1)op(Φ).

FunctionΦ has a lot of influence on the number of operations.
First the way it is implemented has a linear influence because of
termop(Φ). But the problem is much more complex. The coupling
time depends on functionΦ used to describe the chain. Let us
illustrate both points with a toy example.

Consider a simple DTMC with three statesa, b andc, an arbi-
trary initial state and transition probability matrix:

P =

2

4

0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5

3

5

Using transform inverse function to represent the transition func-
tion, we can writeΦ(a) as:

8

<

:

if U < 0.5 Φ(a) = a
elsif U < 0.75 Φ(a) = b
otherwise Φ(a) = c

In this paper we represent this abstract code by the following
entry in the transition table to have a more abstract representation:

1/4 1/4 1/4 1/4
a a b c

The usual utilization of this table is to perform a linear search
from the beginning of the table with comparison on the boundaries.
The number of operations we give in the following takes into ac-
count this linear search in the entries of the table. Using this table
representation, this chain may be associated to the following func-
tionsΦA andΦB .

ΦA 1/4 1/4 1/4 1/4
a a b c
b b c a
c c a b

ΦB 1/4 1/4 1/4 1/4
a a b c
b a b c
c a b c

FunctionΦA implies that the chain never couples because ifU <
0.5 the state does not change, if0.5 6 U < 0.75 the state in
increased by one in a circular list and ifU > 0.75 the state is
decreased by one. Clearly the sample-paths never couple.

But at each step, the probability that the coupling occurs using
functionΦB is larger than0.5. Thus the expectation of the coupling
time is smaller than2.

Designing algorithms to find the most efficient functionΦ to
reduce the expectation of coupling time is still an open problem.
Some heuristics have been considered in [17].

Let us now consider the number of operations necessary to com-
puteΦA andΦB . If we use an inverse distribution approach the
average number of operations forΦA is 1.5 while the computation
cost ofΦB depends on the state: it is1.5 on a and1.75 on b and
c. Note that this complexity is related to the number of non zero

transitions in the chain, their probabilities and the order in which
we consider the transitions in the algorithm. It is known for a long
time that ordering the transitions in a decreasing order of their prob-
ability provides the most efficient implementation for inverse dis-
tribution implementation. It is worthy to remark here that trying to
optimize the number of operations inΦ will eventually lead to a
functionΦ which does not have a small coupling time.

On the practical point on view, a better implementation based
on the alias method has been used in PSI the software we have
developed [20].

This toy model illustrates that the optimization of functionΦ to
minimize the number of operations before coupling is a complex
approach. Hopefully it is also possible to reduce the number of
sample-paths if the model is event-monotone.

2.3 Monotone perfect sampling
We suppose that the underlying system is governed by a finite set

of events. Thus the system is described by a transition function with
events. Following the Poisson calculus methodology [3], events are
driven by homogeneous independent Poisson processes and the dy-
namic of the system is defined by a Poisson process (uniformiza-
tion of all the Poisson processes) and a transition functionΦ(x, e)
defined for each statex and each evente occurring on a Poisson
process. It is convenient to include the fact that some events could
not be applied to a state (not allowed transitions) inside the tran-
sition function. For example, the eventend of servicecould be
executed only if the number of customers in a queue is greater than
one. In a queueing network, a customer arrival, the end of a service
and the following routing, a customer departure, are typical events
in networks. Firings in Petri nets or Cooperation is Stochastic Al-
gebra processes may be handled as well and this allows a versatile
description of models.

Let us now give formal definitions.

DEFINITION 1 (EVENT). An evente is an application defined
on S, that associates to each statex ∈ S a new state denoted by
Φ(x, e). Φ is called thetransition function by events of the system.

DEFINITION 2 (EXECUTION). An execution of the system is
defined by an initial statex0 ∈ S and a sequence of eventse =
{en}n∈N . The sequence of states{xn}n∈N defined by the recur-
rencexn+1 = Φ(xn, en+1) for n > 0 is called atrajectory.

DEFINITION 3 (MONOTONE EVENTS). An evente is said to
be monotone, if it preserves the partial ordering6 onS :

∀(x, y) ∈ S x 6 y → Φ(x, e) 6 Φ(y, e)

If all events are monotone, the global system is said to be event-
monotone.

When the operatorΦ is event-monotone, the algorithm could be
simplified by making iteration only on maximum and minimum
values of the state space. For instance, in an open queuing net-
work, there is an unique minimum (all queues are empty) and an
unique maximum (all queues are full). Then we only iterate simul-
taneously 2 trajectories and the time reduction is in the order of the
size of the state space. This concept of event-monotone models will
clearly help to reduce the computation cost to obtain a sample.

We give in the following backward-coupling for event-monotone
models. We consider a set ofp events with ratesλ1, λ2, · · · , λp.
Let Λ be

Pp

i=1 λi.
Let us turn now to the expectation of the coupling time for event-

monotone systems. It has been shown [16] that the mean coupling
time is optimal when steps in the past are multiplied by2 when



Algorithm 2 Backward-coupling simulation (event-monotone ver-
sion)

n=1;
E[1]=Generate-event()
repeat

n=2n;
for all x ∈M ∪m do

y(x) ← x {choice of the initial value of the vectory,
n = 0}

end for
for i=n downto n/2+1do

E[i]=Generate-event() {generate event−i according to dis-
tribution (λ1

Λ
, · · · ,

λp

Λ
)}

for all x ∈M ∪m do
y(x) ← Φ(y(x), E[i]) {apply the transition given by
eventE[i] }

end for
end for
for i=n/2 downto 1do

{event−i has already been generated in a previous step}
for all x ∈M ∪m do

y(x) ← Φ(y(x),E[i])
end for

end for
until All y(x) are equal
returny(x)

trajectories issued from maximum and minimum states have not
coupled at time0. In the algorithmM (resp.m) denotes the set of
maximal (resp. minimal) elements in the state space. We give in
the following

This algorithm has the same convergence properties as Algo-
rithm (1). The doubling period of each scheme ensures that the
coupling time for an event-monotone system is less than the cou-
pling time for Algorithm (1) multiplied by2. Thus the expected
number of operations is2Eτ1op(ΦA).

The algorithms and the drawings of the sample paths clearly
show that an iteration of Algorithm (2) is much simpler than an
iteration of Algorithm (1) as it builds less sample-paths. So if one
can transform a model to imply event-monotonicity, one can use
Algorithm (2) instead of Algorithm (1) and obtain an exact sample
of the new model much more efficiently. We propose to transform
the model to obtain an upper bound of the Markov Chain using
the stochastic comparison approach. Note however that we do not
have any information on the expectation of the coupling time in the
initial model compared to the expectation of the coupling time in
the upper bounding model. We just know that on the same model
the algorithms have roughly the same average number of iterations.
Numerical results show very important speedups and the theoret-
ical approach proves that both expectations are upper bounded by
the same geometric delay. To the best of our knowledge, we are
only able to obtain an upper bound on the expectation or a stochas-
tic upper bound on the distribution.

3. STOCHASTIC ORDERING ON TOTALLY
ORDERED STATE SPACE

As the first step of the analysis consists in the uniformization
of the process using the sum of the rates, we restrict ourselves to
Discrete Time Markov Chains (DTMC) with finite state spaceS =
{1, . . . , n} endowed with a total order. We consider the strong
stochastic ordering (denoted "st" in the following). First, we give

a brief overview on stochastic ordering for Markov chains and we
obtain a set of inequalities to imply bounds. Then we present a
basic algorithm proposed by Abu Amsha and Vincent [1]. In the
following, Pi,∗ will refer to row i of P .

3.1 A brief overview
Following [14], we define the strong stochastic ordering by the

set of non-decreasing functions or by matrixKst.

Kst =

2

6

6

6

6

6

4

1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

3

7

7

7

7

7

5

DEFINITION 4. Let X andY be random variables taking val-
ues on a totally ordered space. ThenX is said to be less than
Y in the strong stochastic sense, that is,X 6st Y if and only if
E[f(X)] 6 E[f(Y )] for all non decreasing functionsf whenever
the expectations exist.

If X andY take values on the finite state spaceS = {1, 2, . . . , n}
with p andq as probability distribution vectors, thenX is said to
be less thanY in the strong stochastic sense, that is,X 6st Y if
and only if

Pn

j=k
pj 6

Pn

j=k
qj for k = 1, 2, . . . , n, or briefly:

pKst 6st qKst.
Important performance indices such as average population, loss

rates or tail probabilities are non decreasing functions. Therefore,
bounds on the distribution imply bounds on these performance in-
dices as well. Moreover stochastic bounds are also valid for tran-
sient distributions. We do not use this property as we are mainly
interested in performance measures on the the steady-state. It is
known for a long time that monotonicity [14] and comparability of
the one step transition probability matrices of time-homogeneous
MCs yield sufficient conditions for their stochastic comparison.
This is the fundamental result we use in our algorithms. First let
us define the st-comparability of matrices and the st-monotonicity
of a matrix.

DEFINITION 5 (MATRIX STOCHASTICCOMPARISON). LetP
andQ be two stochastic matrices.P 6st Q if and only ifPKst 6

QKst. This can be also characterized asPi,∗ 6st Qi,∗ for all i.

DEFINITION 6 (MONOTONEMATRIX ). Let P be a stochas-
tic matrix,P is st-monotone if and only if for allu andv, if u 6st v
thenuP 6st vP .

Hopefully, st-monotone matrices are completely characterized
(this is not the case for other orderings).

PROPERTY 1. LetP be a stochastic matrix.P is6st-monotone
if and only ifK−1

st PKst > 0 component-wise.

PROPERTY 2. Let P be a stochastic matrix,P is st-monotone
if and only if for all i,we havePi,∗ 6st Pi+1,∗

THEOREM 1. Let X(t) andY (t) be two DTMC andP andQ
be their respective stochastic matrices. ThenX(t) 6st Y (t), t >

0, if

• X(0) 6st Y (0),

• st-monotonicity of at least one of the matrices holds,

• st-comparability of the matrices holds, that is,Pi,∗ 6st Qi,∗ ∀i.



Thus, assuming thatP is not monotone, we obtain a set of in-
equalities on entries ofQ :

 Pn

k=j
Pi,k 6

Pn

k=j
Qi,k ∀ i, j

Pn

k=j
Qi,k 6

Pn

k=j
Qi+1,k ∀ i, j

(2)

3.2 Algorithms
It is possible to derive a set of equalities, instead of inequalities.

These equalities provides, once they have been ordered (in increas-
ing order fori and in decreasing order forj in system 3), a con-
structive way to design a stochastic matrix which yields a stochastic
bound.

 Pn

k=j
Q1,k =

Pn

k=j
P1,k

Pn

k=j
Qi+1,k = max(

Pn

k=j
Qi,k,

Pn

k=j
Pi+1,k) ∀ i, j

(3)
The following algorithm [1, 9] constructs the optimal st-monotone

upper bounding DTMCQ for a given DTMCP . For the sake
of simplicity, we use a full matrix representation forP and Q.
Stochastic matrices associated to real performance evaluation prob-
lems are usually sparse. And the sparse matrix version of all the al-
gorithms we present here is straightforward. Note that due to the or-
dering of the indices, the summations

Pn

j=l
qi−1,j and

Pn

j=l+1 qi,j

are already computed when we need them. And they can be stored
to avoid computations. However, we let them appear as summa-
tions to show the relations with inequalities 2.

Algorithm 3 Construction of the optimal st-monotone upper
bounding DTMCQ:

q1,n = p1,n;
for i = 2, 3, . . . , n do

qi,n = max(qi−1,n, pi,n);
end for
for l = n-1 downto 1do

q1,l = p1,l;
for i = 2, 3, . . . , n do

qi,l = max(
Pn

j=l
qi−1,j ,

Pn

j=l
pi,j)−

Pn

j=l+1 qi,j ;
end for

end for
returnq

First let us illustrate Algorithm (3) on a small matrix. We con-
sider a5 × 5 matrix for P1 and we compute matrixQ, and both
steady-state distributions.

P =

2

6

6

6

4

0.5 0.2 0.1 0.2 0.0
0.1 0.7 0.1 0.0 0.1
0.2 0.1 0.5 0.2 0.0
0.1 0.0 0.1 0.7 0.1
0.0 0.2 0.2 0.1 0.5

3

7

7

7

5

Q =

2

6

6

6

4

0.5 0.2 0.1 0.2 0.0
0.1 0.6 0.1 0.1 0.1
0.1 0.2 0.5 0.1 0.1
0.1 0.0 0.1 0.7 0.1
0.0 0.1 0.1 0.3 0.5

3

7

7

7

5

Unfortunately this algorithm may transform an irreducible matrix
into a reducible one and we do not have a complete characterization
of matrices where this problem occurs. Indeed due to the subtrac-
tion operation in inner loops, some elements ofQ may be zero even
if the elements with the same indices inP are positive. We may use

another algorithm (IMSUB) which solves the problem [9]. IMSUB
avoids to delete the transitions in the upper triangle and makes pos-
itive the elements of the lower subdiagonal.

Algorithm 4 IMSUB
q1,n = p1,n;
for i = 2, 3, . . . , n do

qi,n = max(qi−1,n, pi,n);
end for
for l = n-1 downto 1do

q1,l = p1,l;
for i = 2, 3, . . . , n do

qi,l = max(
Pn

j=l
qi−1,j ,

Pn

j=l
pi,j)−

Pn

j=l+1 qi,j ;
if (i > l) and(qi,l = 0) then

qi,l = ǫ(1−
Pn

j=l+1 qi,j)
end if

end for
end for
returnq

The first step is to prove the relations between the strong stochas-
tic ordering we use for the DTMC and the event-monotonicity we
consider for the coupling from the past algorithm.

3.3 Stochastic strong monotonicity and
event-monotonicity

We suppose a totally ordered state spaceS and give the relation-
ships between the stochastic monotonicity and event-monotonicity.

THEOREM 2. When the state space is totally ordered, if the sys-
tem is event-monotone (see Def.3), it is also stochastically mono-
tone, if the underlying model is homogeneously governed by a finite
set of eventsE = {e1, · · · en}.

Proof :
We must show that for each two states x and y such thatx 6 y,

the row x and the rowy of the underlying probability transition
matrix are comparable in the sense of6st order:

P [x, ∗] 6st P [y, ∗]

To demonstrate this, we must show that:

N
X

i=k

P (x, i) 6

N
X

i=k

P (y, i) ,∀k = 1, 2, ..., N (4)

From the event-monotone definition, we have

x 6 y → Φ(x, e) = z 6 Φ(y, e) = z
′ (5)

Assuming that the same set of events occur in each state, the
transition matrix is defined by the event probabilitiespeu for eu ∈
E, such thatP [x, z] =

P

Φ(x,eu)=z
peu . Thus equation 4 can be

written as follows:
N

X

i=k

X

Φ(x,eu)=i

peu 6

N
X

i=k

X

Φ(y,eu)=i

peu ,∀k = 1, 2, ..., N

It follows from Eq. 5 that for eacheu, if peu is included in
N

X

i=k

X

Φ(x,eu)=i

peu , then it is also included in

N
X

i=k

X

Φ(y,eu)=i

peu . Thus the former inequalities are satisfied andP

is 6st monotone.



THEOREM 3. When the state space is totally ordered, if the
system is stochastically monotone, then there exists a finite set of
eventse1, · · · en, for which the system is event-monotone.

We give the following algorithm which takes as input a stochastic
monotone matrixP = (pi,j)1∗N,1∗N and gives a set of eventsE
and a transition functionΦ, such thatΦ(x, eu) is event-monotone.

Algorithm 5 Stochastic monotonicity→ event-monotonicity

S = {1, 2, 3, ...., N}
E = ∅{the set of events is initially empty}
Φ : S ∗E −→ S
V = [v1, v2, ..., vN ]{a vector representing the column index of
the rightmost positive values for each row, initialized to N }
k ← 0
repeat

for i = 1 to N do
j ← vi

while pi,j = 0 do
j ← j − 1

end while
vi ← j {update vectorV }

end for
k ← k + 1 {the next eventek}
pek
← min16i6N pi,vi

{probability for eventek}
for i = 1 to N do

Φ(i, ek) ← vi

pi,vi
← pi,vi

− pek
{update the matrix}

end for
until

P

ek∈E
pek

= 1

Before proceeding with the proof, let us illustrate by an example
on a simple matrix the steps of this algorithm. The components of
vector V are the index of the elements which are framed in the ma-
trices. These are indeed the column index of the rightmost positive
values for each row.

P =

2

6

6

6

4

0.5 0.2 0.1 |0.2| 0.0
0.2 0.5 0.1 0.1 |0.1|
0.2 0.3 0.2 0.2 |0.1|
0.1 0.0 0.1 0.7 |0.1|
0.0 0.0 0.2 0.3 |0.5|

3

7

7

7

5

→ pe1
= 0.1

And vectorV is [4, 5, 5, 5, 5]. The first evente1 will occur with
probability pe1

= 0.1. In the sequel we only indicate the event
probabilities obtained in each step.

P =

2

6

6

6

4

0.5 0.2 0.1 |0.1| 0.0
0.2 0.5 0.1 |0.1| 0.0
0.2 0.3 0.2 |0.2| 0.0
0.1 0.0 0.1 |0.7| 0.0
0.0 0.0 0.2 0.3 |0.4|

3

7

7

7

5

→ pe2
= 0.1

P =

2

6

6

6

4

0.5 0.2 |0.1| 0.0 0.0
0.2 0.5 |0.1| 0.0 0.0
0.2 0.3 0.2 |0.1| 0.0
0.1 0.0 0.1 |0.6| 0.0
0.0 0.0 0.2 0.3 |0.3|

3

7

7

7

5

→ pe3
= 0.1

P =

2

6

6

6

4

0.5 |0.2| 0.0 0.0 0.0
0.2 |0.5| 0.0 0.0 0.0
0.2 0.3 |0.2| 0.0 0.0
0.1 0.0 0.1 |0.5| 0.0
0.0 0.0 0.2 0.3 |0.2|

3

7

7

7

5

→ pe4
= 0.2

P =

2

6

6

6

4

|0.5| 0.0 0.0 0.0 0.0
0.2 |0.3| 0.0 0.0 0.0
0.2 |0.3| 0.0 0.0 0.0
0.1 0.0 0.1 |0.3| 0.0
0.0 0.0 0.2 |0.3| 0.0

3

7

7

7

5

→ pe5
= 0.3

P =

2

6

6

6

4

|0.2| 0.0 0.0 0.0 0.0
|0.2| 0.0 0.0 0.0 0.0
|0.2| 0.0 0.0 0.0 0.0
0.1 0.0 |0.1| 0.0 0.0
0.0 0.0 |0.2| 0.0 0.0

3

7

7

7

5

→ pe6
= 0.1

P =

2

6

6

6

4

|0.1| 0.0 0.0 0.0 0.0
|0.1| 0.0 0.0 0.0 0.0
|0.1| 0.0 0.0 0.0 0.0
|0.1| 0.0 0.0 0.0 0.0
0.0 0.0 |0.1| 0.0 0.0

3

7

7

7

5

→ pe7
= 0.1

So we can derive an event description of the matrixP , using these
seven events.

2

4

pe5
+ pe6

+ pe7
pe4

pe3
pe1

+ pe2
0.0

pe6
+ pe7

pe5
+ pe4

pe3
pe2

pe1
pe6

+ pe7
pe5

pe4
pe2

+ pe3
pe1

pe7
0.0 pe6

pe2
+ pe3

+ pe4
+ pe5

pe1
0.0 0.0 pe6

+ pe7
pe5

pe1
+ pe2

+ pe3
+ pe4

3

5

We now give the proof that the transition functionΦ given by the
Algorithm (5) is event-monotone.
Proof:

The proof is done in two steps. First we demonstrate the exis-
tence and the monotonicity of the generated events and secondly
we prove that this set of events is finite.

• The principe of this algorithm is to construct the event-monotone
model by defining its monotone events one by one until the
probability sum is equal to one. This algorithm proposes to
choose the first positive value by beginning from the right for
each row x. Let us note this value byRx and the correspond-
ing column byvx, for all statex ∈ S (Rx = P (x, vx)). In
fact vectorV is constituted ofvx, x ∈ S.

It follows from stochastic monotonicity that

N
X

i=k

P (x, i) 6

N
X

i=k

P (y, i) ,∀k = 1, 2, ..., N (6)

Thus for each two statesx, y such thatx 6 y :

Rx = P (x, vx), and Ry = P (y, vy) −→ vx 6 vy (7)

We define an eventeu with probabilitypeu = mini=1,···N (Ri)
such that for all state i,Φ(i, eu) = vi. It follows from Eq. 7
that for each two statesx, y such thatx 6 y :

Φ(x, eu) 6 Φ(y, eu)

Thuseu is a monotone event.

Once this event is defined, we subtract its probability from
the transition matrix. It is done by using vectorV which
means that for each row we subtractpeu from the right most
positive entry. We have from equation 6:

N
X

i=k

P (x, i) − peu 6

N
X

i=k

P (y, i)− peu ,∀k = 1, 2, ..., N

(8)



Therefore the updated matrix satisfies the stochastic mono-
tonicity inequalities for the next iteration to determine the
next event. The other events are similarly determined by us-
ing the updated matrix and vectorV .

• During the execution of this algorithm, the construction of
each event makes null at least one matrix entry. LetM be
the number of non zero entries of the underlying matrix. In
the worst case afterM 6 N2 steps all the entries of the tran-
sition matrix will be null and the sum of event probabilities
will be equal to one.

These theorems state that st-monotonicity and event monotonic-
ity are equivalent when the state space is totally ordered. And Al-
gorithm (5) allows us to obtain a monotone event description of a
monotone matrix.

3.4 Coupling Time
Consider the time complexity of the perfect simulation algo-

rithm. When the chain is not monotone, the backward iteration
of Algorithm (1) should be done for each state. Then the expected
time complexity is of the form

op(Φ).n.Eτ ;

whereop(Φ) is the time cost of applying the transition function to
a single state,n is the size of the state space andτ the number of
iterations until coupling occurs.

Denote byΦ(x, e1, · · · , en) the state of the system after apply-
ing to the initial statex the sequence of eventse1, · · · , en. This no-
tation generalizes to the image of a set of statesA, Φ(A, e1, · · · , en).

DEFINITION 7. The coupling timeτ of the backward scheme is
given by

τ = inf {n; such thatCard(Φ(S, en, · · · , e1)) = 1} .

Provided that there exist with a positive probability an integerk and
a specific coupling pattern of eventsek, · · · e1 such that
Card(Φ(S, ek, · · · , e1)) = 1, thenτ is almost surely finite and,
moreover, upper bounded by a geometric distribution. In the case
when the matrix is monotone and the transition function build on
the inverse of the probability distribution function, then the se-
quencee1, · · · , e1 (number of events is the size of the state space)
is a coupling pattern and the backward scheme converges almost
surely.

A first significant time reduction appears when the chain is mono-
tone Algorithm (2). In that case, iterations are done only on the set
of extreme states, and in our situation, because the state space is
totally ordered just 2 trajectories are derived backward. But this al-
gorithm needs the storage of the event sequence (amount of mem-
ory in the order ofτ ). The doubling scheme in the past ensures that
the total number of iterations is less than2τ .

Previous works [8] have shown that in many practical situations
such as queueing networks, the coupling timeEτ is linear in the
number of queues and quadratic in the capacities of the queues.
Then it is much smaller than the size of the state space which grows
exponentially when the number of queues increases.

A second improvement could be done by the utilization of ag-
gregation function. Truffet [13] has proved that we can combine
strong stochastic bounds and aggregation. We have developed two
algorithms to build a monotone lumpable upper bounds: LIMSUB
[10] and LMSUB [4]. LMBUB is a sparse matrix implementation
of Truffet’s method while LIMSUB creates an irreducible matrix.
Of course in both cases we only build the lumped matrix of the
bound to avoid a very large state space generation. This is really

useful for numerical computation when one must handle vectors
and matrices of the state space size.

Here most of the influence of the size of the state space has been
cancelled when one uses monotone models and the sandwich algo-
rithm. But lumping the model still helps. We assume that in the
lumpable algorithm, the aggregation functionl preserves the order
of the initial state space. Then it is easier to simulate the backward
scheme on the lumped chain and derive the steady state of lumped
process and extend by decomposition of macro-states to the initial
state. Denote byτ l the coupling time of the backward scheme of
the lumped chain. Then we have the theorem

THEOREM 4. If the lumping functionl is order preserving (x 6

y impliesl(x) 6 l(y)), then

τ
l
6st τ.

This comes from the fact that if the initial chain have coupled then
the lumped one have already coupled.

The estimation of coupling time reduction is known to be hard
and counterexamples shows that some aggregation functions have
the same coupling time distribution as the initial chain.

Let us now return to input model and discuss how we can trans-
form it to be monotone. We present several algorithms in the next
section to deal with various types of Markovian model. In section 5
we present some numerical experiments to show the speedup when
the model is monotone.

4. MONOTONE PERFECT SAMPLING FOR
NON-MONOTONE MODELS

We need several algorithms because we must consider several
types of input models and several ways to transform these models
into a set of monotone events. In the MESCAL project we have
developed two simulators based on these concepts. PSI is an im-
plementation of the coupling from the past algorithm for general
Markov chains (i.e. non monotone). The transitions are imple-
mented with the alias method to be more efficient. The inputs of
PSI are a stochastic matrix or a transition rate matrix. PSI2 is based
on monotone events and its inputs are a description of monotone
events.

In this section we present algorithms to transform the underlying
system which is not event-monotone in order to be able to apply
monotone perfect sampling using a monotone event representation.
We suppose that the underlying system is given as a stochastic ma-
trix P or as a set of non monotone events. We must define a finite
set of monotone events to be able to do monotone perfect sampling
with PSI2. We present several algorithms based on various inputs
and intermediate models: events or stochastic matrix.

4.1 Event transformation
First suppose that the input model is a set of events which is

not monotone. We propose the following algorithm to obtain an
upper bounding monotone transition function. This algorithm takes
a transition functionΦ and returns a transition functionΦsup such
that

• Φ(x, e) 6 Φsup(x, e) ∀x, e

• Φsup is event-monotone.

The algorithm is simply based on the following approach: Let
{ei} be the initial set of events, we modify the events to be mono-
tone and to build an upper bounding matrix as follows:

• the probability of an event does not change.



• the action of an event on a state is changed and we build a
new transition functionΦsup to describe this new effect:

Φsup(ei, y) = maxx6yΦ(ei, x)

Algorithm 6 Non monotone event representation→ monotone
event representation

S = {1, 2, 3, ..., N}
E = {e1, e2, e3, ..., ep}
Φ : S ∗E −→ S
Φsup : S ∗E −→ S
for j = 1 to p do

Φsup(1, ej) ← Φ(1, ej)
end for
for i = 2 to n do

for j = 1 to p do
Φsup(i, ej) ← max(Φsup(i− 1, ej), Φ(i, ej))

end for
end for

Let us now prove that the Algorithm (6) gives an event monotone
transition function. LetS be the state space,S = {1, 2, . . . , N}
andE be the event space,E = {e1, . . . , ep}. To prove that the
function proposed by Algorithm (6) is event-monotone, we need to
introduce the following equivalence.

LEMMA 1. For each eventeu ∈ E, These two propositions are
equivalent:

• (1) ∀i, j ∈ S : if i 6 j thenΦ(i, eu) 6 Φ(j, eu)

• (2) ∀i ∈ S : Φ(i, eu) 6 Φ(i + 1, eu)

Proof:

• (1) =⇒ (2) : This implication is evident, because by taking
j = i + 1, the proposition (2) is satisfied.

• (2) =⇒ (1) : From the proposition (2) we have :

Φ(1, eu) 6 .. 6 Φ(i, eu) 6 Φ(i + 1, eu) 6 .. 6 Φ(N, eu)

Thus, we can obviously see that for alli, j ∈ S, if i 6 j :
Φ(i, eu) 6 Φ(j, eu)

PROPERTY 3. Φsup(i, eu) is event-monotone.

Proof:
To prove thatΦsup(i, eu), i ∈ S is monotone, we must show

that for each two states:i ∈ S, j ∈ S andi 6 j: Φsup(i, eu) 6

Φsup(j, eu). Indeed we can deduce from lemma 1 that it is suffi-
cient to show that :

∀i ∈ S : Φsup(i, eu) 6 Φsup(i + 1, eu)

From the algorithm, we have for each eventeu ∈ E, and state
i ∈ S:

Φsup(i + 1, ej) = max(Φsup(i, eu), Φ(i, eu))

Then,Φsup(i + 1, eu) > Φsup(i, eu). Therefore we conclude that
Φsup(i, eu) is event-monotone.

PROPERTY 4. Let Π (resp. ΠP ) be the stationary distribution
estimated by doing the monotone perfect sampling ofΦsup (resp.
of Φ). We must show thatΠP 6st Π.

Proof: Let P (resp.Q) be the stochastic matrix associated toΦ
(resp.Φsup). It follows from theorem (2) that event monotonicity
implies6st monotonicity. ThusQ is 6st-monotone. The proof of
P 6st Q is exactly the proof of Vincent’s algorithm (i.e. Algo-
rithm 3). It is omitted here and it can be found in [1]. It is more
important to remark that some important properties of Algorithm
(3) such as optimality are still true for Algorithm (6).

4.2 Matrix and IMSUB
Assume now that the input of the model is a stochastic matrix.

The algorithm we have already presented provides a first way to
obtain a monotone set of events for an upper bound. We first ap-
ply IMSUB (i.e. Algorithm 4) to construct a6st-monotone upper
bounding matrixQ. From theorem 3, it is possible to compute the
set of monotone-events. This can be done by means of Algorithm
(5(. The stationary distribution ofQ ( ΠQ) can be estimated with
monotone perfect sampling Algorithm (1) through PSI2. Since by
constructionP 6st Q, we obtain a stochastic upper bound on the
stationary distribution ofP (ΠP 6st ΠQ).

4.3 Matrix and transformation of events
Another solution with the same input is to find a set of events

directly from the initial matrix. These events are not monotone as
the matrix is not. This algorithm tries to minimize the number of
events. Then we build from this set a new set of events which are
monotone and which describe an upper bound of the matrix.

We first obtain the transition functionΦ for the input matrixP .
We give the following algorithm which takes as input a stochastic
matrixP and returns a transition functionΦ corresponding toP .

Algorithm 7 event representation for a transition matrix

S = {1, 2, 3, ...., N}
E = ∅{the set of events is initially empty}
Φ : S ∗E −→ S
V = [v1, v2, ..., vN ]
k ← 0
repeat

for i = 1 to N do
vi ← 1;
for j = 2 to N do

if pi,j > pi,vi
then

vi ← j;
end if

end for
end for
k ← k + 1 {the next eventek}
pek
← min16i6N pi,vi

{the probability for eventek}
for i = 1 to N do

Φ(i, ek) ← vi

pi,vi
← pi,vi

− pek
{update the matrix}

end for
until

P

ek∈E
pek

= 1

As the proof that the function given by of Algorithm (7) is event-
monotone is very similar to the former proof it is omitted here.
Since the underlying matrixP is not6st-monotoneΦ is not event-
monotone but it is now quite simple to complete the transform. We
just have to use Algorithm (6) to obtain a new set which is now
consistent with the inputs of PSI2 and which allows to build an
upper bound of the original Markov chain.



5. BOUNDS AND PERFECT SIMULATION:
SOME EXAMPLE

We consider a slightly modified version of the M/M/1/B queue.
The service are exponential and the service rate isµ. We consider
the superposition of two independent arrival processes. The first
process is a Poisson process of rateλ. The second process is a
Poisson batch arrival process. The distribution of the batch is state
dependent. At state0 it has sizek > 2. For all other states, the
batch size is1 almost surely. The arrival rate isα.

Clearly this system is not monotone because of the transitions
out of state0. Thus we must use Algorithm (1) to obtain some
samples We have a matrix based implementation of this algorithm
in PSI a software tool developed by some of us at INRIA (see
http://www-id.imag.fr/Logiciels/psi/). The input model is a stochas-
tic matrix in sparse form.

We also apply Algorithm (3) to build a monotone upper bound
which can be described as follows:

• the transitions due to Poisson arrivals and exponential ser-
vices (with rateλ andµ are kept unchanged;

• the transitions due to the batch Poisson arrivals still have the
same rate, and the size of the batch is still state dependent.
However the distribution changes. Assume that we are at
statex, if x < k then the chain jumps to statek, otherwise
the chain jumps to statex + 1. Thus the size of the batch is
max(k − x, 1). The description with jumps come from the
matrix representation of the chain while the description with
a state dependent batch arrival is suitable for an event based
model.

We also have an experimental tool called PSI2 to perform the
CFTP algorithm for monotone systems. The input model is based
on events description.

We perform the following experiments on an ordinary PC (pro-
cessor P4 3.0 GHz, 2Gb of memory). We first generate the models
and we make the measurements once the models have been stored
on disk. The first set of experiments deal with a system with a
load smaller than1.0. The service rate is1.0 while λ = 0.8 and
α = 0.1. We have fixedk = 12 for all experiments and we change
the value of the queue size to change the number of states in the
model. We gather in Table 1 the numerical values obtained to gen-
erate 1000 samples. The data are the CPU user times in second
measured by the time Linux command. In the second set of ex-

B 200 1000 5000 10000
Algo 1 8 187 4600 12200
Algo 2 2.8 16 72 144

Table 1: CPU User Time for 1000 samples

periments, we model a queue with a load equals to1.5. We only
change the input rateλ to 1.4.

B 200 1000 5000 10000 100000
Algo 1 5.1 127 3000 12000 none
Algo 2 0.8 4.5 21.6 38 295

Table 2: CPU User Time for 1000 samples

In both tables we can see that CFTP for monotone Markov Chain
is much more efficient than CFTP for an arbitrary Markov Chain.

Algorithm (2) seams to have a linear complexity with the size of the
state space. The complexity of Algorithm (1) is more than linear
with the state space. A linear part comes from the samples which
must begin in every state. The other part comes from the coupling
time, the length of which is dependent of the size of the state space.

6. CONCLUSION
In this paper we show how we can combine monotone bounds

and coupling from the past to obtain efficiently an exact sample of
a strong stochastic bound. One can generalize to other model trans-
formation. For instance, we have developed some algebraic manip-
ulations of the chain which do not change the steady-state distribu-
tion and which make some chains monotone or almost monotone
[6]. Recently a general algorithm has been presented in [5] which
outputs a monotone matrix compliant to a pattern (basically a list of
non zero transitions in the matrix). All the patterns presented allow
to simplify the numerical computation of the steady-state computa-
tion of the chain. In the future we will try to identify patterns which
provide a fast coupling time. Note that the theory we develop is for
totally ordered Markov chains. When the state space is endowed
with a partial order the equivalence between event monotonicity
and stochastic monotonicity is much more complex.

Note that it is also possible to use a lower bounding algorithm
to obtain a monotone matrix. One can obtain two monotone sys-
tems which can be efficiently simulated and gives some information
about bounding accuracy as we have lower and upper bounds.

It is also worthy to remark that we can build a stochastic mono-
tone finite Markov Chain for an infinite one. Thus using a model
transformation we can obtain a finite Markov Chain which can be
simulated using coupling from the past while the usual algorithms
do not apply on infinite state space.
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